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Abstract: This paper evaluates the potential energy use and peak demand savings associated with
optimal controls of switchable transparent insulation systems (STIS) applied to smart windows for
US residential buildings. The optimal controls are developed based on Genetic Algorithm (GA)
to identify the automatic settings of the dynamic shades. First, switchable insulation systems and
their operation mechanisms are briefly described when combined with smart windows. Then, the
GA-based optimization approach is outlined to operate switchable insulation systems applied to
windows for a prototypical US residential building. The optimized controls are implemented to
reduce heating and cooling energy end-uses for a house located four US locations, during three
representative days of swing, summer, and winter seasons. The performance of optimal controller is
compared to that obtained using simplified rule-based control sets to operate the dynamic insulation
systems. The analysis results indicate that optimized controls of STISs can save up to 81.8% in
daily thermal loads compared to the simplified rule-set especially when dwellings are located in hot
climates such as that of Phoenix, AZ. Moreover, optimally controlled STISs can reduce electrical peak
demand by up to 49.8% compared to the simplified rule-set, indicating significant energy efficiency
and demand response potentials of the SIS technology when applied to US residential buildings.

Keywords: genetic algorithms; optimal controls; energy efficiency; peak demand; residential build-
ings; switchable insulation systems; variable U-value; variable SHGC; windows

1. Introduction

The building sector accounts for about 76% of electricity use and 40% of all U.S. pri-
mary energy use and associated greenhouse gas (GHG) emissions, making it essential to
reduce energy consumption in buildings in order to meet national energy and environmen-
tal challenges [1]. In particular, heating, ventilation, and air conditioning (HVAC) systems
are responsible for up to 50% of the US building sector consumption [2], equivalent to
20 quadrillion Btu per year [3]. Building envelope systems including walls, roofs, and
windows are the main contributors for both heating and cooling thermal loads of buildings.
In particular, windows can influence heating and cooling through heat transfer as well
as solar heat gain. Specifically, typical windows even with energy efficient double-pane
glazing have an overall heat transmission coefficient (i.e., U-value) that is five to eight times
higher than that of opaque walls [4]. Meanwhile, several techniques have been investigated
to make the windows more efficient such as tinted, reflective, and low-emissivity glazing
materials [5]. Among all those technologies, smart windows—including smart or adaptive
glazing materials for windows and dynamic shading devices—suggest the most effective
solutions with offering variable optical properties of windows including solar heat gain
coefficient (i.e., SHGC) and U-Value [6]. More detailed, smart glazing has been studied
with the highest impact, which could control both the light and solar heat flow into and out
of buildings while maintaining access to the outdoor views through the glass, thus offering
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both energetic and aesthetic advantages over static controls, such as blinds or shades [7–9].
For instance, Sbar et al. showed that 20% HVAC energy saving could be achieved sim-
ply by taking advantages of electrochromic (EC) dynamic windows compared to static
low-emissivity windows. More detailed, smart glazing systems could include several tech-
nologies such as chromic materials (i.e., electrochromic, photochromic, thermochromic, and
gas chromic), liquid crystals (LC), and electrophoretic as well as suspended-particle devices
(SPD) [8]. Indeed, electrical powered visible and infrared regulating technologies have
been applied to smart windows could be categorized under AC or DC. AC powered smart
windows include SPD, LC, and polymer-dispersed liquid crystal (PDLC). DC-powered
smart windows consist mainly of EC types [10–21].

Dynamic shading devices and adjustable overhangs, on the other side, have been
explored in terms of their potential to adjust automatically thermal and optical properties
of windows [22]. Firląg et al. conducted a study and analyzed the impacts of control
algorithms for dynamic windows on energy savings and shade operations. They reported
that site energy savings could be significant and reach as high as 13.0%, that is, a reduction
in source energy up to 21.6%, with most of the savings due to thermal cooling reduction [23]
for a typical residential dwelling. However, this technology is mostly analyzed and
implemented subject to control strategies for the commercial buildings [24–27]. For instance,
Tzempelikos and Shen analyzed and indicated that shading controls can achieve savings
ranging from 10.1% to 34.4% in annual source energy consumption for various office
room configurations after comparing four dynamic shading controls [28]. More recently,
Alva et al. studied façade systems suitable for both daylighting and solar thermal energy
harvesting simultaneously by using liquid filled prismatic louvers [29].

In order to further enhance the energy efficiency of buildings, application of optimiza-
tion techniques has gained a wide interest for designing and operating energy systems,
especially in the last decade [30]. Three categories of optimization techniques have been
considered for building energy systems including sensitivity and parametric methods,
stochastic optimization algorithms, and meta-model approaches [31]. The sensitivity or
parametric analyses are based on selecting key variables that affect building energy per-
formance [31,32]. Stochastic population-based optimization methods integrate variable
tracking methods such as genetic algorithms (GA), particle swarm optimization (PSO), and
other evolutionary algorithms by selecting certain variable-sets automatically to minimize
building energy consumption or multiple targets including costs and comfort level besides
energy performance. In particular, GA-based optimization techniques have been widely ap-
plied to operated building energy systems [33–37]. While this optimization method similar
to almost all the approaches may be trapped in local optima, it generally provides sound
solutions with acceptable computational efforts [31,38,39]. Finally, the meta-modeling
utilizes unified performance forecasting data such as response surface charts, based on
statistical approaches to develop relationships between building design and environmental
parameters and energy performance indicators [31,40].

In particular, there are several technologies explored to make the windows shadings
dynamic, including both internal (i.e., smart glazing systems) and external dynamic shad-
ing controls (i.e., dynamic shading devices). Caldas et al. developed an optimization
GA-based and assessed the best window size to reduce the loads [41]. Manzan explored
using a genetic optimization for an external shading device with the target of reducing the
overall primary energy consumption in an office room, while a shading device coupled
with different glazing systems resulted in up to 30% reduction of HVAC energy con-
sumption [42]. Moreover, Zhao et al., applied a multi-objective optimization algorithm to
minimize the energy use as well as improving the visual and thermal comfort of a reference
office room by finding the most appropriate parameters (including size of the window
and thickness of the bare glass) for the window system [43]. However, the researchers
showed that the objective of energy consumption worsens the visual performance. In
addition, Huchuk et al. used a model predictive control (MPC) for interior roller shades
using EnergyPlus platform—a state-of-the-art whole building energy simulation tool. The
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authors showed that the MPC had the potential to achieve annual HVAC energy savings
up to 12.49% [44]. Knudsen and Petersen also conducted a research on dynamic solar
shading devices to study the economic MPC of space heating as well as dynamic solar
shading [26]. They concluded that using this MPC would suggest higher savings compared
to the two-step rule set, and results are promising in terms of energy cost as well as peak
demand cost.

In this paper, the GA-based optimization approach is applied to operate switchable
insulation systems (SISs) both transparent and opaque in order to minimize the energy
consumption of US residential buildings. In the literature, adaptive insulation systems
have been applied mostly to opaque building envelope elements (i.e., walls and roofs)
using several technologies including air flowing within the insulation layers or channels
oriented in the direction of heat transfer [45], phase change materials [46], moving insula-
tion sheets [47], and rotating insulation layers [48–53]. Recently, Dabbagh and Krarti [53]
investigated the use of switchable insulated systems for windows as internal attachments
operated using rule-based controls to optimize the overall energy performance of buildings.
In this study, novel switchable transparent insulation systems are considered to improve
the energy performance of smart glazed windows. First, switchable transparent as well as
opaque insulation systems and their operation are briefly outlined. Then, the optimiza-
tion methodology used to determine the optimal settings for the switchable transparent
insulation systems (STIS) applied to smart windows is detailed. Finally, the results of a
series of sensitivity analyses are summarized to assess the impacts of optimizing STIS and
smart glazing settings on both daily heating and cooling energy consumption and electrical
peak demand for representative US residential buildings. Finally, the optimal operation of
opaque switchable insulation system (SIS) is considered when applied to conventionally
glazed windows.

2. Switchable Insulation Description

The switchable insulation evaluated in this study is based on dynamic insulation
systems made up of insulation baffles that can synchronously rotate using a rule-based or
optimized set of controls at any desired rotation angle, θi, as indicated in Figure 1a when
the insulation is opaque applied to a regular window as an interior shade [52,53]. Using
results from a laboratory testing, Figure 2 illustrates the R-value variation of the window
assembly as a function of the angle θi.
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Figure 1. Two configurations for switchable insulation system applied to windows using (a) opaque
insulation applied to a conventional glazed window, (b) a transparent insulation system (i.e., venetian
blinds made up of monolithic silica aerogels) applied to a smart glazed window.
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Specifically, the configuration considered in this study consists of switchable transpar-
ent insulation layers operating as venetian blinds made up of monolithic silica aerogels
(MSA) with high transmittance properties for both light and solar radiation [53,54]. As
indicated in Figure 1b, the switchable transparent insulation using venetian blinds made
up of MSA and applied to a smart glazing window can independently adjust its overall
thermal (i.e., R-value) regardless of the solar heat gain coefficient or SHGC of smart glazing.
The dynamic transparent insulation can be applied to any type of smart windows as long
as the glazing can be switch between a dark state (i.e., with low SHGC) and a clear state
(i.e., high SHGC). Other intermediate states for the smart windows can also be considered
by the optimization analysis performed for this study.

As part of a comparative analysis, this study evaluates the performance of opaque
switchable insulation systems applied as insulated interior shades to conventional windows
having static optical properties, as illustrated in Figure 1a.

3. Building Energy Model Description

In this study, the potential benefits of switchable transparent insulation systems (STIS)
applied to smart windows operated using optimized controls are evaluated for a detached
one-story dwelling as depicted in Figure 3. The main features for the residential building
are summarized in Table 1. In particular, the house is maintained at 23 ◦C during cooling
periods and 19 ◦C during heating periods. Moreover, operation schedules typical for US
single-family homes are considered as shown in Figure 4 for occupancy, lighting, and
appliances. The schedules represent fractions of peak values to represent the occupancy
level as well as lighting and equipment uses on an hourly basis.
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Table 1. Main characteristics of baseline residential building energy model.

Building Characteristics Detached

Orientation South
Floor to Ceiling Height 3 m

Floor Area 144 m2

Window Wall Ratio 15%

Windows

Double-glazed wooden window
RSI: 0.35

SHGC: 0.4
Window to Wall Ratio: 15%

Floor Adiabatic
Wall RSI-2.3 (brick, rigid insulation, gypsum Board, plaster)
Roof RSI-3.5 (HW concrete, rigid Insulation, membrane, plaster)

Heating Operation Period: 1 October–30 April:
Temperature Set point: 19 ◦C

Cooling Operation Period: 1 May–30 September
Temperature Set point: 23 ◦C

Heating and Cooling System

Heating: Gas-Fire Furnace
Efficiency: 95%

Cooling: Split Air Conditioner
COP 3.8 (EER: 13) [55]

Internal Loads

People Power Density: 72 m2/person
Lighting Power Density: 6 W/m2

Equipment Power Density: 3 W/m2

Air Infiltration = 5 air change per hourEnergies 2021, 14, x FOR PEER REVIEW 6 of 26 
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For the baseline housing unit model, a regular double-pane window is considered
with an overall thermal resistance set to be RSI-0.35 (i.e., U-value = 2.86 W/m2 K) and
SHGC of 0.4 in order to meet the building energy-efficiency requirements for all the US
climates considered in this study based on the ASHRAE 90.2 standard requirements [55].
When STIS are applied as interior shades to smart glazed windows, the overall ther-
mal resistance of the shade-window system can vary between a low R-value of RSI-0.35
(U-Value = 2.86 W/m2·K) and a high R-value of RSI-1 (U-Value = 1.00 W/m2·K) using the
correlation of Figure 2 between the insulation layers angle and R-value. Generally, other
high R-value values can be considered depending on the insulation type and thickness used
for the shades. Moreover, the window’s smart glazing, in most of this study, can take two
states with a low-SHGC of 0.1 and high-SHGC of 0.4. However, other states with SHGC val-
ues up to 0.7 are evaluated as part of a sensitivity analysis. Indeed, DeForest et al. [56–59]
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evaluated a window with three states and three SHGC levels including dark or tinted
glass (SHGC = 0.1), cool or intermediate glass (SHGC = 0.4), and bright or clear glass
(SHGC = 0.7).

4. Development of Optimized Control Schemes

The building energy simulation environment used in this study is based on a Resistance–
Capacitance (RC) model, as described in details by Dabbagh and Krarti [52] with a specific
window model that has been verified against predictions from EnergyPlus. The advantage
of this RC-based simulation environment is its ability to model a building envelope (such as
windows) with variable thermal and optical properties [52]. The simulation environment
includes GA-optimization module as described in the following section.

4.1. Genetic Algorithm Simulation Environment

For this study, the GA optimization is used to determine the best settings for the
STIS as well as the smart glazing state. Specifically, a GA-based optimization analysis is
considered to establish the angle position of the switchable insulation layers (i.e., R-value)
and the clear or dark state of the smart glazing (i.e., SHGC value) in order to minimize a
specific cost function used throughout this study, that is, the energy cost for the house.

GA-based optimization approach utilizes a fixed, linear data structure (i.e., a list of
variable values), inspired by the biological evolution, and based on the survival of the
fittest by maintaining a population of possible solutions of which the poorest performers
are eliminated when selecting a new set of generations. This selection is based on randomly
evolving solutions using a predefined population size until a final and acceptable solution
is reached by successive iterations [43]. For each generation, new potential solutions are
selected to form a new population using operators such as mutation rate to maintain
population diversity, crossover rate to enlarge the population offspring, and elite count to
maintain high performer individuals.

While there are several parameters that can affect the performance of GA-based op-
timization, the population size and the number of variables that is referred to as nvar
are found to have a significant impact in this study, as discussed in Section 6. The two
parameters of population size and number of variables are selected after a series of sen-
sitivity analyses to ensure the robustness and the accuracy of the optimization solution.
Specifically, the size of the population is correlated to the number of variables considered
by the optimization problem. While a larger population size typically leads to more ac-
curate results, it also requires higher computational efforts. As detailed in Section 6, this
study utilizes the results of a sensitivity analysis to determine the best set of optimization
parameters to be considered for the analysis.

Furthermore, as GA uses a stochastic approach to generate random initial population
sets, each optimizations simulation is repeated 10 times, and only the best set of solutions
is selected. For a one-day optimization period, the control frequency for the SITS (i.e., nvar)
is set to 24. Such a setting allows the model to alter its R-value and SHGC setting per each
hour of the day. Even though the optimization analysis is performed for representative
days, GA simulations with large populations and a high number of variables have high
computational costs.

4.2. Optimization Cost Function

In this study, the objective cost function, f, for the GA-based optimization analy-
sis considered for controlling the STIS-smart window settings is stated by Equation (1)
as follows:

f = min ∑24h
0

(
Ecooling∗ratecooling + Eheating∗rateheating

)
(1)

where:

� Ecooling: Cooling thermal loads for each time-step
� Eheating: Heating thermal loads for each time-step
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� ratecooling: Cost of electricity for cooling utility (set to be $0.1/kWh in this study)
� rateheating: Cost of natural gas for heating utility (set to be $0.03/kWh in this study)

Since GA-based optimization over an entire year is computationally time consuming,
the analysis considers only representative days for each season to evaluate the impact of
optimal settings on the performance of STIS when applied to smart windows for the house
model described in Section 3.

For this study, the building energy model as well as the GA algorithm have been
integrated within MATLAB platform [60] to expedite the optimization computational
efforts. Furthermore, the number of options for both R-value and SHGC to be optimized,
nvar, has a significant impact on the computational cost. Indeed, for one day optimization
using hourly analysis, nvar can be as high as 192 when only high and low options are
allowed for STIS position and the smart glazing state is considered for each hour assuming
all windows in each façade can be operated with the same settings. Lower values for nvar
are desired to reduce the computational efforts as outlined in Section 6. In particular, most
of the GA-optimization analyses considered in this study limit nvar to 40 with 24 for the
R-value of STIS settings and 16 for smart window states (i.e., SHGC values) by maintaining
the same values during four-hour periods for each orientation (North, South, West, and
East). Moreover, the smart window is assumed to be set to the baseline clear state (i.e.,
SHGC = 0.4) during the first and last 4 h of the day and does not need to be optimized.

5. Discussion of Results

In this section, the analysis results for GA-based optimization are presented when
applied to a house located in Golden, CO, during three representative days including one
for the swing season, one for the cooling season, and one for the heating season. First,
the performance of the GA optimization is evaluated to select specific parameters for the
population size and number of variables to considered throughout the analyses carried
out for the study. Then, the GA optimization results are obtained using two approaches:
sequentially and simultaneously, the best settings of both STIS and smart glazing. Finally,
the performance of the STIS–smart window is assessed for various days using the GA-
based optimization results. The upper and lower boundaries of the selected R-value and
SHGC are summarized in Table 2.

Table 2. Upper and lower boundaries for R-value and SHGC applied in GA optimization.

Window Property Baseline Lower Boundary Higher Boundary

R-Value (RSI) 0.34 0.35 1
SHGC 0.4 0.1 0.4

5.1. Impact of Optimization Sequence

The settings for both STIS and the smart window can be determine simultaneously or
sequentially. In this section, the impact of sequential optimization on the overall energy
performance of the house located in Golden, CO is evaluated and compared to the results
obtained using a simultaneous optimization. Specifically, three optimization approaches
corresponding to various applications and operation modes are conducted for this analysis:

Switchable SHGC only: This case corresponds to optimizing only the state settings for
the smart windows. It may also represent the operation of an automated opaque shade
applied to conventional windows.

Switchable R-value only: This case addresses the operation of only the STIS while
keeping the smart windows at the same state. This option can also represent the operation
of opaque switchable insulation applied as shades to conventional windows.

Switchable both R-value and SHGC: This case refers to the simultaneous optimal
operation of the STIS as well as of the smart windows. This option is the main configuration
evaluated throughout this study.
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The results of these three optimizations and operation modes are compared to those
obtained when the house has static windows with a fixed U-value and SHGC and without
any shades. Figure 5 summarizes the daily energy performance for both static windows
and STIS applied to smart windows when the house is located in Golden, CO, USA during
a swing day (i.e., 21 May). The selected location for this analysis represents an ASHRAE 5B
climate zone (Cool-Dry) correspondent to Dfb in the Koppen climate classification [61,62].
In particular, the savings in both heating and cooling end-uses as well as in overall house
electrical peak demand are reported using GA-based optimization as well as two-step
rule-set controls for smart windows, which are equipped with switchable transparent
insulation compared to the baseline case (static windows with no shades).
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As the results of Figure 5 indicate, the maximum HVAC load reduction is achieved
when both the R-value and SHGC are simultaneously optimized, reaching as high as 50.2%
compared to the baseline. However, GA-based optimization provides almost the same
energy savings (49.7%) when only SHGC settings are optimized. On the other hand, when
only R-values are optimized, lower energy savings (27.1%) are obtained compared to the
simultaneous optimization. However, the performance of STIS associated with controlling
only the R-values as well as of smart windows defined by adjusting only SHGC values
depend on the season and the operation mode. For instance, the date of 21 May considered
in the analysis results of Figure 6 is primarily a cooling day with mild temperatures. Thus,
the best option to reduce cooling thermal load for the house is to reduce solar heat gains
and thus by adjusting SHGC values rather than R-values. The impacts of various climatic
conditions are addressed in the following section.
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5.2. Impact of Seasons

In this section, impacts of daily variations of weather conditions for Golden, CO, on
the optimally operated STIS–smart windows are investigated. More particularly, three
representative days of 21 May, 13 July, and 18 December are selected for Golden, CO, to
evaluate the performance of the optimized settings for both STIS and smart windows
during swing, summer, and winter seasons, respectively.

5.2.1. Representative Day for the Swing Season

Figure 7 shows the performance of the GA-optimized STIS and smart windows
during 21 May, a spring day in Golden, CO, USA representing a mild day. As indicated
by Figure 7a, the daily optimized load profile is consistently lower compared to loads
obtained using baseline windows and the two-step rule-based controls. This lower thermal
load obtained from GA-based optimization is explained as illustrated in Figure 7b showing
that optimal settings for the smart windows call for lower SHGC one time-step (4 h) earlier
than the two-step controller, resulting in less solar heat gains and consequently lower
cooling load for the house. Furthermore, the GA-based optimization set the STIS to its
low R-value for a longer period allowing the house to release higher heat gains than the
two-step controls.
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5.2.2. Representative Day for the Summer Season

Figure 8 compares results of the two-step controller and GA-based optimization to
those obtained for baseline case during a summer day (13 July) representing a hot day. As
indicated in Figure 8a, the GA-based optimizer provides almost the same thermal load
as the rule-based controller. However, the actions for both STIS and smart windows are
different for both control options. Indeed, the two-step controller sets STIS at its high R-
value and the smart windows at its low SGHC value during the daytime hours to prevent
thermal and solar heat gains from entering the house. However, the optimal controls seem
to alternate between high and low values for the settings of both STIS and smart windows
to balance between solar heat gains and the flow of thermal heat transfer between indoors
and outdoors.

Energies 2021, 14, x FOR PEER REVIEW 11 of 26 
 

 

Figure 7. Hourly variations of (a) R-values and SHGC settings, and (b) thermal loads for an STIS–smart window with southern 
exposure during a spring day (21 May) for a dwelling located in Golden, CO, USA. 

5.2.2. Representative Day for the Summer Season 
Figure 8 compares results of the two-step controller and GA-based optimization to 

those obtained for baseline case during a summer day (13 July) representing a hot day. As 
indicated in Figure 8a, the GA-based optimizer provides almost the same thermal load as 
the rule-based controller. However, the actions for both STIS and smart windows are dif-
ferent for both control options. Indeed, the two-step controller sets STIS at its high R-value 
and the smart windows at its low SGHC value during the daytime hours to prevent ther-
mal and solar heat gains from entering the house. However, the optimal controls seem to 
alternate between high and low values for the settings of both STIS and smart windows 
to balance between solar heat gains and the flow of thermal heat transfer between indoors 
and outdoors.  

 
(a) 

 
(b) 

Figure 8. Hourly variations of (a) R-values and SHGC settings, and (b) thermal loads for an STIS–smart window with 
southern exposure during a summer day (13 July) for a dwelling located in Golden, CO, USA. 

  

Figure 8. Hourly variations of (a) R-values and SHGC settings, and (b) thermal loads for an STIS–smart window with
southern exposure during a summer day (13 July) for a dwelling located in Golden, CO, USA.



Energies 2021, 14, 2917 11 of 24

5.2.3. Representative Day for the Winter Season

The settings for both GA-based optimizer and the two-step controller for a winter day
(18th December) are shown in Figure 9. The need to reduce thermal heat transfer as well as
increase solar heat gains for this cold day force both controllers to set the STIS at its high
R-value and the smart window at its high SHGC value throughout the day, as depicted in
Figure 9b.
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5.2.4. Summary of Season’s Impacts

Table 3 summarizes the impacts of weather conditions on the performance of both
GA-based optimization and two-step controller to operate both STIS and smart windows
for a house located in Golden, CO. Specifically, Table 4 indicates that the best performance
for the STIS and smart windows is achieved during 21st May, a swing season day with
mild weather conditions. In all cases, the GA optimizer allows more energy savings that
the two-step controller.
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Table 3. HVAC loads for baseline windows and STIS–smart windows applied to a house in Golden,
CO for three representative days: 21 May (swing season), 13 July (summer season), and 18 December
(winter season) using two control strategies.

Daily HVAC Loads (KWh/Day) and Percentage Savings

21 May 13 July 18 December

Baseline 15.53 57.61 −76.71
2-Step 9.21 41.22 −61.95

GA 7.73 41.03 −61.95
Energy-Saving GA Compared to Baseline 50% 28.8% 28.8%
Energy-Saving GA Compared to 2-Step 16% 0.5% 0.5%

Table 4. Electrical peak demands for baseline STIS–smart windows applied to a house in Golden,
CO for three representative days: 21 May (swing season), 13 July (summer season), and 18 December
(winter season) using two control strategies.

Electrical Peak Demand (kW) and Percentage Savings

21 May 13 July 18 December

Peak Load—Baseline 2.09 3.98 0.21
Peak Load—2-Step 1.63 3.08 0.21

Peak Load—GA 1.51 3.07 0.21
Peak Energy Saving GA Compared to Baseline 27.8% 22.9% 0%
Peak Energy Saving GA Compared to 2-Step 7.6% 0.3% 0%

Furthermore, both optimal and two-step controllers allow some reduction in electrical
peak demand for the house as summarized in Table 4 even though the optimization cost-
function calls only for reduction in total daily energy use. Specifically, the highest reduction
in electrical peak demand achieved by the GA-based optimization occurs for 21 May, when
they drop as high as 27.8% and 7.6% compared to baseline and two-step, respectively.

5.3. Impact of Climate

In this section, the performance of GA optimization to operate STIS applied to smart
windows is assessed for the houses located in other US locations including Chicago, IL,
USA, Phoenix, AZ, USA, and San Francisco, CA, USA representing hot, cold, and moderate
climates, respectively, as summarized in Table 5. Tables 6–11 summarizes the analysis
results for both GA-based optimizer and two-step controller for four US locations during
six days. The same high and low values for both STIS and smart windows used for Golden,
CO, are considered in all climates.

Table 5. Summary of the basic annual characteristics of all the locations used based on International
Energy Conservation Code (IECC).

City Golden,
CO, USA

San Francisco,
CA, USA

Phoenix, AZ,
USA

Chicago, IL,
USA

CDD (based on 18 ◦C) 460 116 2625 505
HDD (based on 18 ◦C) 3391 1403 593 3596

Climate Type 5B (Cold) 3C (Marine) 2B (Hot-Dry) 5A (Cold)
Average Dry-Bulb Temperature

(◦C) 9.3 13.3 23.1 9.7

Köppen Climate Classification
[61,62] Dfb Csb Bwh Dfa
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Table 6. HVAC loads for baseline windows and STIS–smart windows applied to a house located in
San Francisco, CA, USA for six representative days using two control strategies.

Daily HVAC Loads (kWh/Day) and Percentage Savings

21 May 13 July 18
December 11 May 10 July 17

August

Baseline 12.27 25.72 0 20.99 23.26 15.08
2-Step 6.69 12.19 0 11.07 10.47 8.26

GA Optimizer 5.81 10.27 0 9.84 10.27 7.26
Energy Saving GA Optimizer

vs. Baseline 52.6% 60.1% 0 53.1% 56% 51.9%

Energy Saving GA Optimizer
vs. 2-Step 13.2% 15.7% 0 11.1% 1.9% 12.2%

5.3.1. San Francisco, CA, USA

Similar to the trends observed for Golden, CO, USA, the GA-based optimizer to oper-
ate the STIS–smart windows outperforms significantly the two-step controller especially
during days when the weather conditions are mild. In particular, the GA-based optimizer
can reduce during 21st May the HVAC energy use by 60.1% relative to the baseline case and
15.7% relative to the two-step controller. Similarly, the GA optimizer allows a reduction
in electrical peak demand estimated to be 4.9% compared to the two-step controls during
21st May, as summarized in Table 6. For San Francisco, most of the days are mild with
some cooling needs during the daytime and some heating loads during the nighttime.
Thus, the potential for energy savings of the GA-based optimizer is limited, as indicated in
Tables 6 and 7 for electrical peak demand. Figure 10 illustrates the thermal loads as well as
the settings for both the GA-based optimizer and the two-step controller for the STIS and
smart windows during July 13 when the house is located in San Francisco, CA, USA. While
both controls agree for the STIS’ high R-value setting throughout the day, they differ in
settings for the smart windows. Indeed, the two-step controls call for a high SHGC setting
during the morning hours, while the GA-based optimizer sets the smart windows in its
dark state late in the evening, resulting in lower thermal loads throughout the day.

Table 7. Electrical peak demand for baseline windows and STIS–smart windows applied to a house
in San Francisco, CA, USA for six representative days using two control strategies.

Electrical Peak Demand (kW) and Percentage Savings

21 May 13 July 18
December 11 May 10 July 17

August

Baseline 1.61 2.33 1.29 2.14 2.31 1.85
2-Step 1.39 1.69 1.29 1.67 1.68 1.51

GA 1.32 1.66 1.29 1.61 1.66 1.46
Energy Saving GA Compared

to Baseline 18% 29.1% 0% 2.14 2.31 1.85

Energy Saving GA Compared
to 2-Step 4.9% 2% 0% 1.67 1.68 1.51
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5.3.2. Phoenix, AZ, USA

The performance indicators of STIS–smart windows when applied to a house located
in Phoenix, AZ are summarized in Table 8 for HVAC energy use and Table 9 for electrical
peak demand during six representative days. The GA-based optimization achieves the
highest percent reduction in both HVAC loads and peak demand of respectively 81.8% and
49.8% relative to the baseline case during December 18, which is a relatively cold day in
Phoenix, AZ, USA. However, it should be noted that these savings, while significant in
terms of percentage, are small in absolute magnitudes due to the low heating loads, as
illustrated in Figure 11. Indeed, space heating is needed only in late hours during the day
when the outdoor temperature drops, implying that only the SHGC setting can be used
by a GA-based optimizer as well as the two-step controller to reduce the HVAC energy
use. While the two-step controls call for a low-SGHC setting for the smart windows during
the afternoon hours, the optimizer switches back and forth between high and low SHGC
settings to maximize the benefits of solar heat gains.
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Table 8. HVAC loads for baseline windows and optimized STIS–smart windows applied to a house
located in Phoenix, AZ, USA for six representative days using two control strategies.

Daily HVAC Loads (kWh/Day) and Percentage Savings

21 May 13 July 18
December 10 July 15

February
15

November

Baseline 60.39 78.56 2.28 77.52 6.04 26.1
2-Step 45.5 61.5 1.91 62.21 4.92 13.74

GA 44.83 61.17 0.35 61.6 3.94 13.38
Energy Saving GA

Compared to Baseline 25.8% 22.1% 84.8% 21% 34.8% 49%

Energy Saving GA
Compared to 2-Step 1.5% 0.5% 81.8% 77.52 6.04 26.1

Table 9. Electrical peak demand for baseline windows and optimized STIS–smart windows applied
to a house in Phoenix, AZ, USA—for six representative days using two control strategies.

Electrical Peak Demand (kW) and Percentage Savings

21 May 13 July 18
December 10 July 15

February
15

November

Baseline 4.16 4.61 0.96 4.44 1.29 2.33
2-Step 3.33 3.92 0.88 3.85 1.22 1.85

GA 3.3 3.91 0.44 3.82 1.12 1.82
Energy

Saving GA
Compared
to Baseline

20.7% 15.1% 53.8% 14% 13.6% 22%

Energy
Saving GA
Compared
to 2-Step

1.1% 0.1% 49.8% 0.9% 8.8% 1.5%
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5.3.3. Chicago, IL, USA

When the house is located in Chicago, IL, USA, with a consistently very cold climate
throughout the winter, the only opportunities for the STIS–smart windows to reduce the
house’s energy use are available during the swing days, as indicated in the results listed
in Table 10 for 14th April, 21st May, and 19th September. In particular, the GA-based
optimizer provides higher reductions of 36.6% and 23.9% in HVAC energy use compared to
respectively the baseline and the two-step controls during 14th April. The specific settings
called by a GA-based optimizer and the two-step controls for both the STIS and the smart
windows during 14th April are illustrated in Figure 12. The highest peak demand reduction
occurs also during mild days, as summarized in Table 11 and reaches up to 21.8% relative
to the baseline during 21st May.

Table 10. HVAC loads for baseline windows and optimized STIS–smart windows applied to a house
located in Chicago, IL for six representative days using two control strategies (negative sign indicates
heating loads).

Daily HVAC Loads (kWh/Day) and Percentage Savings

21 May 13 July 18
December 1 July 19

September
14

April

Baseline 23.32 37.52 −55.47 26.61 −12.62 −9.27
2-Step 12.55 27.06 −43.93 17.28 −7.26 −7.73

GA 12.32 26.76 −43.93 16.91 −6.16 −5.88
Energy Saving GA

Compared to Baseline 47.2% 28.7% 19.7% 36.4% 51.2% 36.6%

Energy Saving GA
Compared to 2-Step 1.9% 1.1% 0% 2.1% 15.1% 23.9%
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Table 11. Electrical peak demand for baseline windows and optimized STIS–smart windows applied
to a house in Chicago, IL, USA for six representative days using two control strategies.

Electrical Peak Demand (kW) and Percentage Savings

21 May 13 July 18
December 1 July 19

September
14

April

Baseline 2.41 2.93 0.21 2.14 1.65 1.7
2-Step 1.9 2.41 0.21 1.81 1.46 1.59

GA 1.88 2.39 0.21 1.78 1.39 1.44
Energy Saving GA

Compared to Baseline 21.8% 18.7% 0% 17% 15.6% 15.7%

Energy Saving GA
Compared to 2-Step 1% 1% 0% 1.5% 4.7% 9.9%
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6. Sensitivity Analyses

This section presents the results of sensitivity analyses to investigate the impacts
of various design specifications, operation conditions, and US locations on the energy
performance of STIS applied to smart windows of the prototypical house outlined in
Section 3.

6.1. Impact of Optimization Time-Step

In this section, the effect of analysis time-step on the optimization results is discussed.
The analysis time-step determines ultimately the number of variables (nvar) to be optimized.
Moreover, the analysis time-step can impact the accuracy of the optimization results as well
as on the computational efforts. Table 12 summarizes the performance of the optimization
compared to the two-step controls for 21st May using various time-steps when the house is
located in Golden, CO, USA. As the optimization time-step increases, GA-based controls
achieve positive but lower energy savings relative to both the baseline and two-step settings.
However, the degradation of the optimization results is rather small, but the reduction in
computing efforts is significant. Specifically, when the optimization time-step is changed
from 1 h to 8 h, the energy savings achieved by the optimization relative to baseline case are
slightly reduced from 50.4% to 49.9%, while the computational efforts are decreased from
10.4 h to merely 1.0 h using a 3.30 GHz processor. Indeed, the 1 h time-step optimization
must identify the values of 160 variables (i.e., nvar = 160) while only 20 variables (i.e.,
nvar = 20) when an 8 h time-step is used.

Table 12. Impact of time-step on optimization results for switchable shades applied to a house located
in Golden, CO during 21st May.

Daily HVAC Loads (kWh/Day) and Percentage Savings

Baseline 2-Step
Switchable

GA
Optimized

1-h Timestep

GA
Optimized

4-h Timestep

GA
Optimized

8-h Timestep

HVAC Loads 15.53 9.21 7.70 7.73 7.77
Savings

Compared to
Baseline

0% 40.74% 50.4% 50.2% 49.9%

Processing
Time * 0.3 h 0.3 h 10.4 h 3.5 h 1 h

* For this analysis, the CPU processor consists of an Intel® Core (tm) i7-8700 with 3.20 GHz.

6.2. Impact of Population Size

In this section, the impact of the population size used in the GA optimization anal-
ysis is investigated. Generally, the adequate size of the population to achieve accurate
optimization results depends closely on the number of variables (nvar) [63]. Specifically, a
large population size tends to improve the results’ accuracy but at the expense of higher
computational efforts. Hence, a sensitivity analysis is carried out in this section to deter-
mine the best set of optimization parameters to be considered for the optimization problem
considered in this study. As Nguyen et al. concluded, small population sizes could result
in a higher convergence rate of GA algorithms without significant reduction in accuracy
levels for some applications [38]. Table 13 summarizes the GA optimization results for
various population sizes used to identify the best settings of STIS and smart windows to
minimize HVAC energy use for a house located in Golden, CO, USA, during 21st May. The
results of Table 13 indicate that when the population size is increased, the energy savings
from the GA optimization decrease, while the CPU time increases. Specifically, increasing
the population size from 50 to 200 increases the CPU time more than 200% while achieving
by 10% lower energy savings. For most of the analyses conducted in this study, the GA
population size is set to 50 when the number of variables is less than 40 (i.e., nvar = 40).
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Table 13. Impact of population size on GA optimization results for STIS–smart windows applied to a house located in
Golden, CO, during 21 May.

Daily HVAC Loads (kWh/Day) and Percentage Savings

Baseline
2-Step Switchable
both R-Value and

SHGC

GA Optimized
-Population Size:

50

GA Optimized
-Population Size:

100

GA Optimized-
Population

Size: 200

HVAC Loads 15.53 9.21 7.73 7.74 7.79
Savings Compared

to Baseline 0% 40.74% 50.4% 50.4% 49.8%

Processing Time * 0.3 h 0.3 h 3.5 h 5.9 h 10.7 h

* For this analysis, the CPU processor consists of an Intel® Core (tm) i7-8700 with 3.20 GHz.

6.3. Impact of R-Value and SHGC

The performance of the GA-based optimization of the STIS and smart windows
depend on the high/low settings for both the R-value and SHGC value, as evaluated in
this section for the case of a house located in Golden, CO, during 21st May. As summarized
in Figure 13, the energy-efficiency performance of STIS–smart windows improves with a
larger range of high-low operation settings. The increase in the R-value range has more
beneficial impacts than the increase of SHGC-value range, especially when optimized
controls are used. For instance, when high R-value settings are increased from RSI-1 to
RSI-2.5 with the SGHC range kept the same, the HVAC energy savings increased slightly
from 50.0% to 50.6%. However, when the high SHGC setting is increased from 0.4 to 0.7
while the R-value range is maintained, the HVAC energy use actually increased due mostly
likely to the higher solar heat gains received from the windows as soon as the high SHGC
setting is called for.
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6.4. Impact of WWR

The impact of increasing WWR on the performance of the GA-based optimizer and
two-step controller to operate STIS and smart windows is investigated in this section.
Figure 14 outlines the analysis results during 21st May when the house is located in Golden,
CO, USA, showing both HVAC loads as well as electrical peak demand and associated
savings compared to baseline case. The results imply that increasing the window size (i.e.,
WWR varying from 30% or 50%) boosts the energy efficiency as well as demand reduction
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benefits of both STIS and smart windows, especially when operated using optimal controls.
Specifically, when the WWR increases to 50%, the STIS–smart windows achieve an HVAC
load reduction of 74.5% (i.e., 24.6% vs. the two-step controller), which is higher than 65.9%
for WWR = 30%. Moreover, the optimized STIS–smart windows reduce the house electrical
peak demand by 57.9% (11.9% vs. two-step controller) for WWR = 50% and by 41.8% for
WWR = 30%.
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6.5. Impact of Internal Loads

The effects of the internal gains on the performance of STIS–smart windows are
summarized in Table 14 during 20th September when the house is located in Golden, CO,
USA. Specifically, two scenarios are considered for the lighting and equipment loads (with
and without) using both the GA-based optimizer and two-step controller to operate the
STIS–smart windows. As the results of Table 14 indicate, the absence (or reduced) internal
gains enhance the performance of STIS–smart windows, resulting in higher reductions
in HVAC loads and electrical peak demand relative to the baseline case especially when
optimal setting are used. Indeed, by eliminating or lowering the internal loads, the cooling
thermal loads and thus the HVAC energy uses are lowered, leaving mainly the solar
heat gains to be managed through the operation of STIS–smart windows. Specifically,
HVAC loads can be reduced by 56.6% by GA-based optimized for the case of high internal
loads; that is, they are 12.8% better than the two-step controller’s performance. These
GA optimizer energy savings increased to 93%, which is 73.3% better than the two-step
controller when the internal gains are absent. Indeed, for the case of low internal gains,
the baseline HVAC load is small, and therefore, even a low reduction by the optimized
controls leads to a higher savings in terms of percentage.
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Table 14. HVAC loads and electrical peak demand for baseline windows and STIS–smart windows applied to a house in
Golden, CO, USA—with and without internal loads.

Daily HVAC Loads (kWh/Day) & Electrical Peak Demand (kW) and Percentage Saving

Baseline
(with Internal

Loads)

2-Step
Switchable

(with Internal
Loads)

GA Optimized
(with Internal

Loads)

Baseline
(without

Internal Loads)

2-Step
Switchable

(without
Internal Loads)

GA Optimized
(without

Internal Loads)

HVAC Loads 22.43
(0%)

11.17
(50.2%)

9.74
(56.6%)

8.76
(0%)

2.31
(73.7%)

0.62
(93%)

Electrical Peak
Demand

2.33
(0%)

1.76
(24.5%)

1.68
(27.8%)

1.11
(0%)

0.36
(67.3%)

0.19
(82.9%)

7. Summary and Conclusions

In this paper, the performance of GA-based optimal settings is evaluated to operate
switchable transparent insulation systems or STIS combined with smart windows to reduce
the HVAC energy use for US residential buildings. It is found that while various parameters
can affect its performance, the GA optimizer outperforms the rule-based controls especially
for mild climatic conditions. Indeed, the energy-efficiency potential for the STIS and smart
windows is high for swing days when the weather is mild with opportunities for both
free cooling (night-time) and free heating (daytime). Moreover, the analysis indicates that
depending on the house thermal loads and the climatic conditions, the relative importance
of settings of STIS or the smart windows may vary. However, the combined effects
typically are required to result in the optimal performance for the windows. In particular,
the GA-based optimal controls for the STIS and smart windows can achieve over 80%
reduction in HVAC energy use for a typical US residential building, especially during
mild days. These savings can be higher with larger windows, lower internal gains, and
higher R-value settings for STIS. Moreover, it is found that the selection of the high SHGC
setting for the smart windows can have a significant impact of the energy efficiency of the
residential buildings.

The potential benefits of switchable transparent insulation systems combined with
smart window systems or even just switchable opaque insulation applied as venetian
blinds to conventional windows can be significantly enhanced through optimal controls
using adequate cost functions to provide load flexibility and demand response capabilities.
Indeed, the switchable insulation especially when combined with smart windows can pro-
vide building demand response features to meet the grid requirements while maintaining
acceptable indoor thermal comfort levels.
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Nomenclature

ASHRAE. American Society of Heating, Refrigerating and Air-Conditioning Engineers
Btu British thermal unit
CDD Cooling degree days using 18 ◦C base temperature [◦C-days/year]
COP Coefficient of performance for an air conditioning system
EC Electrochromic
GA Genetic Algorithm
GHG Greenhouse gas
HDD Heating degree days using 18 ◦C base temperature [◦C-days/year]
HVAC Heating ventilation and air conditioning
HVAC load Heat transferred to or from the HVAC system [kWh]
IECC International Energy Conservation Code
LC Liquid crystal
MPC Model predictive control
MSA Monolithic silica aerogels
nvar Number of variables
PDLC Polymer dispersed liquid crystal
PSO Particle swarm optimization
R-value Thermal resistance value [m2 K/W]
RSI Thermal resistance in SI unit [m2 K/W]
RC Resistor–Capacitor
SHGC Solar heat gain coefficient
SIS Switchable insulation system
SPD Suspended particle device
STIS Switchable transparent insulation system
U-value Thermal transmittance value [W/m2 K]
WWR Windows-to-wall ratio
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