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Abstract: Assessing the potential of advanced driver assistance systems requires developing dedi-
cated control algorithms for controlling the longitudinal speed of automated vehicles over time. In
this paper, a multiobjective off-line optimal control approach for planning the speed of the following
vehicle in adaptive cruise control (ACC) driving is proposed. The implemented method relies on
the principle of global optimality fostered by dynamic programming (DP) and aims to minimize
propelling energy consumption and enhance passenger comfort. The powertrain model and on-
board control system are integrated within the proposed car-following optimization framework.
The retained ACC approach ensures that the distance between the following vehicle and the pre-
ceding vehicle is always maintained within allowed limits. The flexibility of the proposed method
is demonstrated here through ease of implementation on a wide range of powertrain categories,
including a conventional vehicle propelled by an internal combustion engine solely, a pure electric
vehicle, a parallel P2 hybrid electric vehicle (HEV) and a power-split HEV. Moreover, different
driving conditions are considered to prove the effectiveness of the proposed optimization-driven
ACC approach. Obtained simulation results suggest that up to 22% energy-saving and 48% passenger
comfort improvement might be achieved for the ACC-enabled vehicle compared with the preceding
vehicle by implementing the proposed optimization-driven ACC approach. Engineers may adopt
the proposed workflow to evaluate corresponding real-time ACC approaches and assess optimal
powertrain design solutions for ACC driving.

Keywords: adaptive cruise control; automated driving; energy-saving; fuel-saving; optimal control;
passenger comfort

1. Introduction

Automated and connected mobility is currently forecasted reshaping public and pri-
vate transportation over the next few decades [1–4]. Remarkable benefits could be achieved
in general through implementing automated mobility, including enhancing passenger
comfort, reducing energy consumption for propulsion, enhancing traffic management,
and improving road safety, among others [5]. This technological advance demands de-
veloping effective and flexible numerical tools for controlling and designing automated
vehicles [6–11].

Automated driving, as fostered by the different communication technologies (e.g.,
vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-pedestrian, vehicle-to-grid, vehicle-
to-device), represents an extension of advanced driver assistance systems (ADASs). Ex-
amples for ADASs currently implemented in road vehicles include cruise control (CC),
where the vehicle is controlled to travel at constant longitudinal speed over time, and
adaptive cruise control (ACC), where the longitudinal speed of the vehicle is controlled
to vary over time according to the measured distance from the vehicle ahead. In an ACC
driving scenario, the following vehicle (named hereafter as the following vehicle) typically
exploits data from the preceding vehicle (named hereafter as the preceding vehicle), which
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can be either human-operated or automated. ACC systems use sensors, such as radar,
Light Detection and Ranging (LIDAR) or cameras to identify and monitor the preceding
vehicle for measuring its current distance and speed difference [12]. Current ACC systems
are calibrated to regulate the longitudinal speed of the vehicle to maintain a constant
headway from the preceding vehicle [13,14]. Avoidance of front-end collision between
the preceding vehicle and the following vehicle can be ensured in this way. However,
when propulsion and brake systems are controlled with the exclusive aim of maintaining a
constant time-headway (or distance) from the preceding vehicle, it cannot be guaranteed
that the ACC-enabled vehicle achieves improved performance in terms of energy economy
or passenger comfort as an example [15]. New possibilities and challenges open up in
this framework concerning the development of ACC approaches that can vary both the
following vehicle’s longitudinal speed and distance from the preceding vehicle over time
regardless of the longitudinal speed of the preceding vehicle. Improving various prede-
fined performance metrics for the preceding vehicle can be set as a control target for such
an enhanced ACC system.

Literature regarding control approaches for the following vehicle’s speed exploiting
information coming from the preceding vehicle in automated driving can be divided
between single-powertrain-based approaches and multiple-powertrain-based approaches.
Single-powertrain-based ACC approaches can focus either on conventional vehicles (CVs),
hybrid electric vehicles (HEVs) or battery electric vehicles (BEVs) as examples. Concerning
CVs powered solely by an internal combustion engine (ICE), Lang et al. [16] in 2013
discussed a control logic aiming to minimize fuel consumption while neglecting gear
shifting. He and Orosz [17] in 2017 compared feedback-based and rolling horizon optimal
control-based as cooperative cruise control approaches minimizing fuel consumption.
The same authors extended a fuel-optimal longitudinal speed controller to the case of
heavy-duty trucks exploiting information coming from multiple vehicles ahead through
vehicle-to-vehicle (V2V) communication [18]. As concerns HEVs, a recurrent research
topic involves developing velocity predictors that can improve the energy management
strategy of the following vehicle through the information coming from the preceding
vehicle. Different categories of longitudinal speed regulation logics have been developed
in the literature (e.g., heuristic, instantaneous optimization, machine learning), and various
HEV powertrain layouts have been considered, such as power-split [19], parallel P0 [20],
parallel P2 [21] and series-parallel P1P4 [22] as an example. Regarding BEVs, the author of
this paper proposed an optimal off-line velocity controller based on dynamic programming
(DP) capable of minimizing the energy consumption of the following vehicle [23]. Recently,
Koch et al. [24] focused on battery-electric buses and implemented DP while assuming
ideal V2I communication and a dedicated traveling road lane to generate energy-efficient
driving profiles. The same authors recently proposed an algorithm validated using DP
that allows the simultaneous optimization of speed profile and powertrain operation to
compare different BEV powertrain architectures [25].

Regarding multiple-powertrain-based control approaches for the following vehicle in
car-following scenarios, in 2018, Tate et al. [26] considered different automated driving sce-
narios by generating the related vehicle speed profiles with a heuristic approach according
to engineering experience. Both a CV and a BEV layout were retained, and considerable re-
ductions in greenhouse gas emissions were suggested, especially in the BEV case, thanks to
implementing car-following automated driving. Plum et al. [27] in 2018 investigated a CV,
an HEV and a BEV powertrain layout while considering a model predictive acceleration
controller that exploited information coming from traffic light schedules and the preceding
vehicle. The HEV powertrain layout was demonstrated, achieving a greater portion of
up to 27.7% energy savings. Nevertheless, the controller was specifically calibrated for
a limited number of predefined inner-city driving conditions. Recently, Spano et al. [28]
considered a CV and an HEV and estimated the fuel consumption reduction capability at
different levels of automated driving using a heuristic approach.
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In general, reviewed ACC approaches for enhancing energy-saving of automated
road vehicles in car-following scenarios are usually developed and calibrated ad hoc for
specific powertrain configurations in terms of architecture and component sizes. Extend-
ing the reviewed approaches to reduce the energy consumption of vehicles embedding
different powertrain types and component sizes might, in turn, require thorough and
time-consuming re-calibration procedures. To the best of the author’s knowledge, develop-
ing a control approach for the longitudinal speed of automated vehicles in car-following
scenarios that can easily adapt to foster energy-saving of different powertrain layouts and
component sizes still represents an open research question. To overcome the highlighted
research gap, this paper aims to present a new multiobjective optimization-driven ACC
algorithm that can easily estimate energy savings and passenger comfort improvements
for various powertrain categories when traveling as a following vehicle in car-following
scenarios. The proposed ACC approach relies on DP as a widely employed off-line control
algorithm capable of identifying the optimal global solution for the considered control
problem [29]. Energy consumption minimization and passenger comfort enhancement are
considered as conflicting optimization targets for the proposed car-following controller.
The ease of adaptability of the discussed approach is suggested through its efficient im-
plementation retaining a CV powertrain, a BEV powertrain, a single-motor parallel HEV
powertrain and a dual-motor power-split HEV powertrain. In all the presented cases, only
the objective function considered in DP needs to be adapted to the given powertrain cate-
gory, yet the proposed workflows can be straightforwardly applied considering different
component sizes for each propulsion system category. Our results demonstrate the poten-
tial of the proposed approach for effectively and easily determining optimization-driven
speed profiles over time for the following vehicle in car-following scenarios. Engineers
may adopt the proposed optimization-driven ACC approach to evaluate the performance
of corresponding real-time ACC approaches and to improve powertrain design method-
ologies considering enhanced ACC driving. The remainder of this paper is as follows:
the considered vehicle powertrain layouts and the related modeling approach are first
illustrated. The mathematical formulation of the car-following driving problem is then
discussed, and the proposed algorithm is presented. Results are presented over different
driving conditions, and conclusions are given.

2. Vehicle Powertrains

This section aims at describing the considered vehicle powertrain architectures. The
adopted numerical modeling approaches find discussion as well. In this paper, a CV
powertrain layout, a BEV powertrain layout, a parallel P2 HEV (P2 HEV) powertrain
layout and a power-split HEV (PS HEV) powertrain layout are retained. The correspond-
ing schematic diagrams are illustrated in Figure 1, while detailed discussion for each
powertrain architecture is reported in the follow-up of this section.

2.1. CV Powertrain

For the CV powertrain layout illustrated in Figure 1a, the vehicle is propelled by an
ICE alone. An automated manual transmission (AMT) is embedded capable of shifting
gear according to the ICE speed and the torque request coming from the driver following
a dedicated control logic. In general, a quasi-static modeling approach is implemented
here in deriving speeds and torques of power components directly from the vehicle speed
profile over time for the considered drive cycle [30]. The torque requested by the driver at
the driven wheels Twheels can particularly be evaluated following Equation (1) [31]:

Twheels =
(

Froll + Fmisc + Faero + mveheq ·
..
x
)
·rdyn (1)

where Faero, Fmisc and Froll represent resistive load elements corresponding to the aerody-
namic drag, miscellaneous elements, such as road slope and side forces as an example,
and rolling resistance, respectively.

..
x is the vehicle acceleration, while rdyn and mveheq ,
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respectively represent the wheel’s dynamic radius and the vehicle mass, including the
equivalent mass of the rotational elements. Subsequently, the rotational speed ωICE and the
requested ICE torque TICE can be computed as a function of the gear engaged j following
Equations (2) and (3), respectively [32]:

ωICE =

.
x

rdyn
·τdi f f ·τAMT(j) (2)

TICE =
Twheels

τdi f f ·τAMT(j)·ηsign(Twheels)
TR

(3)

where
.
x is the vehicle speed in meters per second, τdi f f and τAMT represent gear ratios

for the differential and the instantaneous gear j engaged in the AMT, respectively. ηTR is
the efficiency of the transmission system, and it is powered to the sign of the torque at the
wheels to account for both vehicle accelerating and braking cases.

Figure 1. Schematic diagrams of the retained vehicle powertrain architectures, including (a) conventional vehicle (CV)
powertrain; (b) battery electric vehicle (BEV) powertrain; (c) parallel P2 hybrid electric vehicle (P2 HEV) powertrain;
(d) power-split hybrid electric vehicle (PS HEV) powertrain.

Once ωICE and TICE are determined, the instantaneous rate of fuel consumption can
be determined by interpolating in a two-dimensional lookup table with speed and torque
of the ICE as independent variables. As concerns selecting the gear in the AMT, a common
approach implemented here refers to determining the engaged gear number according to a
pre-calibrated two-dimensional lookup table with vehicle speed and driver torque demand
as an independent variable [33].

2.2. BEV Powertrain

In the BEV powertrain layout illustrated in Figure 1b, the fuel tank, ICE and AMT of
the CV powertrain are replaced with a high-voltage battery, an electric motor (EM) and
a direct drive, respectively. Finally, power electronics enable the proper operation of the
electric powertrain components. In this framework, speed ωEM and torque TEM of the EM
can be evaluated at each time step following the same procedure illustrated for the CV case
in Equations (1)–(3). A gear shift logic does not need implementation in this case, given the
embedment of a direct drive. The EM electrical losses lossEM, including inverter losses as
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well, can be evaluated in this case by interpolating in a two-dimensional lookup table with
ωEM and TEM as independent variables. Finally, the battery state-of-charge (SOC) over
time can be evaluated as a function of the requested battery power Pbatt by adopting an
equivalent circuit approach and following Equations (4)–(6) [34].

SOC(t) =
∫ tend

t0

.
SOC[Pbatt(t), SOC(t)] dt (4)

with:
Pbatt(t) = ωEM(t)·TEM(t) + lossEM[ωEM(t), TEM(t)] + lossaux(t) (5)

.
SOC[Pbatt(t), SOC(t)]

= VOC [SOC(t)]−
√
{VOC [SOC(t)]}2−4·RIN [SOC(t)]·Pbatt(t)

2·RIN [SOC(t)] · nP
Ahbatt ·3600

(6)

where
.

SOC, t0 and tend are the instantaneous rate of SOC, the initial time instant and the
final time instant of the drive cycle, respectively. lossaux is the power requested by the
accessories (e.g., air conditioning, lubrication), and it is modeled as having a constant
value in this work. RIN and VOC represent the internal resistance and the open-circuit
voltage of the battery pack, as obtained by interpolating in 1D lookup tables with SOC
ad independent variables. nP is the number of cells in parallel according to the battery
pack layout, while Ahbatt represents the battery pack energy capacity in ampere-hours. The
factor of 3600 is considered here to convert energy units in ampere-seconds.

2.3. P2 HEV Powertrain

The parallel P2 HEV powertrain illustrated in Figure 1c represents a combination
of the CV and the BEV architectures discussed above. In a parallel P2, the EM is placed
downstream of the ICE output shaft before the AMT input shaft. A gear ratio between
the EM and the AMT input shaft is considered in this case, while a clutch connection
is included between the ICE and the EM to allow disengaging the ICE and avoiding its
dragging effect in pure electric operation. Notably, P2 represents one of the potentially
most efficient options among the parallel HEV powertrain architectures [35].

In a P2 HEV powertrain, the torques of ICE and EM are additive and follow
Equation (7) [32]:

Twheels = (TICE + TEM·τGR)·τdi f f ·τAMT(j)·ηsign(Twheels)
TR (7)

where τGR is the gear ratio between EM output shaft and AMT input shaft. In a quasi-static
modeling approach, controlling either TICE or TEM allows automatically determining the
value of the other variable.

Hybrid electric or pure electric operation are distinguished in this case by the value of
TICE being positive or equal to zero, respectively. As a typical approach, a rule-based energy
management strategy (EMS) is implemented here for the P2 HEV powertrain involving
two decision steps, as reported in Figure 2 [36,37]. The first step relates to determining the
ICE status (i.e., on or off), while the second step involves deciding the power split between
ICE and EM in case the hybrid operation is selected.

For determining the ICE status, a set of rules is retained considering the current value
of vehicle speed, the current value of battery SOC, the required output power and the
current ICE status [38]. The rules constituting the control logic for the ICE status are
reported in Table 1. Particularly, the ICE is controlled to be activated in the case at least
one of the following criteria are met: (1) the vehicle speed exceeds a predefined threshold
.
xthre, (2) the power demand is above a certain limit POUTthre, or (3) the battery SOC falls
below a certain value SOCthre. On the other hand, if none of the three conditions is met,
the ICE is controlled to be deactivated. To reduce the frequency of ICE activation and
de-activation events, different values for the discussed threshold variables are considered
according to the current ICE status following

.
xthreOFF <

.
xthreON , POUTthreOFF

< POUTthreON
and SOCthreOFF > SOCthreON , respectively.
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Figure 2. Flowchart of the rule-based hybrid supervisory controller implemented in the parallel P2 HEV and the power-split HEV.

Table 1. Control logic for determining the ICE status.

Controlled ICE Status: ON Controlled ICE Status: OFF

Current ICE
status: ON

(
.
x ≥ .

xthreOFF ) | (POUT ≥ POUTthreOFF
)

|
(
SOC ≤ SOCthreOFF

) (
.
x <

.
xthreOFF ) && (POUT < POUTthreOFF

)

&& (SOC > SOCthreOFF )

Current ICE
status: OFF

(
.
x ≥ .

xthreON ) | (POUT ≥ POUTthreON
)

|
(
SOC ≤ SOCthreON

) (
.
x <

.
xthreON ) && (POUT < POUTthreON

)

&& (SOC > SOCthreON )

When the hybrid operation is selected, the controlled ICE mechanical power PICEcontrol
can then be determined through interpolation in a one-dimensional lookup table having
battery SOC as the independent variable. A tuning process for this table was carried
out beforehand to simultaneously prevent excessive charge depletion of the battery and
guarantee enhanced HEV fuel economy capability. Since the speeds of both the ICE and the
EM are determined by the current vehicle speed and the gear engaged, the corresponding
torques can be computed from PICEcontrol and the resulting value of EM power.

2.4. Power-Split HEV Powertrain

The PS HEV powertrain architecture shown in Figure 1d comes from the industrial
state-of-the-art, and it characterizes the embedment of two EMs [39]. EM2 represents
the main traction motor, and it operates either to propel the HEV or to recover electrical
energy in braking events. On the other hand, ICE, EM1 and the differential input shaft are
mechanically connected to the carrier, the sun gear and the ring gear of a planetary gearset
(PG). This mechanical device allows decoupling the ICE speed from the current vehicle
speed, allowing the HEV powertrain to operate as an electrically variable transmission
(eVT) [40]. In this framework, EM1 mainly operates as an electrical generator while
ensuring reaction torque for the ICE torque being delivered to the wheels.

For the illustrated PS HEV, the same workflow as Figure 2 is implemented in the
supervisory control logic as the one illustrated in Section 2.3 for the P2 HEV. However,
other than determining the ICE status and the ICE mechanical power, a third control action
needs achievement in this case related to controlling ωICE and TICE. To this end, once the
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value of PICEcontrol has been determined at the previous step of the logic, ωICE and TICE may
be selected as the solution of the optimization process linked to the optimal operating line
(OOL) of the ICE as reported in Equations (8) and (9) [41]:

OOL(ωICE, TICE) = argmin
[ .
m f uel(ωICE, TICE)

]
(8)

subject to:
ωICE·TICE = PICEcontrol (9)

The resulting values of speed and torque for the ICE should particularly guarantee to
deliver the requested value of ICE mechanical power and minimize the fuel consumption
rate at the same time. The illustrated approach thus fosters efficient ICE operation. Once
ωICE and TICE are determined, speeds and torques of both the EMs can be found following
the kinematic and dynamic relationships for the PG-based PS HEV powertrain that are
reported in Equations (10) and (11), respectively [34]:[

ωEM1
ωEM2

]
=

[
−iPG iPG + 1
τGR 0

][
ωINFD
ωICE

]
(10)

[
TEM1
TEM2

]
=

[
0 − 1

iPG+1
1

τGR
−
(

iPG
iPG+1

)
· 1

τGR

] TINFD

η
sign(Twheels)
TR

TICE

 (11)

ωINFD and TINFD represent the rotational speed and the torque at the input shaft of the
final drive, respectively. iPG and τGR are the gear ratios of the PG and the transfer gearset
between EM2 and the input shaft of the final drive, respectively.

3. Multiobjective Optimal Car-Following Driving Problem

In this section, the multiobjective optimal car-following driving problem under con-
sideration is discussed. This relates to effectively plan the following vehicle’s speed profile
over time in the car-following driving scenario illustrated in Figure 3. In the highlighted
scenario, the following vehicle receives at each time instant information from the preceding
vehicle, including its position xprec, velocity

.
xprec, and acceleration

..
xprec, respectively. The

flow of information between the two vehicles is supposed ideal and instantaneous, and
a given value of inter-vehicular distance (IVD) results from the positions, speeds and
accelerations of both the preceding vehicle and the following vehicle at each time instant.
Two optimization targets are considered here for the following vehicle, respectively, related
to the propelling energy minimization and the passenger comfort enhancement. The math-
ematical formulation corresponding to the optimal car-following driving problem under
analysis was derived, and it is reported in Equations (12)–(16):

argminJ f ollow

( ..
x f ollow, t

)
=
∫ tend

t0

αenergy·Ptraction− f ollow(t) +
(
1− αenergy

)
·
∣∣∣ ..x f ollow(t)

∣∣∣ dt (12)

subject to:

Figure 3. Schematic of the retained car-following driving scenario highlighting the information flow
from the preceding vehicle to the following vehicle.
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IVD constraints: [
xprec(t)− x f ollow(t)

]
≤ IVDMAX(t) (13)[

xprec(t)− x f ollow(t)
]
≥ IVDsa f ety(t) (14)

Powertrain constraints:

Ptraction− f ollow(t) = LHVf uel ·
[ .
m f uel(t) + m f uelcrank

·startICE(t)
]
− (VOC·Ahbatt·3600)·

.
SOC (15)

Ptraction− f ollow(t) ≤ Ptraction− f ollow−MAX

(
t,

.
x f ollow(t)

)
(16)

where J f ollow represents the following vehicle’s cost function that needs to be minimized in
the considered optimization problem. Its value represents an integration of the instanta-
neous cost terms throughout the entire drive cycle from the initial time instant t0 to the
final time instant tend.

..
x f ollow is the following vehicle’s longitudinal acceleration, and it

represents the only control variable affecting the overall cost function J f ollow over time.
The following vehicle’s longitudinal speed trajectory can be obtained by integrating

..
x f ollow

over time. Ptraction− f ollow is the tractive power used for propelling the following vehicle,
related to fuel or electricity or both of them depending on the given powertrain technology.
Other than propelling energy reduction, enhancement of the ride’s comfort represents a
crucial potential of automated driving. To foster this aspect, several motions, path, and
velocity planners proposed in the literature integrate as objective reducing variables related
to vehicle longitudinal acceleration, lateral acceleration and yaw rate as an example [42,43].
Following a similar approach, reducing the following vehicle’s longitudinal acceleration
over the entire simulated drive cycle is considered here as an optimization target in J f ollow
to enhance the passenger comfort. In most cases, reducing the overall energy used for
propulsion and improving the passenger comfort may represent contrasting objectives.
For example, in electrified vehicles, several fluctuations can be observed in the longitudi-
nal speed when optimizing for energy consumption solely [23]. A trade-off between the
two optimization targets retained might, therefore, be implied. In this framework, αenergy
represents a weighting coefficient that can be tuned to give more emphasis either on the
fuel economy enhancement or on the passenger comfort improvement. Two categories
of constraints are considered for the optimal car-following driving optimization problem
illustrated in Equation (12). They, respectively, relate to IVD and the following vehicle’s
powertrain, and they find illustration in the follow-up of this section.

3.1. Constraints on the IVD

Looking at Equations (13) and (14), the IVD is defined according to xprec and x f ollow,
which represent the preceding vehicle’s position and the following vehicle’s position,
respectively. The instantaneous value of IVD is thus set in Equations (13) and (14) to be
always below IVDMAX and above IVDsa f ety over time. IVDMAX represents the maximum
distance that the following vehicle can attain from the preceding vehicle. Here, the value
of IVDMAX is made varying over time depending on the current road type. As a general
consideration, the IVD might be limited in urban areas to ease traffic flow and to reduce
general road occupancy. This correlates well with reduced values of vehicle speed generally
associated with urban driving. Contrarily, enhanced road surface availability and generally
higher values of vehicle speed might lead to allow a higher value of IVDMAX in extra-
urban and highway driving conditions. In light of these considerations, when extra-
urban and highway driving conditions are encountered, the maximum achievable value
of IVD is assumed here to be 300 m. This hypothesis stems from the current approximate
range of V2V communication, which might contribute to long-distance preceding-vehicle
detection [44]. On the other hand, the allowed value of IVDMAX is assumed to be reduced
to 100 m in urban driving conditions to limit road occupancy.

In Equation (14), IVDsa f ety stands for the minimum safety IVD. Its value is obtained
by interpolating in a two-dimensional lookup table with the following vehicle’s speed
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and relative vehicle speed between the preceding vehicle and the following vehicle as
independent variables. The lookup table is shown in Figure 4, and it is derived from
a time-headway numerical braking model proposed in [45]. The interested reader can
consult [23] for further information regarding this procedure.

Figure 4. Minimum safety IVD as a function of the following vehicle’s speed and the relative vehicle
speed between the preceding vehicle and the following vehicle.

3.2. Constraints on the Following Vehicle Powertrain

The following vehicle’s powertrain constraints are considered in the optimal car-
following driving problem illustrated in Equations (15) and (16). These allow identifying
energy-saving oriented

..
x f ollow control solutions that are tailored according to the given

powertrain layout and control logic for the following vehicle. First, the instantaneous
following vehicle’s tractive power Ptraction− f ollow, expressed in watts, is evaluated as a
function of fuel and electrical energy consumption. In Equation (15),

.
m f uel and m f uelcrank

represent the instantaneous fuel rate (as obtained by interpolating in the empirical lookup
table as a function of ICE speed and torque) and the mass of fuel needed to crank the ICE
in grams, respectively. startICE represents a binary variable detecting ICE activations over
time, and its value is set to 1 in those time instants in which the sign of the fuel consumption
is positive, while it was zero in the previous time instant. LHVf uel is the lower heating
value of the fuel and corresponds to 43,700 J/g here.

.
m f uel and m f uelcrank

are considered only when the powertrain layout includes an ICE,
i.e., for CVs and HEVs. On the other hand, the battery power term is retained only when a
high-voltage battery is embedded in the powertrain layout, i.e., for HEVs and BEVs. In
Equation (15), the battery power term includes the SOC rate

.
SOC as given by Equation (6)

and the term (VOC·Ahbatt·3600) that represents the battery energy in watt-seconds. The
negative sign of the battery SOC variation relates to negative values of

.
SOC corresponding

to battery charge depletion. Especially for HEVs, this formulation for the first powertrain
constraint allows obtaining the same unit of measure (i.e., watts) between the fuel chemical
power term and the battery electrical power term. A proper balance between the usage
of the two energy sources can be achieved in this way. At each time instant, both

.
m f uel ,

startICE and
.

SOC related to the following vehicle can be evaluated within the control
optimization process according to numerical models of powertrain layout and related
onboard control logic as it has been detailed in the previous section for each retained
powertrain category. Tailoring the propelling energy consumption minimization according
to the specific powertrain layout of the following vehicle can be achieved in this way.

The final powertrain constraint reported in Equation (16) involves limiting the tractive
power of the following vehicle within the instantaneous maximum limit represented
by Ptraction− f ollow−MAX. This term is given as a function of the instantaneous maximum
tractive power of each power component embedded in the retained following vehicle’s
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powertrain layout, and it typically depends on the current value of the following vehicle’s
speed

.
x f ollow.

4. Solving the Optimal Car-Following Driving Problem

A flexible and effective approach is presented in this section for solving the mul-
tiobjective optimal car-following driving problem illustrated in the previous section.
Here, the considered control problem is solved off-line, i.e., exploiting the knowledge
of the speed profile over time for the entire drive cycle of the preceding vehicle a priori. Dy-
namic programming (DP) is considered in this framework as a widely known optimization
algorithm capable of returning the optimal global solution for the control problem under
analysis [46–50]. The operating principle of DP involves exhaustively sweeping discretized
values of control variables and state variables at each time instant of the retained control
problem. Thus, the optimal sequence of control actions is identified by minimizing the
overall value of a predefined cost function [51–53]. To find the global optimal control
trajectory, the DP workflow is iterated at each time instant backwardly in the retained
drive cycle from tend to t0. The DP adaption presented by Sundstrom and Guzzella [54] is
retained here as a control workflow for all the considered powertrains. The state-space X
and the control space U considered here are reported in Equation (17), and they relate to the
DP algorithm implemented to solve the optimal car-following driving problem illustrated
in Equation (12) [23].

X =

{
xprec − x f ollow.

x f ollow

}
, U =

{ ..
x f ollow

}
(17)

The state-space includes the IVD and the following vehicle’s speed
.
x f ollow. The IVD is

particularly considered to ensure compliance over time with the corresponding optimiza-
tion constraints reported in Equations (13) and (14). The following vehicle’s longitudinal
speed is retained to evaluate its trajectory over time by integrating the following vehicle’s
longitudinal acceleration, representing the only control variable included in U.

In the follow-up of this section, the workflow for assessing the capability of the
introduced DP as ACC algorithm for car-following scenarios is discussed for all the four
vehicle powertrain architectures illustrated in Section 2. As introduced earlier, energy-
saving and passenger comfort improvement compared with the preceding vehicle are
retained as evaluation metrics for the following vehicle’s performance. Passenger comfort
is particularly measured here in terms of the root-mean-square (RMS) of the longitudinal
vehicle acceleration throughout the given driving mission. The value of RMS for vehicle
acceleration indeed represents a common index for evaluating the quality of passengers’
ride perception [55,56].

4.1. CV Powertrain

The flowchart for validating the proposed ACC algorithm for the CV powertrain is
illustrated in Figure 5a, together with the corresponding flowchart considering the BEV
powertrain in Figure 5b. Once the vehicle data, control logic and the drive cycle under anal-
ysis are defined, an online simulation is performed first for the preceding vehicle, following
the exact speed profile over time for the given input cycle. Focusing on the CV flowchart
reported in Figure 5a, the gear engaged is determined at each time instant according to the
considered shift logic, while the fuel consumption can be computed according to values for
speed and torque of the ICE following Equations (1)–(3). Then, the following vehicle’s case
is retained while sweeping different values of αenergy ranging from 0 to 1. The following
vehicle’s longitudinal velocity is planned off-line following the illustrated DP approach
and integrating the controlled value of longitudinal acceleration

..
x f ollow over time. An

online simulation is subsequently performed to double-check the fuel consumption and
the passenger comfort resulting from the following vehicle’s driving solution obtained
from DP. Evaluating the multiobjective optimal Pareto front when minimizing both the fuel
consumption and the RMS of the vehicle acceleration for the following vehicle is allowed
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in this way. Moreover, the performance of the preceding vehicle that follows the drive
cycle speed profile under analysis can be benchmarked with the correspondingly obtained
following-vehicle control solutions.

Figure 5. Flowchart of the validation methodology for the proposed optimal V2V vehicle velocity planner considering a CV
powertrain (a) and a BEV powertrain (b).

4.2. BEV Powertrain

As regards the BEV powertrain, it should be noted that the SOC variation modeled as
in Equation (6) and embedded in the car-following optimal driving problem illustrated in
Equation (12) depends on the current value of SOC. Accounting for the current value of
SOC over time when solving the optimal car-following driving problem with DP would, in
turn, require an additional state variable. Nevertheless, DP is notably affected by the curse
of dimensionality depending on the size of both control and state sets. In this framework,
not only is the DP typically associated with a remarkable computational cost but this
latter has been demonstrated exponentially increasing as a function of the number of
control variables and state variables considered [32]. To avoid this drawback, an alternative
approach is proposed here. Once the preceding vehicle has been simulated online in the
retained drive cycle, the obtained SOC trajectory over time is used as information when
running the DP for the following vehicle’s velocity planning in Figure 5b. Assuming an
equal SOC value for both the preceding vehicle and following vehicle at the beginning
of the drive cycle, this approach provides to the DP an estimation of the punctual SOC
value for the following BEV at each time instant. The forecasted SOC value is used in
turn to evaluate the SOC variation of the following vehicle as a function of its controlled
acceleration. It is true that at each time instant, the following vehicle’s SOC may be slightly
higher than the corresponding preceding vehicle’s SOC as a result of the energy savings
achieved thanks to the optimal velocity planner. However, this small difference between
SOC values is usually observed having little impact on the final solution of the optimization
process. To answer this concern anyway, step 3 of the discussed validation methodology
in Figure 5b involves performing an online simulation of the following BEV operation
the following the longitudinal velocity planned earlier by DP. Evaluating the exact SOC
variation over time for the following vehicle’s performance of the given drive cycle in a
car-following scenario is achieved in this way. Results obtained for the following vehicle
by varying αenergy can be benchmarked with the corresponding the preceding vehicle’s
performance for the BEV layout as well.

4.3. P2 HEV and PS HEV Powertrains

The flowchart of the validation methodology for the proposed ACC optimization-
driven approach is illustrated in Figure 6 for the P2 HEV and the PS HEV powertrains.



Energies 2021, 14, 2897 12 of 28

The first step aims at assessing the operation of the preceding vehicle in the retained drive
cycle using an online simulation, which accounts for the HEV onboard control logic. For
the P2 HEV, control variables at each time step include the gear engaged and the torque
split between ICE and EM. On the other hand, ICE speed and ICE torque represent the
variables to be controlled at each time instant for the PS HEV. In both cases, the fuel
consumption and the battery SOC trajectory can be evaluated, and this latter is used as
input to the following vehicle’s DP-based velocity planner for estimating the punctual SOC
value at each time instant of the optimization process as it was described above for the
BEV powertrain. In this case, the estimated value of SOC allows not only calculating the
SOC variation, but it also impacts at each time instant on the HEV control logic influencing
the power split between ICE and EMs as it has been described in Sections 2.3 and 2.4. DP
is subsequently executed in the second step of Figure 6 to identify the optimal control
pattern according to the drive cycle, the HEV powertrain, the related control logic and the
weighted objective function under analysis. The third step then aims at online simulating
the following vehicle’s operation according to the longitudinal velocity profile over time
identified at the previous step. Furthermore, the flowchart illustrated in Figure 6 can be
repeated several times by varying the value of αenergy and benchmarking obtained results
with the corresponding the preceding vehicle’s performance.

5. Results

This section aims at presenting obtained results for the proposed optimization-driven
ACC approach. The performance of the implemented algorithm is particularly evaluated
for all the retained powertrain categories in a different drive cycle, such as the urban
dynamometer driving schedule (UDDS), the worldwide harmonized light vehicle test
procedure (WLTP), the highway federal test procedure (HWFET) and the US06 supple-
mental procedure (US06). Energy savings and comfort improvement are quantified for the
ACC-enabled following vehicle by benchmarking with the performance of the preceding
vehicle that embeds the same powertrain. The preceding vehicle reproduces the vehicle
speed profile provided over time for the given driving mission, while the following vehicle
reproduces the longitudinal speed profile provided off-line using DP and solving the
car-following optimal driving problem illustrated in Section 3.

Table 2 reports the vehicle and powertrain data considered in all performed simula-
tions and related to each retained powertrain category. The vehicle body is the same for all
cases, and it was retained from [57]. The same ICE is embedded in CV, P2 HEV and PS HEV
powertrain layouts, and it refers to a 1.2-L spark-ignition engine. ICE data, including an
efficiency map, were generated according to the methodology implemented in Amesim®

software (version 2020.1, Siemens PLM, Camberley, UK) and discussed in [58]. A 6-gear
AMT layout is considered for the CV, and the P2 HEV, with corresponding gear-shift logic,
developed the following approach illustrated in [33]. Efficiency maps and operational
data of interior permanent magnet synchronous machines were generated for the EMs
according to the corresponding methodology implemented in Amesim® software and
described in [59]. Battery SOC dependent parameters (i.e., voltage and resistance) related
to 42 kWh and 2 kWh high-voltage battery packs were derived for the BEV and the HEV
layouts, respectively. To this end, the electrical storage system sizing tool implemented
in Amesim® described in [60] was used. The HEV control logics were developed taking
inspiration from [38], and they were tuned following a trial-and-error procedure to achieve
charge-sustained operation while reducing fuel consumption. Finally, a constant auxiliary
loss power of 500 W is considered for BEV, P2 HEV and PS HEV powertrains.

The effectiveness of the proposed optimization-driven ACC approach for the following
vehicle is assessed here by performing several simulations of the following methodologies
illustrated in Figures 5 and 6. Each described powertrain category was simulated in
all the considered drive cycles. In this case, six values are retained for αenergy in each
performed evaluation corresponding to (0.01 0.2 0.4 0.6 0.8 0.99) to assess a wide range
of optimization targets obtained as a combination of energy minimization objective and
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comfort improvement objective. The simulation time step is set to 1 s. The initial IVD
between the preceding vehicle and the following vehicle is set to be 50 m, and the final
value is constrained to be below 50 m to ensure that the two vehicles travel the same
mileage. The initial battery SOC is assumed to be 95% and 70% for the BEV powertrain
and the two HEV powertrains, respectively.

Figure 6. Flowchart of the validation methodology for the proposed optimal V2V vehicle velocity
planner considering P2 HEV and PS HEV powertrains.

Table 2. Vehicle and powertrain parameters.

Component Parameter CV BEV P2 HEV PS HEV

Vehicle body Mass (kg) 1248 1248 1248 1248
RLA (N) 143 143 143 143

RLB (N/(m/s)) 0.9 0.9 0.9 0.9
RLC (N/(m/s2)) 0.44 0.44 0.44 0.44
Wheel dynamic

radius (m) 0.273 0.273 0.273 0.273

Transmission AMT gear ratios (-) (3.58; 2.06; 1.40;
1; 0.71; 0.58) - (3.58; 2.06; 1.40;

1; 0.71; 0.58) -

PG ratio (-) - - - 2.6
EM to FD ratio (-) - 2.3 2 1.26

FD ratio (-) 4.1 3.4 4.1 3.27
Efficiency (-) 0.9 0.9 0.9 0.85

ICE Displacement (l) 1.2 - 1.2 1.2
Max power 89 kW @ 4000 rpm - 89 kW @ 4000 rpm 89 kW @ 4000 rpm
Max torque 230 Nm @ 2000 rpm - 230 Nm @ 2000 rpm 230 Nm @ 2000 rpm

EM1 Max power - 95 kW @ 14,500 rpm 26 kW @ 9000 rpm 26 kW @ 9000 rpm
Max torque - 147 Nm @ (0–4800 rpm) 118 Nm @ (0–2000 rpm) 118 Nm @ (0–2000 rpm)

EM2 Max power - - - 45 kW @ 9000 rpm
Max torque - - - 204 Nm @ (0–2000 rpm)

Battery pack Nominal capacity
(Ah) - 115.5 6.5 6.5

Voltage (V) - 364 310 310

The Pareto fronts for the obtained results in terms of energy consumption and RMS of
the vehicle acceleration are shown in Appendix A from Figures A1–A4 for each retained
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powertrain category in all the considered drive cycles. Both preceding vehicle and fol-
lowing vehicle’s simulation cases are illustrated. Particularly for the following vehicle,
different control solutions are obtained by sweeping various values of αenergy, i.e., the
weighting coefficient between energy economy target and passenger comfort target. The
fuel consumption and the battery energy consumption are reported as energy economy
metrics in the x-axis for the CV and the BEV powertrain layouts, respectively. On the other
hand, to achieve a fair comparison for the HEV powertrains, the amount of fuel needed to
recharge the battery up to the initial SOC value (70% in this case) needs to be calculated
and added to the previously calculated fuel consumption. A method to evaluate this
additional fuel consumption was retained from literature and applied to the specific HEV
architectures under analysis [61]. A parameter named equivalent fuel consumption (EFC)
can be obtained in this way that accounts for both the fuel consumed by the ICE throughout
the simulation of the considered drive cycle and for the amount of fuel representative of
the net battery SOC increase or decrease throughout the simulated drive cycle. The EFC
is thus used as an evaluation metric for the HEV energy economy assessed in the x-axis
of the Pareto fronts reported in Figures A3 and A4. On the other hand, the RMS of the
following vehicle’s acceleration is reported in the y-axis of all Pareto fronts displayed from
Figures A1–A4 as an indicator of the level of passenger comfort. In general, both lower
values for both propelling energy consumption and RMS of the vehicle acceleration can
be obtained for the following vehicle compared with the preceding vehicle in all Pareto
fronts displayed in Figures A1–A4. The capability of the proposed optimization-driven
ACC approach to effectively improve the following vehicle’s performance both in terms of
energy consumption and passenger comfort may be suggested in this way.

For each evaluation case, corresponding to a given powertrain architecture and a
predefined drive cycle, two suboptimal control solutions for the following vehicle were
identified corresponding to energy-saving maximization (i.e., “Opt_energy”) and pas-
senger comfort improvement maximization (i.e., “Opt_comfort”). “Opt_energy” and
“Opt_comfort” control solutions for the following vehicle relate to maximum and min-
imum set values for αenergy, i.e., 0.99 and 0.01, respectively. The Pareto fronts for the
following-vehicle control solutions embedding the CV powertrain layout displayed in
Figure A1 are characterized by a regular trend for all the four drive cycles under consid-
eration. In particular, progressive reduction in fuel consumption can be achieved at the
expense of increasing the RMS of the vehicle acceleration when gradually increasing the
value of αenergy. Similar behavior can be observed for the BEV layout and the P2 HEV
layout in Figures A2 and A3, respectively, even with different slopes for the Pareto fronts.
For example, a Pareto front characterized by large steepness can be observed for the BEV
layout in HWFET in Figure A2c, suggesting that only marginal improvement can be ob-
tained in the overall battery energy consumption by increasing αenergy for the retained
highway driving conditions. As concerns passenger comfort, larger improvement can
be achieved within the following-vehicle control solutions of the BEV layout in HWFET.
This relates to the corresponding RMS of the following vehicle’s acceleration decreasing
from 0.30 m/s2 to 0.27 m/s2 when decreasing the value of αenergy. On the other hand, the
Pareto front for the P2 HEV layout in UDDS shown in Figure A3b characterizes for its
reduced steepness. In this case, a larger variation in EFC can be observed when varying the
value of αenergy among the following-vehicle control solutions, while narrower variation
is obtained in the RMS value of the following vehicle’s acceleration. As a result, urban
driving conditions are found promising for potentially reducing the EFC of the retained P2
HEV layout, shifting from 4.59 L/100 km to 4.33 L/100 km as the value of αenergy gradually
increases. As regards the PS HEV layout, the corresponding Pareto fronts are shown in
Figure A4 are characterized by a less conventional trend than the remaining three pow-
ertrain layouts. Indeed, only a few following-vehicle control solutions are located on the
dual-objective optimal front for EFC and RMS of vehicle acceleration, while the remaining
ones are located in non-optimal regions. This effect is particularly emphasized for WLTP,
and US06 drive cycles in Figure A4a,d since the optimized Pareto front is represented
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by only “Opt_energy” and “Opt_comfort” control solutions. For both WLTP and US06,
increasing the value of αenergy from 0.01 to 0.8 for the PS HEV following-vehicle control
appears to bring overall improvements both in terms of energy consumption and passenger
comfort. As a consequence, the “Opt_energy” control solution in both Figure A4a,d corre-
sponds to a value of 0.8 for αenergy instead of 0.01 as for the remaining cases under analysis.
A possible explanation for this behavior of the following-vehicle control performance for
the retained PS HEV powertrain layout may relate to the proposed optimization-drive
ACC approach being capable of further improving the passenger comfort as well when
focusing on EFC improvement. The opposite behavior can be observed for UDDS and
HWFET in Figure A4b,c, respectively, since the related “Opt_comfort” control solution
corresponds to a value of 0.6 for αenergy instead of 0.99 as for the remaining considered
cases. For these drive cycles, further optimizing the following PS HEV control solution
for EFC reduction may indeed bring to excessively irregular trends of following-vehicle
velocity solutions, thus in turn involving increased values for the EFC.

Results displayed in Figures A1–A4 in Appendix A demonstrate how the proposed
optimization-driven ACC approach preserves the engineer’s freedom when selecting the
control solution being oriented either to energy-saving, comfort improvement or a blend-
ing of the two objectives. Energy consumption and the RMS of vehicle acceleration are
reported in Table 3 for each suboptimal control solution identified (both “Opt_energy” and
“Opt_comfort”), together with the corresponding percentage of improvement compared
with the related preceding vehicle’s case. In general, obtained results suggest how enhanc-
ing energy-saving and improving passenger comfort can be achieved for the following
vehicle in car-following automated driving conditions implementing the proposed control
approach. Particularly, energy savings vary depending on the drive cycle and on the
powertrain type from 1.8% to even 22.1% for the PS HEV in US06. On the other hand, the
RMS of the vehicle acceleration can be reduced from 0.4% up to even 48.2% for the BEV
powertrain in UDDS.

The energy-saving potential and the passenger comfort improvement potential, re-
spectively related to “Opt_energy” and “Opt_comfort” control solutions, are highlighted
in Figure 7 for each drive cycle and for each retained powertrain category. As shown in
Figure 7a, the PS HEV powertrain is suggested to achieve the best energy-saving potential
in most driving conditions. This relates to the effectiveness of the proposed optimization-
driven ACC approach and in part to the considered PS HEV generally exhibiting a slightly
larger EFC compared with both CV and P2 HEV, thus increasing the energy-saving poten-
tial achievable using the ACC technology. On the other hand, the BEV powertrain exhibits
the lowest energy-saving capability in WLTP, HWFET and US06. As regards the remaining
powertrain categories, Figure 7a suggests how their ranking in terms of energy-saving capa-
bility varies across different driving conditions, making it impractical to establish a general
hierarchy for the retained powertrains. As a common trend, the energy-saving potential
might be considerably reduced when only highway driving conditions are encountered,
such as in HWFET. The reduced speed variation over time in highway driving conditions
might reduce the energy-saving opportunity achievable by the optimization-driven ACC
approach in this framework.

Focusing on the passenger comfort enhancement displayed in Figure 7b, urban driving
conditions, such as in UDDS, are suggested to offer the highest potential for improvement
by implementing the proposed optimization-driven ACC approach. This relates to ur-
ban driving generally distinguishing for frequent vehicle start–stop events and sudden
acceleration and deceleration events. In this framework, it was possible to reduce the
RMS of the vehicle acceleration from 38.7% for the P2 HEV to 48.2% for the BEV for the
optimal control solution provided by DP. On the other hand, as has been observed for
energy-saving, highway driving conditions are suggested to exhibit the lowest potential
for comfort improvement. A clear trend cannot be observed for the rank of powertrain
categories even considering passenger comfort improvement, thus opening up the need
for a dedicated evaluation of each given case.
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Time-series of the results for the suboptimal control solutions obtained in WLTP
both as the preceding vehicle and following vehicle are reported in Appendix B from
Figures A5–A12. The trend of vehicle speed, gear engaged, IVD, fuel consumption and
battery SOC is particularly displayed over time when applicable. Regarding the IVD, the
reader can see how the proposed optimization-driven following vehicle’s ACC approach
always respects the upper and lower limits retained. Vehicle operations associated with
the “Opt_Energy” suboptimal control solutions in Figures A5–A8 are distinguished by
considerable savings in fuel and electrical energy for the following vehicle. On the other
hand, improved uniformity in the following vehicle’s speed trend over time can be observed
for the “Opt_Comfort” suboptimal control solutions in Figures A9–A12.

Figure 7. Overall energy-saving (a) and comfort improvement (b) potential for the following vehicle compared with
the preceding vehicle when being controlled by the proposed V2V optimal velocity planner for all retained powertrain
categories.

6. Conclusions

This paper proposes a multiobjective off-line optimization-driven ACC approach
for car-following automated driving scenarios that can flexibly adapt to different pow-
ertrain categories. A CV powertrain, a BEV powertrain, a parallel P2 HEV powertrain
and a PS HEV powertrain are considered as test cases, and their numerical model was
presented along with the related onboard control strategies. The optimal problem for
car-following driving has then been outlined. Propelling energy-saving and passenger
comfort improvement were selected as the two optimization targets when controlling the
following vehicle’s longitudinal acceleration throughout a given drive cycle. Dedicated
constraints were integrated for the maximum and minimum achievable values of IVD,
along with specific powertrain-related constraints. An optimization-driven control solu-
tion for the presented car-following driving problem can be obtained by implementing a
DP technique. Simulation results obtained in different driving conditions highlight the
potential of the proposed ACC approach in identifying improved control solutions for the
following vehicle in terms of energy-saving and passenger comfort considering a wide
range of powertrain categories. Up to 22.1% energy-saving and up to 48.2% reduction in
the RMS of the vehicle acceleration were demonstrated by the following-vehicle led using
the proposed approach compared with the preceding vehicle, depending on the tuning
performed for the two optimization targets.

In general, the illustrated approach preserves the engineer’s freedom to select the
weights for energy-saving and passenger comfort improvement for the following vehi-
cle’s operation. The obtained optimization-driven results might be used to benchmark
different ACC approaches in this way. Moreover, the proposed approach could pave
the way for developing real-time-capable control algorithms for the following vehicle in
car-following scenarios that mimic optimal control actions forecasted by the introduced
off-line optimization-driven approach. Furthermore, improving the fidelity level for the
modeling approach might be achieved in terms of powertrain, vehicle dynamics, and
ACC sensing using radar, LIDAR or cameras. For example, adaptations in the onboard
control logic for gear-shifting, ICE activation and power split could be examined to further
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enhance the powertrain efficiency when traveling as a following vehicle in car-following
driving. Finally, the optimization-drive approach could be extended considering multiple
ACC-enabled vehicles traveling behind the preceding vehicle.

Table 3. Results for the preceding and following vehicles.

Drive
Cycle Vehicle Parameter CV BEV P2 HEV PS HEV

WLTP Preceding Fuel consumption/battery
energy consumption/EFC 4.27 L/100 km 15.39 kWh/100 km 4.74 L/100 km 5.45 L/100 km

RMS (acceleration) (m/s2) 0.53 0.53 0.53 0.53
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

3.87 L/100 km
(−9.2%)

14.54 kWh/100 km
(−5.5%)

4.27 L/100 km
(−9.8%)

4.70 L/100 km
(−13.7%)

RMS (acceleration) (m/s2)
0.47

(−10.9%)
0.52

(−2.5%)
0.51

(−4.5%)
0.33

(−38.7%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

4.12 L/100 km
(−3.5%)

14.59 kWh/100 km
(−5.2%)

4.35 L/100 km
(−8.2%)

4.71 L/100 km
(−13.6%)

RMS (acceleration) (m/s2)
0.33

(−38.6%)
0.31

(−41.6%)
0.38

(−28.7%)
0.32

(−40.2%)

UDDS Preceding Fuel consumption/battery
energy consumption/EFC 7.50 L/100 km 10.80 kWh/100 km 4.65 L/100 km 4.46 L/100 km

RMS (acceleration) (m/s2) 0.62 0.62 0.62 0.62
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

6.67 L/100 km
(−11.1%)

9.91 kWh/100 km
(−8.2%)

4.33 L/100 km
(−6.8%)

4.03 L/100 km
(−9.6%)

RMS (acceleration) (m/s2)
0.61

(−2.7%)
0.58

(−7.9%)
0.55

(−11.3%)
0.46

(−27.0%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

7.15 L/100 km
(−4.6%)

9.98 kWh/100 km
(−7.6%)

4.59 L/100 km
(−1.2%)

4.11 L/100 km
(−7.8%)

RMS (acceleration) (m/s2)
0.33

(−47.5%)
0.32

(−48.2%)
0.38

(−38.7%)
0.36

(−43.1%)

HWFET Preceding Fuel consumption/battery
energy consumption/EFC 3.82 L/100 km 15.22 kWh/100 km 4.11 L/100 km 4.55 L/100 km

RMS (acceleration) (m/s2) 0.30 0.30 0.30 0.30
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

3.71 L/100 km
(−3.0%)

14.95 kWh/100 km
(−1.8%)

3.95 L/100 km
(−3.8%)

4.37 L/100 km
(−4.0%)

RMS (acceleration) (m/s2)
0.28

(−6.2%)
0.30

(−0.4%)
0.29

(−2.5%)
0.29

(−3.2%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

3.76 L/100 km
(−1.8%)

14.95 kWh/100 km
(−1.8%)

3.95 L/100 km
(−3.7%)

4.37 L/100 km
(−4.0%)

RMS (acceleration) (m/s2)
0.27

(−9.5%)
0.27

(−11.3%)
0.29

(−3.3%)
0.28

(−4.8%)

US06 Preceding Fuel consumption/battery
energy consumption/EFC 4.54 L/100 km 19.23 kWh/100 km 4.78 L/100 km 7.30 L/100 km

RMS (acceleration) (m/s2) 0.99 0.99 0.99 0.98
Following–
Opt_energy

Fuel consumption/battery
energy consumption/EFC

3.97 L/100 km
(−12.7%)

18.26 kWh/100 km
(−5.0%)

4.46 L/100 km
(−6.6%)

5.69 L/100 km
(−22.1%)

RMS (acceleration) (m/s2)
0.84

(−14.4%)
0.94

(−4.2%)
0.94

(−4.3%)
0.58

(−40.4%)
Following–

Opt_comfort
Fuel consumption/battery
energy consumption/EFC

4.08 L/100 km
(−10.3%)

18.30 kWh/100 km
(−4.9%)

4.51 L/100 km
(−5.6%)

5.70 L/100 km
(−21.9%)

RMS (acceleration) (m/s2)
0.60

(−39.3%)
0.61

(−38.4%)
0.59

(−40.4%)
0.58

(−40.7%)
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Abbreviations

ACC Adaptive cruise control
AMT Automated manual transmission
BEV Battery electric vehicle
CACC Cooperative adaptive cruise control
CC Cruise control
CV Conventional vehicle
DP Dynamic programming
EFC Equivalent fuel consumption
EM Electric motor
eVT Electrically variable transmission
HEV Hybrid electric vehicle
HWFET Highway federal test procedure
ICE Internal combustion engine
IVD Inter-vehicular distance
LIDAR Light Detection and Ranging
OOL Optimal operating line
P2 HEV Parallel P2 hybrid electric vehicle
PG Planetary gearset
PS HEV Power-split hybrid electric vehicle
SOC State-of-charge
UDDS Urban dynamometer driving schedule
US06 US06 supplemental procedure
V2V Vehicle-to-vehicle
WLTP Worldwide harmonized light-vehicle test procedure

Appendix A. Optimal V2V Driving Pareto Fronts

Figure A1. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—CV powertrain.
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Figure A2. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—BEV powertrain.

Figure A3. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—P2 HEV powertrain.
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Figure A4. Pareto fronts for fuel consumption and RMS of the vehicle acceleration in WLTP (a), UDDS (b), HWFET (c) and
US06 (d)—PS HEV powertrain.

Appendix B. Time-Series of Suboptimal Control Solutions in WLTP

Figure A5. Time-series for the simulation results of the CV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A6. Time-series for the simulation results of the CV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Comfort” suboptimal control solution.

Figure A7. Time-series for the simulation results of the BEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A8. Time-series for the simulation results of the BEV powertrain in WLTP both as the
preceding vehicle and the following vehicle for the “Opt_Comfort” suboptimal control solution.

Figure A9. Time-series for the simulation results of the P2 HEV powertrain in WLTP both as the
preceding vehicle and the following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A10. Time-series for the simulation results of the P2 HEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Comfort” suboptimal control solution.
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Figure A11. Time-series for the simulation results of the PS HEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Energy” suboptimal control solution.
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Figure A12. Time-series for the simulation results of the PS HEV powertrain in WLTP both as the preceding vehicle and the
following vehicle for the “Opt_Comfort” suboptimal control solution.
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