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Abstract: Wave power is an eco-friendly power generation method. Owing to the highly volatile
nature of wave energy, the application of prediction techniques for power generation, failure diag-
nosis, and operational efficiency plays a key role in the successful operation of wave power plants
(WPPs). To this end, we propose the following approaches: (i) deriving the correlation between
highly volatile data such as wave height data and sensor data in an oscillating water column (OWC)
chamber; (ii) development of an optimal training model capable of accurate prediction of the state of
the wave energy converter (WEC) based on the collected sensor data. In this study, we developed
a big data analysis system that can utilize the machine learning framework in KNIME (an open
analysis platform), and to enable smart operation, we designed a training model using a digital twin
of an OWC–WEC that is currently in operation. Using various machine learning models, the pressure
of the OWC chamber was predicted, and the results obtained were tested and evaluated to confirm
its validity. Furthermore, the prediction performance was comparatively analyzed, demonstrating
the excellent performance of the proposed CNN-LSTM-based prediction model.

Keywords: oscillating water column; wave energy converter; machine-learning; pressure prediction
model; big data platform; HPC cloud

1. Introduction

In recent years, the problems of global warming, environmental pollution, and de-
pletion of natural resources caused by the use of fossil fuel-based energy, and the safety
problem of nuclear energy have triggered the need for an alternative and permanent energy
source, drawing attention toward renewable energy sources such as ocean energy, solar en-
ergy, and wind power. Against this backdrop, the South Korean government, in line with its
incentives and planned electric power target, has announced its long-term plan to increase
the proportion of renewable energy, which is currently 6% of the total power generation
portfolio, to at least 20% by 2030 and 30% by 2040 [1]. Ocean energy, an attractive renewable
energy source, generates electricity by utilizing tidal power, wave power, ocean current,
and temperature differences of the ocean. Among these methods of power generation,
wave energy generation is an environmentally friendly method of obtaining energy from
the ocean, which accounts for 71% of the earth’s surface. Once a wave power plant (WPP)
is installed, it can serve as a revolutionary energy source for countries by the coast, such as
South Korea, owing to its low maintenance and operation costs [2]. Structures for wave
energy converters (WECs) can be classified into three categories according to the conversion
method of kinetic energy from ocean waves: (i) overtopping devices, (ii) wave-activated
bodies, and (iii) oscillating water columns (OWC). Among these three structures, OWCs
are designed to generate a reciprocating air flow through the turbines, thereby driving
generators to produce energy. Although its conversion efficiency is low, the structure of
the power generation system is separated from seawater, resulting in high reliability and
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safety as well as advantages in terms of maintenance, which have been reported in the
related literature [3–5]. Globally, some representative OWC plants include the KVAENER
plant in Norway [6], LIMPET plant in Scotland [7,8], Pico plant in Portugal [9,10], Mutriku
plant in Spain [11], and Yongsu plant in South Korea. In South Korea, the West Sea around
Jeju Island, in particular, has been reported for its high wave energy, facilitating the use
of a WEC [12]. This is because, in the winter season, the northwest seasonal winds dom-
inate under the specific pressure patterns such as the west-high-east-low pattern due to
the development of Siberian high pressure, and the summer season is characterized by
southeast or southwest seasonal winds. In winter, the wave energy is high due to the
influence of the continental climate, with the highest average wave energy density being
observed in December. During the typhoon season of August and September, the variation
and the peak-to-average ratio of wave energy were the highest [13]. The construction of
the Yongsu WPP, 1.2 km away from Jeju Island, was completed in July 2016 as a fixed-type
OWC–WEC and has been operational since then. In general, the electric power extracted
from the wave energy of an OWC–WEC is in the range of 60–500 kW, and the Yongsu WPP
is currently undergoing tests with a target power generation of 500 kW [14]. The wave
energy is converted into air flow generated by the oscillation of the water level inside the
OWC air chamber, driving the air turbines and recovering electrical energy. The energy
efficiency is maximized by resonance when the frequency of the incoming waves is equal
to the natural frequency of the air chamber. The pressure prediction of the OWC chamber
is not only the most direct parameter for improving the energy efficiency, but is also a
necessary technology to prevent failure at instantaneous high pressure, which is a major
issue in the operation of the Yongsu WPP generator.

The purpose of this study is to predict the pressure inside the OWC chamber, which
will enable the control of the generator turbines, thereby maximizing electric power gen-
eration and preventing failure from instantaneous peak pressure. Based on the sensor
data collected from the OWC–WEC, we designed a prediction model applying data pre-
processing, including data correlation and machine learning, and verified the validity
of the pressure prediction results in the OWC chamber. This paper is organized as fol-
lows: Section 2 outlines the related works that present an overview of OWC–WEC, and
the research trend of machine learning used in OWC–WEC. Section 3 outlines the big
data platform based on the HPC environment for artificial intelligence (AI) analysis of
OWC–WEC datasets and the design of the OWC pressure prediction model. The datasets
were defined, and significant features were derived from parameters with high corre-
lation through correlation analysis. The section discusses a method of constructing an
input dataset suitable for machine learning using data ingestion, correlation analysis of
input data, data preprocessing, and noise removal. The prediction model and validation
are detailed in this section. Section 4 highlights the superiority of the proposed model
by comparing its performance with those of existing analysis models. Finally, Section 5
presents the conclusion and expected implications of the findings of this study and future
research plans.

2. Background
2.1. OWC–WEC

An OWC–WEC converts wave energy into mechanical energy and subsequently
converts mechanical energy into electrical energy. Figure 1 presents an overview of Yongsu
OWC–WEC: (a) the study site of the OWC–WEC located 1.2 km offshore in front of Yongsu-
ri in the region of Jeju Island, (b) schematics of the internal structure of the OWC–WEC,
(c) arrangement for WPP operation, and (d) position of sensors in the turbine. The main
characteristics of Yongsu OWC–WEC are presented in Table 1. The up-down motion of
the air inside the OWC chamber is due to waves, leading to the reciprocating flow of air
between the inside and outside of the chamber.
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Figure 1. Yongsu OWC–WEC: (a) Location map; (b) Construction diagram; (c) Arrangement for operation; (d) Sensors in 
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Table 1. Main characteristics of Yongsu OWC–WEC. 

Characteristics Description 
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External 

Dimensions 
37.2 m(L) × 31.2 m(B) × 27.5 m(H) 
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Turbine Impulse turbine of 1.8 m (dla.), 26 blades 

Generator Synchronous generator(SG), Dual Fed Induction generator(DFIG) 

Figure 1. Yongsu OWC–WEC: (a) Location map; (b) Construction diagram; (c) Arrangement for operation; (d) Sensors in
the turbine.

Table 1. Main characteristics of Yongsu OWC–WEC.

Characteristics Description

Capacity 500 kW (250 kW × 2)
External Dimensions 37.2 m(L) × 31.2 m(B) × 27.5 m(H)

Weight 10,500 ton
Turbine Impulse turbine of 1.8 m (dla.), 26 blades

Generator Synchronous generator(SG), Dual Fed Induction generator(DFIG)

The reciprocating air flow passes through the blade and rotates the turbine, thereby
converting the wave energy into mechanical energy. The mechanical energy transferred
to the turbine is then converted into electrical energy through the WEC. However, owing
to the characteristics of renewable energy, the generated voltage is not constant, and the
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transferred energy is converted to electrical energy with a constant voltage and frequency
through a power conversion system (PCS). That is, because the output of the WEC is
electrical energy with varying voltage and frequency, the PCS is essential for operating the
WEC in connection with power grids [15,16].

2.2. Machine-Learning (ML) in OWC–WEC

ML is a subset of AI; it uses an algorithm in which data are analyzed and learned,
and decisions and predictions are made on the output of new input data. ML can be
categorized into supervised and unsupervised learning according to the learning type.
Supervised learning uses labeled data that includes both input and output data for learning.
Using the input and output of the training data, the function of the applicable system is
inferred, and when there is a new input, the function is used to predict the corresponding
output. Supervised learning can be categorized into regression, which is a prediction for
continuous output data, and classification, which is a prediction for discontinuous output
data. Unsupervised learning uses unlabeled data with only input data, and clustering is
typically used in learning in which data with similar features are grouped using the features
of the input data. For the pressure prediction in this study, a regression analysis algorithm
that infers continuous output data for continuous input data was considered suitable.
Representative regression analysis algorithms include linear regression (LR), support vector
regression (SVR), decision regression tree (DT), random forest regression (RF), multilayer
perception (MLP), and deep learning (DL). Algorithms frequently used in DL include
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-
term memory (LSTM) [17–19]. With the aim of achieving the operational efficiency of
WPPs, several studies have developed prediction models for wave energy, OWC chamber
pressure, and electric power. There are three categories of methodologies: statistics-
based modeling, machine learning-based modeling, and DL-based modeling, which are
described in Table 2. In the statistical model category, wave energy is predicted by applying
an autoregressive model [20]. The results showed that the temporal resolution of the
observed data affected the performance of the prediction model. In addition, wave energy is
predicted by applying a LR [21]. This method mainly uses general LR with a simple design
and removes unnecessary parameters to improve the stability of the predictive performance.
However, this method has a disadvantage in that it cannot predict the irregularity of the
time-series. In the machine-learning-based modeling category, neural networks were used
to predict the wave energy of the WPP and the pressure in the chamber [22–24]. They
acquired data from a real WPP during operation and performed short-term predictions
to increase operational efficiency. In addition, by applying autoregressive modeling and
NNs and performing predictions considering the characteristics of the time series, the
performance stability improved. However, in the existing machine-learning method, severe
overfitting occurs when the variation of the time-series increases or the amount of data
increases, and overfitting makes accurate prediction difficult. Recently, predictive studies
of the wave energy and electrical energy of WPPs have been conducted using DL to address
some of the existing limitations. Using data from an actual WPP in operation and sensors,
higher performance was achieved than the existing prediction method. The DL method
was used to reduce randomness and noise from sensor data and extract features suitable
for prediction. This method can automatically extract and model key features, even in cases
of large amounts of data and data with complex attributes [25,26]. However, there has been
no prior research investigating the prediction of temporal information in time-series data
of the pressure in the chamber and the spatial correlation between parameters. In most
studies, general sections were selected from time-series data, and temporal information
was modeled for prediction, and prediction methods without consideration of temporal
information were used. Therefore, in an environment highly subject to volatile energy,
such as a WPP, a modeling and learning method that takes into account irregular temporal
information and spatial information of parameters is required.
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Table 2. Deep-learning models in WEC.

Category Author Method Short Description

Statistical based modeling Fusco, F.; Ringwood, J.V. [25] LR, DT
Presents an approach where the wave

elevation is treated as a time series and it is
predicted only from its past history

Simonetti. I. [26] LR, DT Presents an optimization of OWC WEC

Machine
learning- based modeling

Wanan Sheng,
Tony Lewis. [27] MLP

Presents a short-term prediction of the
random process by an ANN, which can

provide future information for the
control system

Paparella, F.; Monk, K.;
Winands, V. [28] MLP

Presents a prediction of the wave elevation
inside the chamber of the OWC for the Pico

OWC plant in the Azores
Monk, K.; Conley, D.;

Winands, V. [29] MLP Presents a short-term wave forecasting using
an autoregressive model

Deep
learning- Based Modeling

Ni, C.; Ma, X. [30] CNN Presents a prediction of WEC using a
convolutional NN with Multiple Inputs

Choi, E.; Cho, S.;
Kim, D.K. [31] LSTM

Design a novel custom power demand
forecasting algorithm based on the LSTM

deep-learning method regarding the recent
power demand patterns

3. Materials and Methods

In this study, a platform for large-scale sensor data ingestion and support of time-
consuming AI calculations was developed. The structure of the high-performance data
analysis and processing platform based on big data is illustrated in Figure 2 and each key
element can be described as follows:
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1. Workflow Service: Supports blend tools from WEC domains with big data and AI
core platform in a single workflow, including scripting in R and Python and ML

2. Application: Provides functions such as correlation analysis, real-time data monitor-
ing, data browsing, and result analysis, and monitoring.

3. Big data and AI Core Platform: Supports cloud and HPC user interface, big data
management module, data ingestion module, and AI module.

4. Infrastructure: Provide KISTI cloud and KISTI HPC resource

To develop a training model based on real data, external wave data of the OWC wave
power generation system and sensor data generated from the OWC wave height meter
(WHM) were acquired. Data preprocessing, such as filtering, was performed with the
acquired raw data, and the datasets were classified into training sets and test sets, which
were used to develop the training model. This section describes the entire process of
developing a pressure prediction model. The pressure prediction model was developed
using the proposed big data and AI platform, to support real-time sensor big data ingestion
and analysis. Figure 3 shows a schematic of the overall process for the development of a
pressure prediction model.
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3.1. Data Definition and Correlation Analysis

For data ingestion, WHM and OWC–WPP data were selected as follows: (i) WHM
data (e.g., wave height, wave period, wave direction) and (ii) OWC–WPP data (e.g., flow,
pressure, and power). To examine the effect of WHM data, we performed a correlation
analysis between the wave height data measured from WHM for 48 h (see Table 3, Figure 4)
and OWC–WPP data (see Table 4, Figure 5).

Table 3. WHM attribute table.

Attribute Description

T Mean wave period
H Significant wave height

Direction Mean wave direction

Collecting cycle: 30 min., Collecting duration: 48 h
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Table 4. OWC sensor attribute table.

Attribute Description

Flow Flow velocity
Press Chamber pressure

Torque Motor torque
RPM Rotations per minute

Power electrical energy
Ingestion cycle(1 s), Ingestion time(48 h)

Figure 6 shows the workflow for data preprocessing and correlation analysis. To
preprocess data for correlation analysis, data normalization was performed. The simulated
waves nearshore (SWAN) model [27] and statistical linear correlation [28] were used for the
analysis. The wave energy and pressure data were based on 30 min intervals, considering
the minimum interval of the measured wave energy. Figure 7 shows the results of the
analysis with 30 min intervals over the course of 48 h. The SWAN model was used to
analyze the impact of wave height sensors and WPPs, which are separated in the distance.
The results showed that a time delay and deviation occurred because of the distance of
1 km between the Yongsu WPP and WHM, making it difficult to utilize the wave height
data for the target WPP in this study.
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Figure 7. Analysis with SWAN.

The utilization of wave height data is limited owing to the time-delay problem,
considering the 30 min intervals of the measured wave height. The reason for using OWC
and WEC data is that, as shown in Figure 7, OWC generates pressure energy from the
actions of wave energy, and the pressure is converted into energy such as flow velocity to
operate the turbines; thus, it is judged that there is a close correlation between the two sets
of data.

In order to analyze the pressure change due to air flow in both directions in the OWC
chamber, the data samples were collected every second; the minimum interval between
OWC data and the wave height data with measured electrical power. Table 5 shows the
result of correlation analysis between OWC data and WEC data acquired in 1 s intervals
for 48 h. From the analysis, there is a high positive correlation between the pressure data
of OWC and WEC data, such as electrical energy. Therefore, it can be assumed that the
OWC chamber pressure is one of the key parameters for the operation of WEC; thus, data
prediction using machine learning can be considered instrumental in the operation of
OWC–WEC.

Table 5. Result of correlation analysis.

Press
(Chamber
Pressure)

Flow
(Fluid Velocity)

Torque
(Motor Torque) RPM Power

Press
(chamber
pressure)

1 0.976678 0.919996 0.913444 0.905568

Flow
(fluid velocity) 0.314410 1 0.452299 0.452299 0.452299

Torque
(motor torque) 0.392105 0.681115 1 0.952299 0.952299

RPM 0.324449 0.612237 0.892699 1 0.952299
Power 0.352299 0.652211 0.852299 0.852299 1

3.2. Dataset Design and Construction
3.2.1. Data Preprocessing

To prepare the input data, features are processed and generated from the given raw
data. Data preprocessing requires the creation of features from domain knowledge, which
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refers to creating or selecting a column (feature) of the data table for ML. This type of
feature engineering has a large impact on the model performance, and the preprocessing
techniques outlined in Table 6 are used to generate the training data. Because the prediction
model generally operates on the assumption of using correct input data, a data cleansing
method for generating training data is derived through the analysis of WHM data, internal
pressure data, and power generation data. First, in order to perform a correlation analysis of
features, processing to match the interval between sensor data with different measurement
periods and preprocessing to match the format were performed. A dataset building plan
was established in which the target feature (pressure) was selected, and based on the
target feature, correlation analysis by sensor data feature was performed to select the
input feature.

Table 6. Feature engineering for data preparation.

Item Description

Removal of columns with many missing values - Columns with many missing values
cannot be used as input data

Handling missing values

- Replace with a mean value or a
calculated value

- In general, missing values are substituted
with 1 or 0.

Integer Encoding
- When there is text-type data
- After classifying by word, the data is

converted to index

Removal of redundant and highly
correlated variables

- Minimizing duplicate data, redundant
data, or highly correlated variables

- Application of scatter plot and principal
component analysis

Modification of biased values

- Continuous variables should follow a
normal distribution

- After reviewing the distribution trend,
the biased values are modified

- Review: Use of statistical scale and
histogram

- Modification/correction: use of log
transformation, inverse transformation,
square root transformation, and squares

Handling extreme values and
extraordinary values

- Use the extreme values, where possible
- Remove outliers (values not within

±3SD), when they do not have
significant implications

The preprocessing workflow for correlation analysis was established as shown in
Figure 8, and the wave height data were read from the folder to obtain a file list, and
input data were considered through this process. For data analysis considering time-series,
nodes were created for the input and processing of the time-series and period of data,
and nodes for constructing the applicable data were additionally designed to support
processing such as filtering, merging, and column change of data. To resolve the problem
of imbalanced data in which the proportion of data for each class is not uniform but biased,
the performance of the classification algorithm is improved. The reason for identifying
unbalanced classification as a problem can affect the performance of ML algorithms, so
the skew may not be significant. Oversampling and undersampling are used to adjust the
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class distribution of a dataset. In particular, the data collected by the sensors of the current
wave power system have unwanted noise due to the effect of wave energy, and the graph
is not flattened, as shown in Figure 9a. To utilize the water level prediction data in a flow
analysis model, noise needs to be removed to flatten the graph. In this study, Equation (1)
was used to flatten the data by removing noise from the OWC chamber sensor data.

|H(jω)| = 1√
1 +

(
ω
ωc

)2n
. (1)
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The Butterworth low-pass filter generates no ripples in the passband and attenuates
the unwanted frequencies outside this band. The Butterworth low-pass filter selects a
transfer function so that the magnitude response curve can be as flat as possible in the
passband of the filter; thus, this filter is known to have a maximally flat magnitude. The
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result of flattening by applying a Butterworth low-pass filter to signals containing noise is
shown in Figure 9b.

3.2.2. Dataset Construction

Autocorrelation analysis was performed to construct datasets reflecting the autocorre-
lation of the time series, as shown in Figure 10. Autocorrelation is a function representing
the correlation between values taken at two time points of a random signal and helps to
extract the principal components from time-series data. As a result of the autocorrelation
analysis, a strong negative correlation of −0.9 at 2.5 s intervals and a positive correlation at
0.75 with 5 s intervals were discovered. Therefore, the target time for prediction was deter-
mined to be 2.5 s, which has a high correlation, and datasets were constructed accordingly.

Energies 2021, 14, x FOR PEER REVIEW 12 of 18 
 

 

(a) 

 

(b) 

 

Figure 9. Air pressure signal of (a) before and (b) after noise reduction in OWC. 

3.2.2. Dataset Construction 

Autocorrelation analysis was performed to construct datasets reflecting the autocor-

relation of the time series, as shown in Figure 10. Autocorrelation is a function represent-

ing the correlation between values taken at two time points of a random signal and helps 

to extract the principal components from time-series data. As a result of the autocorrela-

tion analysis, a strong negative correlation of −0.9 at 2.5 s intervals and a positive correla-

tion at 0.75 with 5 s intervals were discovered. Therefore, the target time for prediction 

was determined to be 2.5 s, which has a high correlation, and datasets were constructed 

accordingly. 

 

Figure 10. Result of autocorrelation analysis. 

The datasets for ML can be largely classified into training sets and test sets, and if a 

sufficient volume of data is acquired, the datasets can be classified into training sets, test 

sets, and validation sets, additionally enabling validation of data. Each type of dataset can 

Figure 10. Result of autocorrelation analysis.

The datasets for ML can be largely classified into training sets and test sets, and if a
sufficient volume of data is acquired, the datasets can be classified into training sets, test
sets, and validation sets, additionally enabling validation of data. Each type of dataset can
be described as follows: (i) training sets to learn data patterns from raw data; (ii) test sets
to test the model performance by running the model according to an actual scenario; and
(iii) validation sets for tuning and evaluation. In this prediction model, training sets for
OWC pressure prediction were constructed based on the window sliding of the correlation,
as shown in Figure 11.
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3.3. Predictive Model Design

Recently, the CNN-LSTM, an algorithm that has been used in time-series prediction
has attracted attention owing to its excellent prediction performance. It extracts the spatial
features of surrounding data by sliding a filter that performs a convolution operation in
the convolution layer over a sequence [8]. Subsequently, LSTM, an algorithm optimized
for grasping time information, is applied, and prediction is performed by incorporating
temporal features. The architecture of CNN-LSTM can have various designs according to
the type of layer constituting the network and tuning of parameters. CNN-LSTM consists
of a convolutional layer, pooling layers, LSTM layers, and dense layers. The number of
filters, kernel size, and the number of strides can be tuned for each layer. Tuning these
parameters can affect the learning rate and performance according to the features of the
training data. The changes in performance can be examined by varying these parameters.
The identification of features of the input data plays a key role in the development of an
optimal architecture for the prediction of OWC chamber water level with parameter tuning.
Therefore, after predicting the OWC chamber water level through hyperparameter tuning,
it was designed to select one value with the smallest error in the last fully connected layer.

Hyperparameter tuning refers to adjusting (tuning) hyperparameters to find the
optimal training method by evaluating the model performance of the model with validation
sets. The datasets with the highest prediction accuracy were those with all outliers removed.
Table 7 lists the hyperparameters determined by hyperparameter tuning. The larger the
epoch, the better the prediction result, but if it is too large, overfitting can occur leading to
a significantly lower learning rate. Therefore, the size of the epoch was fixed at an optimal
value of 30, and the number of units of the convolution layer, the number of layers, filter
size, pooling size, and batch size were empirically determined.

Table 7. Hyperparameter.

Parameter Output Shapes

Verbose 1
Epochs 30

Batch Size 512

Table 8 details the overall architecture of the CNN-LSTM proposed herein. The
parameters of all layers are listed, including the LSTM layer; these include the number of
filters in each convolution layer, size of the convolution layer, and the number of strides.

Table 8. CNN-LSTM architecture.

Layer (Type) Output Shape Param #

ConvLSTM2D (Activation = relu) (None, 1, 48, 64) 50,176
Flatten (None, 3072) 0

Repeat_Vector (None, 1, 3072) 0
LSTM (Activation = tanh) (None, 1, 40) 498,080

Time_Distributed (Activation = relu) (None, 1, 40) 1640
Time_Distributed (None, 1, 1) 41

Total params: 549,937

3.4. Evaluation and Validation
3.4.1. Training Evaluation

When training the prediction model with the training datasets, the training error was
calculated using the loss function, and the weights and bias were modified to minimize the
training error. Therefore, the training error is a highly useful indicator of the current state
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of the prediction model. As a general training error function, the mean squared error is
used, which is given by

MSE =
1
n ∑n

i=1 (yi − ti)
2. (2)

3.4.2. Validation

After the completion of the training process, the previously discussed process was
repeated in the same manner for the validation datasets. The error rate for a new sample is
called the generalization error, and the generalization error is estimated by evaluating the
prediction model with the validation sets. This estimate provides information about the
performance of the predictive model for new data. Appropriately obtaining the generaliza-
tion error and comparing it with the training error is crucial for performing performance
comparisons. A small training error but a large generalization error indicates that the
prediction model is overfitted to the training data. The total number of datasets used
in this study was 700,000, which cannot be considered large. When the validation sets
are too small, the model performance cannot be evaluated accurately, and the selection
of the optimal model may be incorrect [7]. Cross-validation was performed to resolve
this problem.

3.4.3. Evaluation of Prediction Results (Prediction Precision)

Root mean square error is a measure used to represent the difference between the
predicted and actual values of the model. The RMSE for representing the prediction
precision is given by

RMSE =

√
1
n ∑n

i=1 (yi − ti)
2. (3)

4. Results
4.1. Performance Comparison with Conventional Machine-Learning Methods

To verify the utility of the proposed pressure prediction model based on CNN-LSTM,
tests were performed using LR and a machine learning algorithm. In the performance-
comparison test, 10-fold cross-validation was used, and the MSE was the lowest for the
proposed CNN-LSTM among the machine-learning methods as well as LR. Figure 12
presents a box plot showing the MSE obtained using a 10-fold cross-validation test. The
proposed method exhibits the best average performance. The figure shows a significant
difference in MSE between the proposed CNN-LSTM and the existing methods. In addition,
the results confirm that the proposed method ensures more stable performance using the
distance from the mean value. Table 9 lists the parameters of the machine-learning methods
used in the tests. Hyperparameters were tuned to achieve superior performance for each
model to compare the CNN-LSTM with the existing methods. The hyperparameters
for each model were set using the scikit-learn library, Python’s representative machine-
learning package, and each hyperparameter was determined empirically. Xi is a vector
composed of n predictions generated from samples of energy consumption data points for
all parameters, and Yi is a vector composed of the observed consumption values of the
predicted parameters.



Energies 2021, 14, 2982 15 of 17

Energies 2021, 14, x FOR PEER REVIEW 15 of 18 
 

 

distance from the mean value. Table 9 lists the parameters of the machine-learning meth-

ods used in the tests. Hyperparameters were tuned to achieve superior performance for 

each model to compare the CNN-LSTM with the existing methods. The hyperparameters 

for each model were set using the scikit-learn library, Python’s representative machine-

learning package, and each hyperparameter was determined empirically. Xi is a vector 

composed of n predictions generated from samples of energy consumption data points 

for all parameters, and Yi is a vector composed of the observed consumption values of the 

predicted parameters. 

 

Figure 12. Accuracy of 10-fold cross-validation using machine learning. 

Table 9. Parameters for machine-learning techniques. 

No. Model Description 

1 Linear Regression (LR) Fit_intercept = True, normalize = False, n_jobs = None 

2 Decision Tree Regression (DT) 
Splitter = “best”, maximum depth = None, 

min samples split = 2, min sample leaf = 1 

3 Random Forest Regression (RF) 
No of estimators = 10, maximum depth = None, 

min samples split = 2, min sample leaf = 1 

4 Multilayer perceptron (MLP) 
Activation = relu, weight optimization = adam, batch size = 512, number of 

epochs = 100, learning rate = 0.01 

4.2. Performance Comparison with other Deep-Learning-Based Models 

Table 10 presents the performance comparison of deep-learning methods for pres-

sure prediction. lr, dt, rf, mlp, cnn, and lstm were adopted for pressure prediction, and 

the results were validated by error metrics: MSE, RMSE, MAE, and MAPE. Therefore, the 

test results indicate that the proposed CNN-LSTM model outperformed existing deep-

learning methods in terms of pressure prediction, and it is thus the most efficient pressure-

prediction method. 

Table 10. Performance comparison of deep-learning methods. 

Method MSE RSME MAE MAPE 

CNN 0.2411  0.2835  0.2040  16.6666 

LSTM 0.2329  0.2785  0.1970  16.1211 

The proposed 0.1246  0.2038  0.1164  11.6133 

Figure 12. Accuracy of 10-fold cross-validation using machine learning.

Table 9. Parameters for machine-learning techniques.

No. Model Description

1 Linear Regression (LR) Fit_intercept = True, normalize = False, n_jobs = None

2 Decision Tree Regression (DT) Splitter = “best”, maximum depth = None,
min samples split = 2, min sample leaf = 1

3 Random Forest Regression (RF) No of estimators = 10, maximum depth = None,
min samples split = 2, min sample leaf = 1

4 Multilayer perceptron (MLP) Activation = relu, weight optimization = adam, batch size = 512, number of
epochs = 100, learning rate = 0.01

4.2. Performance Comparison with other Deep-Learning-Based Models

Table 10 presents the performance comparison of deep-learning methods for pres-
sure prediction. lr, dt, rf, mlp, cnn, and lstm were adopted for pressure prediction, and
the results were validated by error metrics: MSE, RMSE, MAE, and MAPE. Therefore,
the test results indicate that the proposed CNN-LSTM model outperformed existing
deep-learning methods in terms of pressure prediction, and it is thus the most efficient
pressure-prediction method.

Table 10. Performance comparison of deep-learning methods.

Method MSE RSME MAE MAPE

CNN 0.2411 0.2835 0.2040 16.6666
LSTM 0.2329 0.2785 0.1970 16.1211

The proposed 0.1246 0.2038 0.1164 11.6133

5. Conclusions

Based on the IoT sensor data of the Yongsu WPP currently in operation, this study
applied a prediction technique based on ML, an element technology of a digital twin,
and demonstrated the superior performance of the proposed method. In the case of
the WPP, with the definition of significant data by multiple parameters such as wave
height data and sensor data of OWC, correlation analysis was performed with various
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parameters and through the analysis results, a methodology was investigated to predict
the required information. Based on the raw dataset, features suitable for the machine-
learning model were derived through feature engineering, and using the preprocessed
data, training was performed in various models of ML, and a model with a high score was
selected. A CNN-LSTM network that models temporal features was proposed to predict
the pressure inside the WPP chamber. OWC chamber pressure prediction is challenging
because the pressure exhibits an irregular trend due to external variability. This difficulty
was resolved by linearly combining CNN and LSTM, and by modeling the complex
functions of the actual pressure datasets of the WPP, improved modeling performance
was achieved. The performance of the developed prediction model was compared with
that of the existing machine learning methods. The performance was evaluated using a
10-fold cross-validation. The best MSE performance was obtained with the CNN-LSTM. In
addition, the results showed that the standard deviation of cross-validation of the CNN-
LSTM was small compared to the other models. As shown in Figure 12, the CNN-LSTM
shows superior performance compared to other deep-learning methods, CNN and LSTM.
The OWC chamber pressure prediction requires high performance because it is a pivotal
factor influencing the efficiency of the OWC–WEC operation. The proposed method shows
high prediction performance after 2.5 s. Through this study, it is expected that the efficiency
of operation can be improved by predicting the pressure of OWC with improved accuracy,
which is closely related to the power generation output and failure of OWC–WEC, and the
utility of machine-learning technology required for smart operation with the digital twin
of OWC–WEC was demonstrated.

In this study, because a sufficient amount of data were not available from the IoT
sensors, there are some limitations to the full validation of the application of the proposed
method. In the future, the design of a predictive analysis model with improved accuracy
for smart operation and maintenance of OWC–WEC and real-time large-scale data analysis
are required for further research. In particular, because of the problems that arise owing
to the increase in the number of input vectors and the consequent sharp increase in the
time required for training and analysis, addressing these problems can be achieved by the
advancement in the OWC pressure prediction model based on machine learning, research
on accuracy improvement using hyperparameter tuning of the deep-learning model, and
further research on training environments based on distributed/parallel computing for
real-time large-scale sensor data processing.
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