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Abstract: Due to globalization and increased market competition, forwarding companies must focus
on the optimization of their international transport activities and on cost reduction. The minimization
of the amount and cost of fuel results in increased competition and profitability of the companies as
well as the reduction of environmental damage. Nowadays, these aspects are particularly important.
This research aims to develop a new optimization method for road freight transport costs in order to
reduce the fuel costs and determine optimal fueling stations and to calculate the optimal quantity
of fuel to refill. The mathematical method developed in this research has two phases. In the first
phase the optimal, most cost-effective fuel station is determined based on the potential fuel stations.
The specific fuel prices differ per fuel station, and the stations are located at different distances from
the main transport way. The method developed in this study supports drivers’ decision-making
regarding whether to refuel at a farther but cheaper fuel station or at a nearer but more expensive
fuel station based on the more economical choice. Thereafter, it is necessary to determine the optimal
fuel volume, i.e., the exact volume required including a safe amount to cover stochastic incidents
(e.g., road closures). This aspect of the optimization method supports drivers’ optimal decision-
making regarding optimal fuel stations and how much fuel to obtain in order to reduce the fuel
cost. Therefore, the application of this new method instead of the recently applied ad-hoc individual
decision-making of the drivers results in significant fuel cost savings. A case study confirmed the
efficiency of the proposed method.

Keywords: optimal fuel supply; cost function; optimization; mathematical programming

1. Introduction

Global market competition and an increase in customers’ demands have caused
global supply chains to become larger networks [1]. The members of global supply chains
include production companies (final assemblers, suppliers) and service providers. The most
important service providers are the transport companies [2,3]. Therefore, the optimization
of transport activities’ fuel supply and the minimization of the transport costs are relevant
issues to address, particularly in consideration of the COVID-19 pandemic. The motivation
behind and significance of our research are detailed here:

• Transportation is an expensive activity. In many cases, transport costs represent up to
30% of the total costs of global supply chains [4]. Furthermore, road transportation
accounts for 78% of freight transportation in Europe [5].

• Road freight transportation results in significant environmental damage on a global
scale [6,7]. Lower fuel consumption results in emission reductions.

• Based on the above-mentioned facts, transport enterprises have to focus on the opti-
mization of their international transport activities and cost reduction and thus mini-
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mize fuel consumption for competitiveness and profitability. Thereby, these companies
can also provide environmentally friendly and sustainable transportation [8,9].

• We conducted this study in consideration of two key questions drivers must
ask themselves:

1. At which fuel station should I refill?
2. How much fuel is needed to refuel?

Transport companies had thus far not applied a mathematical method to address
drivers’ ad-hoc decision-making and, in not doing so, had encountered financial and time
losses. Based on this issue, we sought to create a new decision-supporting cost optimization
method for fuel supply optimization for drivers and their transport trips. Consequently,
our research topic is timely and important.

As mentioned, the primary aim of our research is to develop a new optimization
method for the minimization of road freight transport costs in order to reduce the fuel costs
and, correspondingly, determine the optimal filling stations and to calculate the optimal
quantity of fuel for refueling. The optimization method we developed features two phases
and addressed two main research questions:

• Research question 1: Which fuel station is the optimal choice for refueling?

In the first phase, the optimal, most cost-effective fuel station is determined based
on the zone of potential fuel stations. The zone of these stations refers to the area where
drivers have to refill their vehicles before the fuel level becomes critical, i.e., low and
nearing ‘empty’. Specific fuel prices differ per potential fuel station, and the stations are
located at different distances from the main transport way. The method we developed
can support drivers’ decision-making regarding the optimal fuel station, i.e., the most
cost-effective fuel station, taking into consideration both the specific fuel prices and the
additional transport distances. The method can guide drivers’ decision to refuel at a farther
but cheaper fuel station or at a nearer but more expensive fuel station based on which
choice is more economical.

• Research question 2: What is the optimal amount of fuel for refueling purposes?

In the second phase, the optimal volume of the fuel is determined, i.e., the exact
volume of fuel required, including a safe amount to cover stochastic incidents (e.g., plus
consumption due to road closures or accidents etc.). The optimal amount of fuel relates to
the volume necessary for the assigned transport task. The determination of the optimal
fuel volume is important. In other words, if the amount of refilled fuel is less than the
optimal volume, drivers have to find another fueling station and refuel their vehicles there,
resulting in additional time and costs. If the amount of the refilled fuel is higher than the
optimal volume, especially near the end of the transport loop, then it is also a loss, because
drivers can refill with the cheapest fuel at the depot of the transport companies.

The main contribution of our optimization method is to support the drivers’ optimal
decision-making. Specifically, it helps determine the optimal fuel station to use and how
much fuel is needed in order to reduce the total fuel cost. Therefore, the application of the
new optimization method compared to the recently applied ad-hoc decision-making of the
drivers results in a significant reduction of fuel consumption and fuel costs. A case study
confirmed the efficiency of our method.

Previous studies have discussed available methods for the optimization of freight
transport trips [10–12]. However, these studies have not focused on an optimization
method for the minimization of fuel costs based on the fuel supply. As this is a recognizable
gap in the literature, consequently, our newly elaborated optimization method is novel
and valuable. Similar or equivalent optimization methods do not exist; thus, our method
cannot be compared to other methods. The efficiency of our new optimization method can
be only compared to the recently applied ad-hoc individual decision-making of the drivers.
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2. Prior Research

Nowadays, the transport activity is the most important, most expensive, and most
commonly used service activity in the global supply chain, especially in road freight trans-
portation. Road transportation accounts for 78% of the freight transportation in Europe [5].
Previous studies have highlighted the advantages of road freight transportation [13–16]:

• Relatively cheap transport mode.
• Enables short transport time.
• It has a high density of road networks.
• Provides door-to-door services.
• It has high adaptability to customers’ needs.
• Highly flexible in terms of planning for both route and time scheduling [17,18].

However, in addition to the above-mentioned advantages, road freight transportation
causes significant environmental damage. Environmental regulations and innovative
technologies have aimed to address this worldwide issue [19–24].

Consequently, the transport enterprises have to focus on efficiency improvement,
the optimization of their transport activities, and cost reduction in order to maintain
competitiveness. At the same time, these companies have to establish environmentally
friendly and sustainable transportation with the minimization of fuel consumption [25–27].

Reduced fuel consumption can result in transport routes’ efficiency and in the reduc-
tion of emission. The following ways can achieve this outcome [28–33]:

• The application of modern vehicles (e.g., high-tech engines),
• The usage of environmentally friendly fuels,
• Driver competence training for drivers,
• The application of combined transport modes (rail, road, water, air),
• The optimization of transportation trips:

# The integration of different tasks into one transport loop,
# The reduction of empty runs,
# The higher utilization of the loading capacity of the vehicles,
# The optimization of the transport routes, etc.

One of the most important tools for efficiency improvement is route optimization.
The existing literature has often discussed route optimization and optimizing transport
trips and networks [34–37]. Freight transportation systems are routes between the dispatch
points and the discharge stations. These systems can be formed as four basic structures:
straight lines, star-shaped, round, and as a combination of straight lines, star-shaped,
and round. The round structure is the most common for organizing international road
transportation [38,39].

In addition to efficiency improvement, the other main aim is the reduction of transport
costs. Many publications have addressed the general transport costs and described the main
cost components of transportation [40–44]. The purpose of optimizing road transportation
is to minimize the specific transport cost and reduce the delivery time [45–48].

For our study, we first had to determine the total prime cost of a transport route.
According to a previous research, the cost components of the total prime cost include the
fuel cost, the cost of waiting time, additional costs (e.g., highway usage, parking), labor
costs, and the maintenance costs of trucks. Of these identified cost components, we focused
on the cost of a vehicle’s fuel consumption for fuel cost optimization. As such, we had to
examine the fuel cost of the transport way with and without a useful load.

Several factors have an effect on the fuel consumption of a transport vehicle. Among
these factors, we identified those we deemed the most significant and factored them into our
optimization method: (1) The specific fuel consumption of the empty vehicles (depending
on the characteristics of the engine of the vehicle); (2) factors for different loading conditions
(meaning that every additional ton of payload results in extra fuel consumption); and (3)
factors for topographical conditions (depending on the characteristics of the road, e.g.,
mountainous or flat).
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The literature referred to other factors affecting fuel consumption [49–52]: human
factors (age, medical condition, driving style, etc.,), weather conditions (effect of wind,
rain, snow, etc.,), and traffic conditions (high or low; block in the traffic; traffic accident,
etc.,). As human factors are unique and differ per driver, it is difficult to reach a general
conclusion about them. Moreover, as weather and traffic conditions are stochastic and
unpredictable factors, they cannot be taken into consideration for a generally applied
optimization method. We determined that only calculable, deterministic, and expected
factors are applicable for our optimization or calculation method.

In summary, the existing literature often discussed route optimization and the opti-
mization of transport trips and networks [53–56]. Based on a review of previous studies, an
optimization method for the minimization of fuel costs, based on the optimization of the
fuel supply, was not considered or developed. Therefore, a similar or equivalent optimiza-
tion method is not available to compare to our method. Consequently, as our optimization
method is novel, it can only be compared to the ad-hoc individual decision-making of
drivers. Based on this comparison, we can determine that the application of the method
results in a reduction of fuel consumption, which causes significant cost savings.

3. Research Methodology

Based on the literature review, it was concluded that a gap in the literature exists
because previous studies did not consider an optimization method for fuel cost minimiza-
tion based on the optimization of the fuel supply. Therefore, we did not have a similar or
equivalent optimization method in the literature to compare to our method.

Therefore, we are only able to compare the application of the new method to the
ad-hoc individual decision-making of the drivers.

• Our study considered that drivers have to make decisions on their own regarding
which fuel station to use for refilling and how much fuel is needed to refuel.

Transport companies have not yet used mathematical methods to assist the ad-hoc
decision-making of drivers, which can result in losses for these companies. We considered
this aspect when creating a decision-supporting cost optimization method for fuel supply
optimization for transport trips.

• For this research, we collaborated with transport companies in order to gain practical
experience. We determined that two typical mistakes are made during the refueling
process. Both problems result in losses for the companies.

1. The first typical problem is that the drivers do not refuel at the optimal, most
cost-effective fuel station. In other words, the drivers refuel on the highway,
where the fuel price is the most expensive. The drivers’ decision in this case
results in extra costs for the transport company.

2. The second problem is that the driver refuels using a higher or lower amount of
fuel than the optimal volume of fuel required for the achievement of the given
transport task. If the amount of refilled fuel is less than the optimal volume,
drivers have to find another fuel station and refuel again. This circumstance
results in additional costs and time. Moreover, if the amount of the refilled fuel
is higher than the optimal volume, especially near the end of the transport loop,
it is also a loss, because drivers can refill using the cheapest fuel at the depot of
the transport companies. Based on the above-mentioned issues, we aimed to
develop a mathematical method for refueling and viewed the creation of such a
method as essential for transportation companies’ reduction of fuel costs. Thus,
the objective of the research was to construct an optimization method for the
elimination of losses and the reduction of the transportation activity’s total costs
through the optimization of the refueling activity.

• Our development of a new optimization method was based on two research questions:
Which fuel station is optimal for refueling? What is the optimal quantity of fuel
for refueling?
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Therefore, the aim of our research was to elaborate a new optimization method for the
minimization of road freight transport costs in order to reduce fuel cost on the one hand
by selection of the optimal filling station and on the other hand calculation of the optimal
quantity of fuel to be refilled.

• The new optimization method has two key phases: (The optimization method will be
described in more detail in Section 4.)

Phase 1: Which fuel station is optimal for refueling?
The first step in minimizing transportation costs involves determining the location of

the optimal fueling station. To do so, it is helpful to know the starting fuel level and the fuel
consumption on the transport route. We worked out a calculation method for accurately
determining the reduction of the fuel level, taking into account the basic fuel consumption
of the vehicle, the additional consumption due to geomorphologic conditions, and the
amount of the carried payload. Our method makes it possible to determine where the fuel
level will drop below a certain point on the transport route as well as when the driver will
have to look for a fueling station. Usually, several fueling stations with different fuel unit
prices are located in this area. The task is to determine the fueling station with the lowest
total cost of the route (even if this implies choosing a somewhat farther fueling station with
a lower unit price).

Phase 2: What is the optimal quantity of fuel for refueling?
The method we developed is also suitable for determining the necessary amount of

fuel in order for the driver to safely arrive at the destination. In our mathematical method,
we made use of the fact that we knew the shortest route between two hubs, or between a
hub and the fueling station. Digital maps enabled us to identify the hubs and the fueling
stations; thus, these maps provided us with the coordinates of the hubs. We also received
information about the geomorphologic conditions, which was valuable since consumption
can differ on an uphill compared to on a flat road. One can ask for the x,y coordinates
of the fueling station and for the current fuel price from the fuel suppliers. Digital route
maps divide the road networks into short, straight sections [47]. This solution allows one to
determine the length of the shortest route between hubs on the basis of a search algorithm.
There are several methods within the literature for the search of the shortest route [57–63],
and roadmap sheets (data sheets) are also available for the same purpose [45,51].

• The A* algorithm is a heuristic algorithm that is easily implemented in a computerized
framework. This algorithm is the best-known version of the best-first search. Knowing
the data and the methods of searching for the shortest route, we were able to determine
the shortest routes between the dispatch points, the discharge stations, and the fueling
stations.

• A case study confirmed the efficiency of the elaborated method. Although it was
not our main goal in this article, we can mention that the problem related to the
mathematical model of the problem suggested several possible solutions. In our
study, we solved it using a linearized model with a comprehensive programming
method, and we also solved it with several software programs using evolutionary
algorithms (e.g., MATLAB). Within Excel, we tested the nonlinear branch; the results
obtained did not differ significantly. Each method led to the same solution: the same
petrol station and the same amount of fuel to refill. Though the case of alternative
optimums differed, this outcome can be considered as the same solution in terms of a
result (mathematically).

4. Data Analysis and Results
4.1. Determining the Consumption of the Transport Vehicle and the Area of the Optimal
Fueling Stations

Transport loops generally start at the company depot and go on to the first product
dispatch point. They then proceed to the first discharge station and go to the following
dispatch and discharge points (Figure 1).
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Figure 1. The structure of transport loops.

After leaving the last discharge station, the vehicle finishes its route at the depot. The
number of dispatch points/discharge stations can be arbitrarily chosen on a transport
route; furthermore, any dispatch point can also be a discharge station [30,48].

The task was to specify a transport route for the driver from the starting point, deter-
mined by the coordinates x, y, to a given destination. It involved knowing the starting fuel
level and the fuel consumption of the vehicle. Among the stations specified by the company,
we determined the one fueling station where he or she should refill the tank of the vehicle.
The aims were to achieve the most cost-effective transport route and to determine the
necessary fuel quantity for the refill in order to safely complete the specific transport.

Due to their significant fuel consumption, most transport companies can buy fuel
at a discounted price at a contracted fuel distributor. When choosing their fuel supplier,
transport companies prefer companies with a Europe-wide fuel station network.

With the aid of the methods presented above, we were able to determine the shortest
route between any two chosen points (e.g., between a depot and a fueling station, or
between the dispatch point and the discharge station). Then, from all the qualified fueling
stations, we selected those potential stations from the specified area, thus significantly
reducing the number of variables within the final model.

When the transport vehicle was dispatched, we were aware of the starting point—i.e.,
the depot or the discharge station no. i (Li)—as well as the product dispatch point (Fi+1)
and the discharge station of the destination (Li+1) (Figure 2).

Figure 2. Determination of the potential fueling stations and the fuel level changes on the
transport route.
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Therefore, we determined whether the vehicle was able to complete the entire trans-
portation task with the known starting fuel level or if it had to refuel between the product
dispatch points and the discharge stations. If refueling was necessary, we had to determine
the ideal fueling station and the refill quantity.

During these calculations, transport routes were divided into sections, with each
section representing the route between a dispatch point and a discharge station. This
step was necessary since the values of the individual cost components differed during
the completion of the individual sections, depending on the payload, the various road
conditions, and other aspects.

The cost resulting from completing the road sections can be calculated according to
the following formula:

Kα = ∑
β

sαβ·kαβ [euro] (1)

where: sαβ represents the route length (in kilometers) for the α-th transport of the
β-th section;

kαβ is the specific cost for the α-transport of the β-th section
[ euro

km

]
;

β notes the section identifier.
Fuel consumption depends on the consumption of the unloaded vehicle, the weight

of the payload, and the topographical conditions.

kαβ = pαβ

(
fü + fü·εD

αβ + εT ·qαβ

)[euro
km

]
(2)

where: pαβ represents the fuel unit price
[ euro

liter

]
; and fü is the specific fuel consumption for

an empty vehicle
[

liter
km

]
;

εD
αβ is the correction factor for fuel consumption depending on topographical condi-

tions, varying between the values 0, normal (flatland), 0.3, medium (hill areas), and 0.6,
difficult (uphill);

εT is the correction factor for different loading conditions, since every additional ton
of payload results in an extra fuel consumption of 0.5 L

[
liter

ton·km

]
; and qαβ is the vehicle

payload [ton].
The determination of the correction factors was based on previous research and on

our development activity carried out for a transport company, which also included the
evaluation of their transport activities.

The fuel level of the vehicle is known at the starting point (Qind), and the vehicle’s
fuel consumption can be continuously calculated between dispatch stations and discharge
stations (Figure 2).

For the mathematical determination of the ideal refueling station, it is necessary for
the vehicle to have a QB fuel safety reserve. This fuel reserve covers the extra consumption
between points Li and ti in case of detours or if the driver loses his way, so that the road
section is safely traversed. This safety fuel level can be determined as a specific quantity
or as a percentage of the transport distance. The minimally required fuel amount for the
vehicle to return to the company depot can be defined similarly. Let us designate this
quantity as QZ. This fuel amount ensures that the vehicle can refuel at the depot or at the
station nearest to it with the necessary amount of fuel in order to start its next transport
route (Qind).

Given the above determinations and the requirements related to the safety amount
level (QB), we were able to calculate the distance between the current location and the first
fueling station (s1max) (Figure 2).

sαβ
1max =

Qind −QB

fü + fü·εD
αβ + εT ·qαβ

(3)
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This radius arch (s1max−∆s1) defines the coordinates of the potential ti fueling stations,
from which the ideal station should be selected. The value of ∆s1 can be freely defined,
and it refers to the distance at which a suitable fueling station has to be selected before
running out of fuel.

4.2. Determination of the Optimal Fueling Station and the Amount of Fuel to Be Supplied

The optimal fueling stations were chosen from previously selected ideal fueling
stations. Although this pre-selection was not necessary for the model, it considerably
simplified the solution for the practical problem and also significantly reduced the size
of our model. In the following section, we define the model in a more general manner
than is needed for solving the practical problem presented above in order to ensure the
possibility of the model’s further development. We supply the previously determined data
and the variables, adapting them to the mathematical model, and thus we also specify the
necessary notations.

4.2.1. The Known Data

A specific transport plan specifies those locations (dispatch points and discharge
stations) considered from the perspective of freight logistics. The order of these locations is
predetermined, and we used this order for identifying the dispatch points and the discharge
stations. N notes the number of dispatch points and discharge stations, including the point
of departure and the final destination (these two can coincide for transport loops, but
we will designate them with two different indexes in this case). Each dispatch point and
discharge station is noted with a natural number between 1 and N. Hereinafter, we will not
differentiate between dispatch points and discharge stations; instead, we designate them
generally as hubs. The original practical problem does not include dispatch points and
discharge stations as such. In our model, we present these two concepts in a more general
manner. In our approach, hubs can be used both for dispatching goods and for discharging
goods. In the following, a hub is a dispatch point if the weight of the goods transported on
the vehicle is less before arriving to the hub than after leaving it. In the opposite case, the
hub will be a discharge station. The starting point is a dispatch point if the vehicle does not
leave it empty, and the destination is a discharge station if the vehicle does not arrive there
in an empty state.

4.2.2. Definitions

Road section. Hereinafter, a road section is the set of roads between a dispatch point or
a discharge station and the next dispatch point or the discharge stations according to the
transport plan. In practice, several routes can exist between two hubs, and we define these
at the fueling stations. Road sections are noted using i indexes.

Consequently, we were able to easily identify the transport α and, within it, the
effectively existing β road section with the hubs of the transport route. We also determined
the identifiers of the road sections assigned to the hubs (road sections will be noted with
the k index), since this identification was more appropriate for the computerized solution.

Set of fueling stations and potential road section. Let Ti stand for the set of fueling
stations between the i-th departure station and the i + 1-th destination point. In this case,
τi = |Ti| designates the number of fueling stations on the i-th road section (the index of
the road section corresponds to the index of its starting point). A specific route of the road
section assigned to the fuel stations is called a potential road section, and it is designated
with the indexes i, k. A possible road section must include only one fueling station. If there
is more than one fueling station, then the model can be modified to a form in which there
is, at most, one fueling station on each road section (see also the statement in Remark 4).

Notation of fueling stations: tik ∈ Ti stands for fueling station k (i.e., the fueling station
belonging to the k-th potential road section) on road section i.

The maximum number of fueling stations on a road section. H(H = max
i

τi) notes

the maximum number of the petrol stations on a road section. For the i-th road section
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on which the number of fueling stations is less than H, we defined fictive potential road
sections τi + 1 and H. The length of the potential road section should be high enough to
ensure that it will not be chosen during the optimization process. This also ensures that it
is indifferent within the model if we apply the analysis to the potential road section τi or H
on a road section (the two values are interchangeable). The 0-th route (the route with the
0 index) is the road section without a fuel refill station. The vehicle does not stop on this
potential road section, and there is no refueling in this case.

Topographical conditions. Two topography-related variables were assigned to the
potential road sections in this model. One variable was the topographical factor assigned
to the road section from the point of departure of the potential road section to the fueling
station, and the other variable was the topographical factor assigned to the road section
from the fueling station to the end point of the potential road section.

εDL
ik notes the topographical factor of the potential road section up to the k-th fueling

station in the relation i, i + 1.
εDM

ik notes the topographical factor of the potential road section from the k-th fueling
station in the relation i, i + 1.

Loading factor. εT notes the correction factor for different loading conditions (See also
(2)).

Unit price matrix. pik notes the fuel unit price at the tik fueling station (P = [pik]N×H+1).
pi0 = 0 (i = 1; . . . ; N).

Distance matrices. Similar to topographical factors, the data related to distances were
divided in two categories: data related to the length of the road section from the point
of departure to the fueling station and data about the length of the road section from the
fueling station to the destination point.

lik notes the length of the road section from the i-th departure station (with destination
station i + 1) to the k-th fueling station (L = [lik]N×H+1).

mik notes the length of the road section from the i-th departure station (with destination
station i + 1) between the k-th fueling station and the destination (M = [mik]N×H+1).

A definition of the i-th road section length was also necessary: sik = lik + mik
(S = [sik]N×H+1).

The vector of the quantities to be transported. qi notes the amount of load in the
relation i, i + 1. It is 0 in case of empty runs. Thus, both loaded transports and empty runs
received uniform treatment (q = [qi]N−1).

Specific fuel consumption. fü notes specific fuel consumption (
[

liter
km

]
); see also at (2).

Fuel tank capacity. Qmax notes the maximum capacity of the fuel tank.

4.2.3. Remarks

Remark 1. Due to computational reasons, the indexes start from 0 and end at H in the case of the
matrices L, M, S, and P.

Remark 2. For practical reasons, in the case of 0-th road, the total length assigned to l is m = 0
(li0 = si0, mi0 = 0).

Remark 3. When it is possible to refill the tank on the highway as well, which is the 0-th road, then
this road must be defined again, with the indexes l and m assigned to the fueling station. In this
case, two potential road sections corresponded to the highway road section, and both had the same
characteristics (length and topographical conditions). Thus, choosing the road section with the 0
index means continuing the transport without refueling, while choosing the road section with an
index different from 0 means refueling on the highway section. If there is more than one fueling
station on the highway, the procedure described in Statement 1 below should be followed.

Remark 4. There are two possible ways to proceed from one hub to the next:

(a) Based on free choice, i.e., the freedom to choose among the potential road sections;
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(b) Through mandatory proceeding, i.e., if we arrive from k-th potential road section, then the
next hub must also be approached through the k-th road section. The significance of this is
explained in more detail below.

4.3. The Mutual Assignment of Fuel Stations and Potential Road Sections

In practice, several fueling stations can exist on a potential road section between a
dispatch point and a discharge station. For reasons associated with manageability, we
assumed within the mathematical model supplied below that only one fueling station was
present on every potential road section (which also made it easier to solve the practical
problem). The model related to the practical problem can be converted into a model
meeting the condition of one fueling station, at most, on a potential road section. The
following two statements further illustrate this idea.

Statement 1. The original problem can always be converted into a task in which there
is one fueling station, at most, between two hubs.

Any potential road section can be divided into many potential road sections if there
are more fueling stations on the same potential road section. In the original problem, each
hub is designated as freely chosen (Figure 3).

Figure 3. There are two fueling stations on a potential road section between the i-th and the i+1-th
hub. Basic case.

Two cases can be distinguished from this statement.

• Case 1: In the first case, let us consider those potential road sections with more than
one fueling station for which it is true that any of their fueling stations can be reached
from one of the fueling stations of the previous potential route sections if the vehicle’s
tank was filled fully at any of these fueling stations. In practice, this means that any
fueling station of the potential road section i can be reached without having to resort
to another fueling station on section i.

Let us select such a potential road section and divide it into as many road sections as
there are fueling stations, similar to section (3) of the previous remark (Figure 4). Let us
implement this step for all potential road sections of this kind. Thus, we have substituted
the previous potential road sections fulfilling the condition with several potential road
sections corresponding to the requirements of the model.

Figure 4. The solution. The potential road section is substituted with two potential road sections as
described in Case 1.

Example 1. There are two fueling stations on a potential road section according to the conditions of
Case 1.
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• Case 2: If Case 1 cannot be implemented, this means that the potential road section has
a fueling station that is unreachable directly with a full tank from any of the fueling
stations of the previous potential road section. In other words, there is a fueling station
on the potential road section that can only be reached if refueling has already occurred
at this potential road section. In this case, let us insert a fictional hub for the i-th
road section between the original road section in such a way that it will lie between
two fueling stations of the potential road section, and that the condition of traversing
the individual potential road sections is fulfilled (Figure 5). Now, the fictional point
must be designated and the potential road section must be divided for all potential
road sections of the relation i, i + 1. This can be any point in the relation, except a
point belonging to the fueling station of the potential road section (for computational
reasons). The divided road sections are indexed in such a way that the k index of the
road section arriving at the fictional hub corresponds to the index of the potential
road section starting from the fictional hub of the divided road section. Next, this
assigned hub has to be designated as a hub for which it is mandatory to pass through
(Figure 5). If the condition remained unfulfilled, we implemented the steps described
in Case 2 until the expected condition of the model was fulfilled. In other words, we
implemented the steps until arriving at a road section without a fueling station that
could not be traversed (nevertheless, the problem was still solvable).

Figure 5. The solution. The hub i’ is inserted between the i-th and i + 1-th hub on the basis of the
description of Case 2. Hub i’ becomes a mandatory hub.

The hub through which it is mandatory to pass through must be introduced because,
although we divided the original road section into two potential road sections, the continu-
ation of our route could not be freely chosen—as opposed to the previous cases—since we
could only reach the second fueling station on the condition of refueling at the first fueling
station. At the same time, the insertion of this hub ensured that there was one hub, at most,
on a potential road section.

Example 2. Two fueling stations are on a potential road section according to the conditions of Case 2.

The starting situation is formally similar to the situation represented in Figure 3.
However, in Figure 3, the k and k + 1 fueling station can be reached with a full tank from
one of the fueling stations of the previous potential road section, while in the present
starting situation, the k + 1 fueling station cannot be reached from any of the fueling
stations found in the previous section.

4.4. The Unknown Factors of the Model

The following matrix contains the first group of the variables. The elements of it define
the amount of refilled fuel at each road section.

xik ≥ 0,
X = [xik]N×H ≥ 0

(4)

will note the amount of refilled fuel at the k-th fueling station between the i-th departure
station and the i + 1-th destination station. If k = 0, then there is no refueling on the given
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section, so that the amount is a fictive quantity xi0 = 1. This does not cause any problems,
since this 0 variable will not appear in the costs and in the fuel consumption.

We can deal with the following situation with the aid of the signum function: if we
have refueled with more than 0 L of petrol, then there is refueling, represented by the value
1. If we have refueled with the quantity 0, then the value of the refueling is 0. In other
words, there was no refueling. Accordingly:

τi

∑
k=0

sgn(xik) = 1, (5)

i.e., one of the possible routes should be selected.
We can determine the length of the entire route using the previous formula. This is

not included in the model, but it is both important and necessary for planning aspects of
the transport, such as its duration, rest periods, and the number of drivers. Thus:

H

∑
k=1

sgn(xik)·sik =
H

∑
k=1

sgn(xik)·(lik + mik) (6)

means the length of the road section between i and i + 1, if refueling at the k-th fueling
station. Based on these data and taking into account the detours necessary for refueling,
the total length of the route completed by the vehicle is:

s =
n

∑
i=1

H

∑
k=1

sgn(xik)·sik (7)

Let Qi denote the amount of fuel in the vehicle at hub i.

Q = [Qi]N (8)

In this case, the amount of fuel at the hub following the refueling can be defined as:

Qi+1 = Qi +
H

∑
k=0

sgn(xik)·
[
−(lik + mik)·

(
fü + fü·εDM

ik + εT ·qi

)]
+ xik, (9)

meaning that the amount of available fuel at the previous hub is reduced with the con-
sumption depending on the load and weight, but it is increased with the amount refueled
on the road section.

A further requirement is that the amount of fuel cannot drop under a minimum safety
level. This minimal amount of fuel has to be available for the vehicle at the fueling station.
At the current refueling station, the amount of available fuel is equal to the amount of fuel
available at the last hub, reduced by the amount of fuel consumed on the route leading up
to the fueling station:

Qi −
H

∑
k=0

sgn(xik)·lik·
(

fü + fü·εDL
ik + εT ·qi

)
≥ QB. (10)

The amount of refilled fuel (xik) cannot exceed the capacity of the tank. This is
determined by the difference between the dimensions of the fuel tank and the amount of
fuel left in the tank:

xik ≤ Qmax −Qi + lik·
(

fü + fü·εDL
ik + εT ·qi

)
. (11)

Let O denote the set of the indexes of the mandatory hubs. In this case, we have to go
through the same potential road section with the index k on which we arrived.
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In this case, the following condition applies to the mandatory hubs:

sgn(xik) = sgn(xi+1,k), i ∈ O, k = 0, . . . , H. (12)

When arriving at the destination (i = N), the vehicle should have a certain amount of
fuel available (QZ) in order to be adequately prepared for the next route:

QN ≥ QZ. (13)

Let Kti denote the cost of the amount refueled for the relation i, i + 1 (if there was no
refueling, then 0). Furthermore:

KT =
N−1

∑
i=1

Kti (14)

The cost of refueling at the given fueling station is:

Kti =
H

∑
k=0

pik·xik (15)

Remark
We will use condition (9) in the following form:

Qi+1 = Qi + sgn(xi0)·
[
−(li0 + mi0)·

(
fü + fü·εDM

i0 + εT ·qi
)]

+
H
∑

k=1
sgn(xik)·

[
−(lik + mik)·

(
fü + fü·εDM

ik + εT ·qi
)]

+ xik (16)

In (16), the index k starts from 1, and the 0 index is emphasized. This is because there
is no refueling at fueling station 0. Thus, xi0 can take on any value, and it will not influence
the amount of fuel in the tank. In the objective function, it is not included among the costs
because of the 0 price. Incidentally, as we described above, if there is no refueling at a given
road section, then the value x of the corresponding road section 0 will be greater than 0.
This is a “fictional” tanking, when fuel is not actually introduced in the fuel tank.

4.5. The Objective Function Applied during Optimization

The objective function signifies the fuel cost of the starting tank (which is a fixed
cost), reducing the amount of fuel refilled on the route with the cost of the remaining fuel
(variable cost):

K = K(X, Q) = Kind + KT − Kremaining = Kind +
N−1

∑
i=1

H

∑
k=1

pik·xik −
H

∑
k=1

sgn(xN−1,k)·pN−1,k·QN . (17)

The above formula means that the cost of the remaining fuel has to be reduced with
the unit price at which we bought it, i.e., the cost at the last fueling station.

The goal is:
K = K(X, Q)→ min. (18)

Thus, the problem can be stated as a mathematical programming task.
Remarks on the objective function (17):
1.

H

∑
k=1

sgn(xN−1,k)·pN−1,k·QN =
H

∑
k=0

sgn(xN−1,k)·pN−1,k·QN , (19)

During the computing solution, for practical reasons, we can start the k index from 0.
This means that we can also include the routes with no fueling stations without influencing
the result.
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2. Kind can be omitted during optimization, since this is a constant and thus does not
influence the optimum. Therefore, it can be signified as:

K′ = K′(X, Q) =
N−1

∑
i=1

KTi − Kremaining. (20)

4.6. Simplifying the Model Used for Determining the Location of the Optimal Fueling Station and
the Amount of Fuel to Be Refilled

During modeling, it was necessary to use the sign function, which can cause problems
in the solution process. In order to eliminate these problems, let us introduce the

yik ∈ {0; 1}. A yik variable must be assigned to each xik variable. (21)

Convert the condition:
H

∑
k=0

sgn(xik) = 1 (22)

according to the following:

yik ≤ xik ≤
[

Qmax −Qi + lik·
(

fü + fü·εDL
ik + εT ·qi

)]
· yik

H

∑
k=0

yik = 1. (23)

Then, the condition of the mandatory hubs can be easily converted. In the modified
model, the condition:

yik = yi+1,k, i ∈ O, k = 0, . . . , H (24)

corresponds to condition (13). Thus, condition (10) will be modified as follows:

yi0·
[
−(li0 + mi0)·

(
fü + fü·εDM

i0 + εT ·qi
)]

+
H
∑

k=1

{
yik·
[
−(lik + mik)·

(
fü + fü·εDM

ik + εT ·qi
)]

+ xik
}
+ Qi −Qi+1 = 0,

i = 1, . . . , N − 1
(25)

The problem is caused by the formula of condition (25):

H

∑
k=1

yik·xik (26)

signifying the multiplication of two variables. In fact, if yik = 0, then xik = 0, and if yik = 1,
then xik > 0. It follows that yik·xik = xik k ∈ {1, . . . , H} because of Equation (23).

Consequently, condition (25) will be the following:
H
∑

k=0
yik·
[
−(lik + mik)·

(
fü + fü·εDM

ik + εT ·qi
)]

+
H
∑

k=1
xik + Qi −Qi+1 = 0

i = 1, . . . , N − 1
(27)

Thus, the condition is converted into a linear condition.

4.7. The Final Model for Determining the Location of the Optimal Fueling Station and the Amount
of Fuel to Be Refilled

The set of conditions of the final model is as follows (with constants arranged to the
right side):

xik ≥ 0, i = 1, . . . , N − 1; k = 0, . . . , H (28)

yik ∈ {0; 1}, i = 1, . . . , N − 1; k = 0, . . . , H (29)

H

∑
k=0

yik = 1, i = 1, . . . , N − 1 (30)

Q1 = Qind (31)
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Qi −
H

∑
k=0

yik·lik·
(

fü + fü·εDL
ik + εT ·qi

)
≥ QB, i = 1, . . . , N − 1 (32)

xik − yik ≥ 0, i = 1, . . . , N − 1; k = 0, . . . , τi (33)

xik −
[

Qmax −Qi + lik·
(

fü + fü·εDL
ik + εT ·qi

)]
·yik ≤ 0, i = 1, . . . , N − 1; k = 0, . . . , τi (34)

H

∑
k=0

yik·
[
−(lik + mik)·

(
fü + fü·εDM

ik + εT ·qi

)]
+

H

∑
k=1

xik + Qi −Qi+1 = 0, i = 1, . . . , N − 1 (35)

yik − yi+1,k = 0, i ∈ O, k = 0, . . . , H (36)

QN ≥ QZ (37)

Based on the above cost components, the following objective function can be supplied
for the model:

K′ = K′(X, Y, Q) = KT − Kremaining =
N−1

∑
i=1

H

∑
k=1

pik·xik −
H

∑
k=1

yN−1,k·pN−1,k·QN → min (38)

Statement 2. As demonstrated, even if only one refueling has taken place, the vehicle
will reach the depot with the specified minimum amount of fuel (QZ).

Demonstration. The amount of fuel with which the vehicle arrives cannot be less
because of condition (37). Let us suppose that this solution is optimal, but the vehicle
arrives with more than the minimum amount of fuel. Now take the difference between the
current amount and the safety amount (QZ), and subtract it from the amount of the last
refueling. This leads to a lower cost, which contradicts with the statement that the original
solution was optimal.

Because of the statement, the remaining amount Kremaining was not necessary for the
calculations, and thus was omitted. It was also possible to prevent refueling under a
minimal amount at a fueling station. For this, we determined that the following condition
had to be added to the model:

H

∑
k=1

xik ≥
H

∑
k=1

Qmink·yik. (39)

5. The Optimization Task and Its Solution Method—Case Study

After specifying the model, we sought to demonstrate that the task related to the
model is solvable and that applications are available that can effectively solve the problem.
Our ultimate goal was to develop a program module related to the dispatching system
of companies. The final module was built on a data base [64–68], and solves the practical
problems in a similar, user-friendly way.

Hereinafter, we demonstrate the solvability of the task and the applicability of the
model through an example task we solved using the MS Excel Solver. We chose the non-
linear AVG method (gradient method) of Solver [69–73] as the solution method. It should
be noted that in addition to the solution presented, we also tested it with MATLAB and
obtained the same result.

5.1. The Example Task and Its Data

In this section, we apply the mathematical model and detail the solution of the problem
for an example task.

Let us consider a transport loop with four hubs. There are two fueling stations between
hubs 1 and 2, three fueling station between hubs 2 and 3, and only one fueling station
between hubs 4 and 1. There are no fueling stations between hubs 3 and 4. Between all
neighboring hubs, there is a potential road section with no fueling station, established
according to Remark 3 following the Definitions (Figure 6). Additionally, according to this
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remark, there is only one fueling station on every potential road section. The destination
station has its own fueling station, and the motor vehicle can thus refuel here after arrival.

Figure 6. The graph of the example task.

Subsequently, we define the values of the individual data (the data are fictional and
may, in certain cases, differ from real-life technical parameters).

N = 4.
H = 3.
Load factor: εT = 0.02.
Safety fuel level: QB = 10 [liter].
Fuel consumption in the case of an empty vehicle: fü = 0, 1 [ liter

km ]

Unit price matrix : P =


0 1.17 1.00 Max
0 1.23 1.13 1.00
0 Max Max Max
0 1.20 Max Max

[euro]. Max = 109.

“Max” is a sufficiently high value in this case. Generally, a sufficiently high value has
to be chosen in order to avoid the situation in which the fictional fueling station is included
among the chosen fueling stations during optimization (for example, we have set the Max
value at 100,000 Euros in Excel).

Distance matrices:

L =


320 200 180 200
300 160 190 120
340 340 340 340
240 190 150 150

 [km]

M =


0 150 190 200
0 180 190 290
0 0 0 0
0 60 120 150

 [km]

S =


320 350 370 400
300 340 380 410
340 340 340 340
240 250 270 300

 [km]
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Topographical conditions:

εDL =


0 0.3 0 0

0.1 0.3 0.3 0
0.2 0.3 0.3 0.3

0 0 0 0



εDM =


0 0.3 0 0

0.2 0.3 0.3 0
0.2 0.3 0.3 0.3

0 0 0 0


Payload : q =

[
40; 0; 20; 30

]∗
[tons]

Qmax = Qind = 600 [liter].

In our example task, we assumed that the possibility for refueling exists at the final
destination. Thus, it is sufficient if a fuel amount corresponding to the safety level remains
in the tank of the motor vehicle. In other words: QB = QZ = 10 [liter].

5.2. The Solution of the Example Task Using MS Excel Solver

Due to its size, we can only present the computational model corresponding to the
mathematical model of the example task in a figure. In column A of the table, we have
indicated the relation of the individual conditions and the conditions of the model to which
the individual rows belong. Formally and structurally, the computational model will look
according to the Appendix A.

We can include the limiting conditions in six groups according to the relations in
column A1 of Appendix A, and it is sufficient to set only one limiting condition for these
groups in Solver. Condition (7) ensures the bivalence of the y variables. The other variables
are not negative according to the model, which is set through checking the option “Make
unconstrained variables non-negative”. We chose the non-linear AVG as the solution
method.

5.3. The Significance of the Result Obtained Through Optimization

Solver found an optimal (or close to optimal) solution for the task after a short run.
According to the obtained result, we will refuel once, between hubs 2 and 3, with 55 L of
fuel, at fueling station 3 (Figure 7).

Figure 7. The optimal route with one refueling.

Without conducting a more detailed analysis, or a sensitivity analysis, we present
some results on the basis of the above example, obtained through modifying the input
values and the goal. The results of Solver show that if we haphazardly choose the fueling
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stations and the route of the transport loops or leave this choice entirely to the driver, then
we will record major losses.

If we optimize on the basis of the shortest route (keeping the conditions for refueling
unchanged), then the route would be reduced from 1310 km to 1250 km (to 95.4%). At the
same time, the determining costs (i.e., the “reduced” cost from the objective function) will
rise to 34% (from 55.44 to 74.31 Euros). If the driver chooses the shortest route, then he
might reach his destination faster, but with the potential result of a significant increase in
costs.

In terms of calculating the total cost, a 10% change in the fuel price in our example
task would amount to a change of almost 5% compared to the total cost. In this case,
it is also important to take into account that the transport is of a very special kind. If
a more significant increase in fuel prices occurs, the cost of refueling will appear as a
greater percentage among the transportation costs (in our example, the increase amounts
to approximately 5%). Consequently, the right choice when selecting fueling stations is
especially important in these cases.

If we look for the most expensive solution under the above conditions (for the depot
of the company, refueling only on the highway, with the maximum amount), then our total
cost would be 62.33 Euros (an increase of 12%, with only two refueling possibilities), which
is already a sizeable difference. This also indicates that the conscious selection of fueling
stations represents an important issue in the reduction of logistical costs.

6. Conclusions

We developed a new precise and reliable optimization method for the minimization
of road freight transport costs. In doing so, we aimed to reduce fuel costs by determining
the optimal fueling station and to calculate the optimal quantity of fuel to refill.

This decision-supporting mathematical method is an efficient solution for the optimal
fuel supply of transport activity. The application of the new method supports drivers’
decision-making concerning the optimal fuel station at which to refuel and how much fuel
is necessary for refueling in order to reduce the fuel consumption and fuel costs. However,
in practice, transport companies have not used mathematical methods and have instead
relied on the ad-hoc decisions of their drivers. In doing so, they have incurred cost- and
time-related losses.

As discussed in this paper, our optimization method involves two key phases:
In the first phase, the optimal, most cost-effective fuel station is determined based on

the zone of the potential fuel stations. The specific fuel prices differ per fuel station, and
the stations are located at different distances from the main transport way. Our method
can determine the optimal fuel station, i.e., the most cost-effective fuel station based on
the specific fuel prices and additional transport distances. The method enables drivers to
determine whether refueling at a farther but cheaper fuel station or at a nearer but more
expensive fuel station is more economical.

In the second phase, the optimal volume of the fuel is calculated. In other words,
this phase focuses on the exact volume of fuel needed, including an adequate amount to
cover stochastic incidents (e.g., additional consumption due to road closures). The optimal
amount of fuel to be refilled refers to the volume required to achieve the given transport
task. The determination of the optimal fuel volume is important. Specifically, if the amount
of refilled fuel is less than the optimal volume, drivers have to find another fuel station
and refuel their vehicles, thus resulting in additional costs and time losses. Moreover, if the
amount of the refilled fuel is higher than the optimal volume—especially near to end of the
transport loop—then it is also a loss, because drivers can refill with the cheapest fuel at the
depot of the transport companies.

The main contribution of our optimization method is its support to the drivers’ optimal
decision-making. It enables them to determine the optimal fuel station and the amount
of fuel for refueling in order to reduce the total fuel cost. Therefore, the application of the
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new optimization method compared to the recently applied ad-hoc decision-making of the
drivers results in significant fuel cost savings.

A case study confirmed the efficiency of our optimization method. As the case study
showed, the optimization of the fuel supply results in a reduction in fuel consumption and
cost as well as less environmental damage.

Previous studies highlighted available methods for route optimization and the op-
timization of transport trips and networks. However, these studies did not focus on an
optimization method for the minimization of fuel costs based on the optimization of the
fuel supply. Therefore, as mentioned, we did not have a comparable method available to
analyze. Because of the uniqueness of our method, we could only compare it to the drivers’
ad-hoc individual decision-making. Based on this comparison, we determined that the ap-
plication of the method results in the reduction of fuel consumption and, correspondingly,
significant cost savings for transport companies.

Our optimization method is applicable to sparsely populated areas where the number
of fuel stations available to drivers is small. One of our future research plans is to develop
a software program for planning the optimal fuel supply—based on the new optimiza-
tion method—in order to minimize the fuel costs. Small- and medium-sized transport
companies in particular could widely apply this software in practice.
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Appendix A

The table below shows the main details of the conditions of the Excel table model
prepared for the case study based on the general model (28)–(38). We assigned each
variable to the columns. The coefficients for the amount of fuel to be refueled at fuel
stations x are presented in columns A to Q. The coefficients of the y fields indicating
refueling intent are contained in the fields between R and AG. Columns AH–AL contain
the coefficients of the amount of fuel (Q) available to the vehicle at the hubs. The AN
column contains the limit values in the model (i.e., the constant values at the right of
the relations for each condition). The AM column is an auxiliary column that contains
the matrix product of the task coefficient and the matrix product of the variables. The
conditions above the first thick black line contain condition (30), line 12 contains condition
(31), and 13–28 contains condition (32). Lines 29–44 contain condition (33). Similar to the
other rows, the corresponding conditions of the model are mapped in the Excel sheet.

Comment. The model could have been written in a more space-saving way. However,
for the sake of transparency, we have written it in the form below. The colored fields show
values other than 0. This also highlighted the structure of the model. This is a “holey”
matrix, i.e., with many 0 coefficients, which also indicates the degeneracy of the problem.
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