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Abstract: The work at hand assesses several driving factors of carbon emissions in terms of urban-
ization and energy-related parameters on a panel of emerging European economies, between 1990
and 2015. The use of machine learning algorithms and panel data analysis offered the possibility
to determine the importance of the input variables by applying three algorithms (Random forest,
XGBoost, and AdaBoost) and then by modeling the urbanization and the impact of energy intensity
on the carbon emissions. The empirical results confirm the relationship between urbanization and
energy intensity on CO2 emissions. The findings emphasize that separate components of energy
consumption affect carbon emissions and, therefore, a transition toward renewable sources for energy
needs is desirable. The models from the current study confirm previous studies’ observations made
for other countries and regions. Urbanization, as a process, has an influence on the carbon emissions
more than the actual urban regions do, confirming that all the activities carried out as urbanization
efforts are more harmful than the resulted urban area. It is proper to say that the urban areas tend to
embrace modern, more green technologies but the road to achieve environmentally friendly urban
areas is accompanied by less environmentally friendly industries (such as the cement industry) and a
high consumption of nonrenewable energy.

Keywords: urbanization; energy intensity; carbon emissions; environment; energy consumption; CO2

1. Introduction

Currently, the environmental issues are more critical than ever. The Amazon forest is
burning, the glaciers in the north are melting away, and an increasing number of species
are threatened by extinction. Some decision-makers are mocking environmentalists, and
some are ignorant about the issues, setting targets beyond the planetary boundaries. Still,
no real solutions were identified, and all proposed solutions are accompanied by economic
costs that not everyone is eager to accept.

The newest urban development trends are related to smart solutions for city life.
Whether about waste management or streetlights, the decision-makers are seeking new
innovative ways of making the city a “smart” one. Even so, the environmental impact is
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still an issue that cannot be fully addressed by “smart” solutions. Besides the solid waste
and water management, urban emissions (industries and households) are one of the main
problems to be solved in the near future, should economies try to reduce pollution in large
urban agglomerations. Is “smart” sustainable enough?

The International Energy Agency estimates that about 70 percent of energy-related
global greenhouse gases are accountable to urban areas. Because a growth in urban
population is expected, the urban environmental impact will consequently grow as well
if not properly addressed. However, there are studies contradicting these figures and
claiming that small towns, rural areas, deforestation, and modern agriculture contribute
more than large urban areas towards global greenhouse emissions [1].

Although the researchers and decision-makers developed accounts and methodologies
for GHG emissions, the lack of comparability between them is limited [2,3] and so, the
comparability of different policies is as well. Some discrepancies arise even from different
interpretations of the concept of “urbanization”, and others from the difficulties in properly
assessing the impact on the environmental dimension [4]. According to Fang [5], the
urbanization process is accompanied by the excessive use and consumption of resources, a
fact which affects the environmental sustainability desideratum.

It is important for us to understand the main findings of such studies because of
the critical environmental issues and their relationship with human development, includ-
ing economic growth, demographic growth, energy intensity, energy production sources,
energy consumption destinations, and technological development. According to some
previous research studies [4,6–13], the process of urbanization is accountable for environ-
mental degradation and established urban areas have harmful impacts on nature through
the urban way of life and consumer behavior. It is also critical to understand how different
patterns of urbanization, depending on the region, culture, or socio-economic context exist
and develop.

The diversity of research related to the impact of urbanization on the environment is
also given by different interpretations of the urbanization–carbon emissions relationship.
Thus, urbanization could be responsible for emissions since the process relates to high en-
ergy consumption due to the economic activities sustaining it. Industrialization, transport
agglomeration, consumption behavior, and population migration from less environmen-
tally harmful rural areas must be analyzed also, from the perspective of urbanization as
living process. However, some authors [14] analyzed the relationship between electricity
consumption, electricity prices, industrial value-added, urbanization population growth,
and CO2 emissions with gross domestic product and revealed that both urbanization and
carbon emissions have a short-run effect on economic growth. Thus, urbanization must not
be considered a method for improving the economic sustainability. Algarini [15] reported
that income, energy consumption, and energy production can be used for predicting CO2
emissions. However, another study [16] revealed that urbanization must not be tagged as a
negative factor in predicting CO2 emissions since, for example, in oil-abundant economies,
oil prices could lead to an acceleration in urbanization, a situation which implies a positive
effect on the CO2 emissions. However, when it reaches an advanced level of development,
urbanization is less environmentally harmful, and it seems to even protect it by a complex
change in socio-economic behavior.

Urbanization as a process, but also as a way of human life, is strongly connected with
high energy demand. According to some studies [17–19], extensive energy consumption,
especially non-renewable energy, causes urbanization to decrease environmental quality
via increased CO2 emissions. Also, other authors [20] characterized the urbanization
negative effect as being heterogeneous across various quantiles of urban development.

Most researchers take carbon emissions as an indicator for the environment’s qual-
ity [21–24], mostly due to its relationship with a multitude of economic activities, while
other researchers consider the water usage or particulate matter pollution to be as important
as the CO2 emissions [22,25].
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Some studies emphasized that direct economic activities (such as cement production)
are responsible for the emissions [26,27], while others [9,11–13] revealed that urban eco-
nomic polarization accompanied by rural population migration to urban areas, high energy
consumption, urban agglomerations, fossil fuels, and household emissions are the main
drivers of the carbon emissions. However, some studies considered the relation between
urbanization and CO2 emissions as being not very significant or inconclusive [28–31]. An-
other study [18] suggest that the relationship between urbanization and the environment
is not monotonic, and it could have a non-linear effect on the environmental degrada-
tion. The setting of new urban and economic development patterns connected to the
sustainability goals and the green economy are universally recommended [6,7,25–27].
Also, promoting economic development, increasing the percentage of non-agricultural
output, and decreasing discharge of industrial wastewater per capita are measures recom-
mended by other researchers [32] in order to improve the relationship between urbanization
and environment.

Some authors [11] consider that even if the urbanization as a process affects the
environment, being related to high energy intensity and emissions, altering this urban
behavior by promoting environmentally friendly technologies and energy sources could
moderate the environmental damage curve.

After analyzing the scientific literature, three major conclusions related to urbanization–
environment relationship were identified: (a) Urbanization damages the environment;
(b) Urbanization damages the environment only at early stages but later brings beneficial
concomitant effects; (c) Urbanization does not damage the environment as much as other
factors do.

The first group of studies consider that urbanization damages the environment
through rural population relocation to urban areas, accelerated economic growth [13],
consumer behavior and transportation [14,15], energy intensity [33] and industrial develop-
ment based on fossil fuels (coal) [6,7,9]. Thus, this first category of studies either excludes
a discussion on the later stages of urbanization or agrees that urbanization affects the
environment, no matter at which stage [16,18,26].

The second group of research discusses urbanization as a moving process from the
lower stages where the environmental damage is high to later stages where it tends to
have attenuated negative effects. Thus, a research study [34,35] emphasizes that the
peak of carbon emission occurred at early stages of urbanization for most developed
economies. It is thought that at later stages, urbanization not only acts as a restraint on
carbon emissions [5,21,23] but may also become a driver for green development [25] if the
tertiary industry develops alongside with the urbanization [33]. The studies included in
this second category tend to view urbanization as a “necessary evil” needed to obtain a
sustainable future in terms of environment. Moreover, it brings economic growth and can
be adjusted so technological advancements (mostly smart or green tech) can help it on
the way.

The third group of researches envelops the opinion that urbanization does not have a
negative impact on the environment or, at least, the negative effects are explained not by
actual urban regions but rather by the transition to urbanized areas and various factors
connected with the process [36]. From this perspective, urbanization even tends to increase
awareness of environmental impacts [37]. Moreover, it is considered that economic growth
is the only way of ensuring environmental protection since growth is accompanied by new
and less energy-intensive technological means of production. Urbanization is a catalyst for
economic growth and as a result, urbanization promotes green development at the benefit
of the environment [38].

Economic growth and urbanization are related to high energy consumption even in
terms of industrialization or households’ consumption behavior. Previous studies show
a positive correlation between economic growth and energy consumption [39–44]. More
recent research shows no long-run relationship between the two [45] or even suggesting that
renewable energy consumption has a more effective impact on the economic growth [46,47].
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It was also discussed that the total and the nonrenewable energy consumption (res-
idential or industrial) have a positive impact on carbon emissions [48]. As economic
development remains a major objective for all world economies and is the only feasible
means of accomplishing some of the sustainability goals (no poverty, zero hunger, decent
work, and economic growth), the decision-makers are approaching two major directions
for solving the energy issue; namely the usage of environmentally friendly energy sources
(cutting from the total energy consumption the amount generated by the non-renewables),
and the implementation of energy-saving technologies and industrial processes (including
circular economy) [49].

The urbanization planners and decision-makers ought also to consider that households
are responsible for the carbon emissions related to their final energy consumption but
also for the production-related CO2 incorporated in different goods and services [50]. It
is critical, therefore, to develop multi-dimensional analysis to identify solutions that will
improve environmental sustainability while maintaining the social and economic welfare
and progress [51–53]. Considering that the environmental impact of urbanization remains
a hot issue nowadays, fact revealed by the multitude of research in this topic [54,55]
with radically different conclusions and some researchers recommend, as future research
directions, the analysis of different coupling relationship between different parameters [56]
in order to provide a more enlightenment related to the practice of healthy urbanization
and the environment [32], the present study targets to investigate the relationship between
urbanization, energy-related features and carbon emissions in a region less analyzed as
a group by previous research, considering a time interval between 1990 and 2015, when
most of the countries from our panel were just exiting from the communist era.

2. Materials and Methods
2.1. Dataset Description

The present study considers analysis data from the period between 1990 and 2015,
related to ten South-East ex-communist European countries, as follows: Romania, Bulgaria,
Hungary, Serbia, Poland, Slovenia, Slovakia, Albania, Czech Republic, and Bosnia. It
must be considered regarding the literature analysis, previously shared in this study, that
there is a vast number of research studies, presented above, regarding the Asian emerging
economies, but less extensive literature related to European developing regions. Therefore,
the importance of this study is revealed by the fact that the dataset was collected during a
period of 26 years, just after the fall of communist regimes and during a transition period.
The present paper reunites data from all the above-mentioned countries, to determine the
relationship between urbanization and energy intensity on CO2 emissions. The countries
included in the research, all former communist economies, have emerging trends but
different industrial composition [57]. Moreover, the countries’ industrial reorganization and
urbanization process claims a high level of energy consumption and the critical economic
transformations relate to the energy intensity as recent studies have shown [58]. However,
more recent data from the last 5 years could not be used in this study as not all the countries
considered for dataset elaboration had reported data related to the analyzed parameters.
The dataset used in this research was collected from three main sources and described
within Table 1. Thus, the energy-related variables were selected from the EIA database
(eia.gov), while the urbanization (urban population and urban population growth) and
carbon emission data were collected from the “Our World in Data” (ourworldindata.org)
and from the World Bank databases (data.worldbank.org). In order to describe the energy-
related parameters, the energy consumption (coal, natural gas, electricity, and total) for
different destinations (commercial, residential, industrial, and transportation) and energy
production (crude oil, natural gas, and hydro) were introduced into the feature importance
assessment. Both the effects of urbanization and energy intensity upon the environment,
but also of the energy components were selected for the analysis, to offer a better description
of how parts of urban-driven activities and energy-related elements affect CO2 emissions.
Thus, it is considered that while energy intensity describes the efficiency of energy usage,
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the analyzed components would elucidate the consumption structure and the importance
of each element (by destination and source).

Table 1. Dataset parameters detail.

Variable (Unit Measure/Year) Mean Minimum Maximum Description

CO2 Emissions (million tons) 80.54 1.53 377.41 The overall CO2 emissions

Energy_Intensity (MJ/$2011 PPP GDP) 7.65 2.89 47.11 Energy Intensity

Urban_Population (persons) 6574,510.32 1004,706.00 23,842,562.00 Urban population number

Urban_Population_Growth (%) 0.06 −2.95 2.18 The rate of urban growth

En_Coal_Prod (ktoe) 12,527.08 1.00 98,969.00 Energy production obtained from coal

En_CrudeOil_Prod (ktoe) 1196.17 1.00 7697.00 Energy production obtained from
crude oil

En_NaturalGas_Prod (ktoe) 2088.05 2.00 22,911.00 Energy production obtained from
natural gas

En_Hydro_Prod (ktoe) 432.13 13.00 1737.00 Energy production obtained from
hydro sources

En_Total_Prod (ktoe) 19,306.77 758.00 103,876.00 Total energy production

En_TotalCoal_Cons (ktoe) 2630.80 8.00 24,017.00 Total Energy Consumption based on
coal

En_TotalCrudeOil_Cons (ktoe) 5.74 1.00 48.00 Total Energy Consumption based on
crude oil

En_TotalNaturalGas_Cons (ktoe) 3773.02 1.00 19,854.00 Total Energy Consumption based on
natural gas

En_TotalAll_Cons (ktoe) 17,541.18 841.00 69,977.00 Total Energy Consumption based on
all sources

En_IndustryCoal_Cons (ktoe) 1308.93 6.00 12,496.00 Energy Consumption in industry
based on coal

En_IndustryCrudeOil_Cons (ktoe) 5.70 1.00 48.00 Energy Consumption in industry
based on crude oil

En_IndustryNaturalGas_Cons (ktoe) 1530.95 1.00 16,767.00 Energy Consumption in industry
based on natural gas

En_IndustryAll_Cons (ktoe) 5304.41 102.00 24,298.00 Energy Consumption in industry
based on all sources

En_TransCoal_Cons (ktoe) 13.79 1.00 173.00 Energy Consumption in
transportation based on coal

En_TransNaturalGas_Cons (ktoe) 12,527.08 1.00 98,969.00 Energy Consumption in
transportation based on natural gas

En_TransTotal_Cons (ktoe) 3241.10 135.00 17,154.00 Energy Consumption in
transportation based on all sources

En_ResidCoal_Cons (ktoe) 1195.95 1.00 9859.00 Residential Energy Consumption
based on coal

En_ResidNaturalGas_Cons (ktoe) 1350.74 1.00 3947.00 Residential Energy Consumption
based on natural gas

En_ResidTotal_Cons (ktoe) 5074.58 354.00 24,410.00 Residential Energy Consumption—all
sources

El_Total_Cons (MW/h) 32,600.32 1275.00 127,819.00 Total electricity consumption

El_Industry_Cons (MW/h) 13,408.10 361.00 49,482.00 Total electricity consumption in
industry
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Table 1. Cont.

Variable (Unit Measure/Year) Mean Minimum Maximum Description

El_Trans_Cons (MW/h) 1304.97 12.00 5481.00 Total electricity consumption in
transportation

El_Resid_Cons (MW/h) 9511.39 529.00 28,615.00 Residential total electricity
consumption

El_CommServ_Cons (MW/h) 7647.50 30.00 45,443.00 Commercial spaces total electricity
consumption

En_Coal_CommCons (ktoe) 275.63 1.00 2276.00 Commercial spaces energy
consumption based on coal

En_CommercialNaturalGas_Cons (ktoe) 692.73 2.00 2403.00 Commercial spaces energy
consumption based on natural gas

En_CommercialAll_Cons (ktoe) 1765.18 3.00 8821.00 Commercial spaces energy
consumption based on all sources

Previous studies proved that in the case of developing economies, such as those consid-
ered in our research, the economic growth is even exceeded by the carbon production [59]
and their energy consumption is one of the main drivers for it.

2.2. Analysis Methodology

The present study consists of two stages of describing the urbanization and energy-
related variables on carbon emissions. First, ensemble learning was used—a collection of
machine learning algorithms—to examine the feature (variables) importance of the afore
mentioned parameters.

Afterwards, fixed-effect panel data methodology was applied to describe the impact
of urbanization and energy intensity upon carbon emissions.

Following the panel data analysis, the current research quantifies, by using a multiple
linear regression approach, the most relevant linear relationships that explain the variance
of the CO2 emissions parameter.

The ensemble learning methods used for determining the feature importance among
parameters related to CO2 predictions can identify both linear and non-linear parameter
relations, as such it could prove useful in identifying what linear models could be analyzed.

As emphasized by previous research [60], despite significant successes related to
knowledge discovery, traditional machine learning can struggle when dealing with complex
data like high-dimensional, imbalanced, or noisy data. This is because it could prove
difficult for these methods to capture the underlying structure of the data.

Ensemble learning integrates data mining, data fusion, and data modeling, into a
unified framework. These algorithms firstly extract a set of features with a variety of
transformations, afterwards multiple learning algorithms are utilized to produce weak
predictive results and, finally, the ensemble learning unifies the knowledge obtained from
the above results achieving a better predictive performance.

Also, Sagi [61] shows that ensemble methods can improve the predictive perfor-
mance of a single model by training multiple models and combining their predictions.
There are multiple advantages to utilizing ensemble algorithms, as compared to other
algorithms [62,63]: (a) easy to understand and visualize; (b) ensemble algorithms are non-
parametric which means they are not requiring a particular data distribution; (c) mixed
data types can be used, even if the categorical variables should be one hot encoded; (d) the
prediction and accuracy performance of the model is not affected by the multi-collinearity
of the features; (e) ensemble algorithms are not prone to overfitting; (f) the outliers and
noise are well handled; (g) there is no need to scale the inputs; (h) when compared to
neural networks or Support Vector Machines, they are computationally faster; (i) their
performance is better than the one provided by the weak learners that are not similarly
accurate because of the high variance.
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Boosting and bagging algorithms provides the most accurate tree-based ensemble
models [64]. Boosting is based on the embedding of many weak learners into one efficient
regression/classification algorithm, while “bagging” involves a non-sequential learning
that draws, with replacement, a random subset of data from the training dataset. These
draws are not correlated in any way, but displays the same distribution. The selected data
is used to implement a weak learner (decision tree). The most popular class (or average
prediction value in case of regression problems) is then chosen as the final prediction
value [65,66].

The AdaBoost algorithm is part of the boosting algorithms family and it was intro-
duced in [63]. The decision trees (weak learners) are grown sequentially as weak learners
that are able to penalize incorrectly predicted samples by assigning at each prediction
round larger weights to the incorrect predicted samples. Thus, the algorithm is able to
learn from previous mistakes. For a regression problem, the accepted prediction comes
from a weighted median.

There are some characteristics specific to the AdaBoost algorithm. As an example,
the AdaBoost algorithm can avoid overfitting even in low noise datasets [67]. Also, the
number of hyper parameters that must be tuned to improve model performance is not very
high (the learning rate, the number of iterations/rounds, the maximum depth of the weak
learners/decision trees). Still, for data with a lot of noise, the AdaBoost performance can
vary. Freund [64] emphasizes that it generalizes well, while Oza [68] states that noisy data
usually leads to performance issues because the algorithm spends a lot of time on learning
extreme cases, while skewing the results.

The random forests algorithm uses the bagging approach. Thus, it randomly chooses
subsamples for each iteration of growing trees, bootstrapping the data. The reduction of
the overfitting is managed by the random forest algorithm by combining several weak
learners that under fit as they are utilizing only a subset of all input samples. Hence, the
random forests differ from AdaBoost as AdaBoost chooses only a random subset of features
to be included in each tree, while the random forest includes all features for all trees.

Due to its accuracy, robustness against noise and outliers, speed, and feature selection
possibility random forest is a popular algorithm [62,69–72]. Another advantage of random
forests when compared to AdaBoost is the fact that it is not so affected by noise, generalizing
better a reduced variance as the generalization error displays a limit with an increasing
number of trees being grown [60]. However, in the case of random forest, the number
of hyper parameter that needs tuning is high (maximum depth of trees, number of trees,
number of features, whether to bootstrap samples, the minimum number of samples left in
a node before a split and the minimum number of samples left in the final leaf node) [73,74].
Too much complexity in the training phase could lead to overfitting, thus a lower number
of features should be chosen (around one third). Additionally, a larger number of trees
usually leads to a better performance, while the maximum depth as well as the minimum
number of samples per leaf before splitting should be relatively low.

XGBoost algorithm, presented in [75] is based on the gradient tree boosting concept
used to reduce overfitting through regularization parameters. Gradient boosted trees use
regression trees in a sequential learning process as weak learners. The regression trees are
similar to decision trees, except that they are using a continuous score assigned to each leaf,
that will be summed up for getting the last prediction. For every iteration i which grows a
tree t, scores w are calculated which predict a certain outcome y [76]. The overall score is
minimized through the learning process involving the loss function at i-1 and the new tree
structure of t.

Gradient descent is then used to compute the optimal values for each leaf and the
overall score of tree t. The score is also called the impurity of the predictions of a tree.

XGBoost is characterized by high computational speed and by the regularization
parameter that successfully reduces variance. XGBoost is more difficult to tune compared
to AdaBoost and random forests, as it is described by a multitude of hyper parameters
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(learning rate, column subsampling and regularization rate, subsample, maximum depth of
trees, minimum weights in child notes for splitting and number of estimators (trees)) [77].

The overfitting decrease is obtained through regularization and weights in child notes,
respectively higher values for the number of estimators, keeping the maximum depth,
learning rate and column subsampling at lower values to achieve reduced overfitting [78].
The feature importance metric, provided by the above models, measures how often and
how much a feature was used in the model (in most cases, to make a split in a tree).

If a feature is removed, the model may make up for its absence by finding other
remaining features that hold some of the same distinguishing information, i.e., features
that are correlated with the removed feature. Thus, the feature importance describes which
features are relevant, providing a better understanding of the problem. The previous
ensemble methods use 3 ways of computing the feature importance: (a) Gini importance
(or mean decrease impurity) measures how each feature decreases the impurity of the split
(the feature with highest decrease is selected for internal node) [79]; (b) mean decrease
accuracy computes the feature’s importance on permuted out-of-bag (OOB) samples based
on mean decrease in the accuracy [80]; (c) the permutation based importance randomly
shuffle each feature and compute the change in the model’s performance [81]. The features
impacting performance the most are the most important ones.

The multiple linear regression method (MLR) was used in the current research for iden-
tifying and testing multiple linear regression models, having CO2 as the dependent variable
and various independent variables determined by using feature selection techniques (en-
semble methods feature importance) further combined with stepwise selection technique
having as the inclusion criteria, the statistical significance at p < 0.05 and the Variance
Inflation Factor (VIF) index less than 10 in order to avoid the multi-collinearity effect.

The MLR are excellent for quantifying the existing linear relationships between one
dependent variable and several independent variables. The MLR models offer the possibil-
ity of quantifying the relationship between variables, being easy to implement and efficient
to train the data.

Overfitting is avoided by using dimensionality reduction and cross-validation. The
optimal features were selected so the machine learning models perform better. When the
number of features is high, selecting the optimal features is important, as it is not necessary
to use each available feature in implementing the algorithms. Thus, the algorithm was
only fed with important features that can explain the dependent variable. It should be
mentioned that all the linear models presented in this research were validated against the
following assumptions: (a) there are no multi-collinear features, hence the predictors are
not highly correlated. As such, only parameters with a low (below 10) Variance Inflation
Factor (VIF) were considered; (b) there is a linear relationship between predictors and the
outcome. The non-linearity of the model was determined by using the residual plot of
fitted values versus the residuals. Presence of a pattern in the residual plot would imply
a problem with the linear assumption of the model; (c) the homoscedasticity is another
assumption of a linear regression model. The error terms may, for instance, change with
the value of the response variable in case of non-constant variance (heteroscedasticity) of
errors; (d) The consecutive error terms are uncorrelated (Durbin–Watson test). Also, all
presented MLR algorithms were trained on 60% of the data (100 samples) and tested on
the remaining 40% (66 samples).

3. Results and Discussion

The high number of samples available in our dataset allowed the application of
three machine learning algorithms (presented in the above section) to determine the
most important features for predicting the CO2 emissions value. The weights associated
with each feature quantifies its importance in predicting the dependent variable (CO2
emissions)—see Table 1.

The parameters with the highest weight value are the ones most influential in the
prediction model. The machine learning ensemble methods can identify both linear and
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non-linear relations between the predictors and the dependent variable, so the feature
importance analysis could be a first step in identifying potential linear models that could
be further investigated.

The results provided by the three models involved in the feature importance analysis
displayed good consistency, the most important features being similar among the models.
In Table 2, the highlighted items are not only the first ten items according to their impor-
tance, but the highlighting also shows that the first ten features were all identified as being
important for the prediction model by more than one model.

Table 2. Feature Importance (Weight Values)—Various Ensemble Methods.

RANDOM FOREST (RMSE: 9.80) ADA BOOST (RMSE: 4.54) XGBOOST (RMSE:5.20)

En_CommercialAll_Cons (0.24) El_CommServ_Cons (0.36) En_IndustryAll_Cons (27)

En_TransTotal_Cons (0.15) En_ResidCoal_Cons (0.12) El_Industry_Cons (27)

El_Resid_Cons (0.12) Urban_Population (0.11) En_ResidCoal_Cons (25)

El_CommServ_Cons (0.10) El_Trans_Cons (0.10) En_TransNaturalGas_Cons (25)

En_ResidCoal_Cons (0.10) En_TransNaturalGas_Cons En_IndustryCoal_Cons (23)

El_Trans_Cons (0.07) En_CommercialAll_Cons (0.05) En_IndustryNaturalGas_Cons (22)

Urban_Population (0.07) En_TransTotal_Cons (0.04) Urban_Population (22)

En_TransNaturalGas_Cons En_ResidTotal_Cons (0.04) El_Trans_Cons (22)

En_ResidTotal_Cons (0.05) El_Resid_Cons (0.04) Urban_Population_Growth (21)

El_Industry_Cons (0.02) En_IndustryAll_Cons (0.02) Energy_Intensity (20)

En_IndustryAll_Cons (0.02) Energy_Intensity (0.01) El_Resid_Cons (18)

En_IndustryCoal_Cons (0.01) El_Industry_Cons (0.01) En_CrudeOil_Prod (18)

Energy_Intensity (0.01) En_IndustryNaturalGas_Cons (0.01) En_TransTotal_Cons (17)

En_IndustryNaturalGas_Cons (0.00) En_IndustryCoal_Cons (0.01) En_ResidTotal_Cons (16)

En_Coal_CommCons (0.00) En_ResidNaturalGas_Cons (0.00) En_Hydro_Prod (11)

En_CrudeOil_Prod (0.00) Urban_Population_Growth (0.00) En_Coal_CommCons (10)

En_NaturalGas_Prod (0.00) En_CrudeOil_Prod (0.00) El_CommServ_Cons (9)

Urban_Population_Growth (0.00) En_Coal_CommCons (0.00) En_CommercialAll_Cons (6)

En_CommercialNaturalGas_Cons (0.00) En_CommercialNaturalGas_Cons (0.00) En_CommercialNaturalGas_Cons (5)

En_Hydro_Prod (0.00) En_NaturalGas_Prod (0.00) En_NaturalGas_Prod (5)

En_ResidNaturalGas_Cons (0.00) En_Hydro_Prod (0.00) En_ResidNaturalGas_Cons (5)

Furthermore, the XGBoost algorithm used in its prediction model several variables
identified as important that were not captured by Random Forest or ADA Boost algorithms,
variables that further proved useful in determining relevant linear regression models,
having CO2 Emissions as variable of interest. Secondly, after analyzing the features’
importance in CO2 emissions prediction models, to get the first perspective over CO2
emissions influencers, an exploratory data analysis (EDA) was performed.

The EDA charts graphically depict the existing relations between CO2 emissions
and various indicators. Thus, the presented charts emphasize the following: total energy
production and CO2 emissions/country clustering, urban growth rate and CO2 emis-
sions/country clustering, sectorial Energy Consumption vs. CO2 emissions/year and CO2
emissions, and various types of energy production/all countries.

Figures 1 and A1 (left cut of Figure 1, having Poland excluded), describe the way
energy production affects carbon emission level among the countries comprised by our
study. It is obvious that Poland, with the largest amount of produced energy, emits the
largest amount of CO2, which also confirms the overall strong positive linear relationship
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between the energy-related features and pollution, as production is based on nonrenewable
sources. However, Slovakia, Bulgaria, and Hungary registered a higher level of CO2
emissions in relation to total energy production, compared to the rest of the analyzed
countries (Figure 1).

Figure 1. Energy Total Production and CO2 emissions—Country Clusters (1990–2015).

Also, as depicted in Figure 2, for most countries, the urban growth rate is not neces-
sarily related with the CO2 emissions value.

Figure 2. Urban growth and CO2 emissions—Country Clusters (1990–2015).

For most of the country clusters, the data points show steady values regardless of the
value of the urban growth, with two exceptions: (a) Poland, that clearly displays a linear
increase of the CO2 emissions when the urban growth rate is increasing; (b) Czech Republic
that shows a descending trend of the emissions, while the urban growth rate is increasing.

The correlation between carbon emissions and sectorial energy-related features is
explained in Figure 3.
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Figure 3. Sectorial Energy Consumption vs. CO2 emissions time series.

As it can be observed (Figure 3), the structure of the energy consumption is changing
along the analyzed time interval, as the industrial consumption is declining in a fashion
determined by the structural economic developments. Thus, the carbon emission curve
evolves mostly in connection with the industrial energy consumption, while the total
energy consumption is not displaying a clear ascending or descending trend.

However, the chart also emphasizes that the energy consumption in the transportation
industry steadily increased during the past 15 years, similar the energy consumption for
the commercial buildings.

Figure 4 presents a country level dashboard describing the CO2 emissions together
with the different types of energy production.

Figure 4. CO2 emissions and type of energy for the country set (1990–2015).
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The above dashboard allows country level analysis of the emissions and energy
production, still the overall situations clearly displayed that the emissions downward trend
is mainly associated with the overall decrease of the natural gas and coal energy production.
Thus, according to Figure 4, the decrease of non-renewable energy consumption leads to a
decrease in CO2 emissions.

The fact proves a modernization of the economies in the region due to their structural
reforms during the 1990s and early 2000s. It is also proof of a new path in energy production
based on renewable sources, but also of a reinterpretation of the industrial structure
and localization.

Following the exploratory data analysis stage, this research uses both a data panel anal-
ysis and a multiple linear regression approach for formalizing the existing relation between
CO2 and urbanization, a relationship clearly identified through the EDA (Exploratory Data
Analysis) visualizations and feature importance machine learning algorithms.

The fixed-effect panel data model uses as parameters the carbon dioxide emissions,
energy intensity, population growth, and urban population collected over a period of
26 years (1990–2015) for the ten countries in the Central—Southeastern Europe.

The reasons for choosing only these parameters from a larger dataset (Table 1) are as fol-
lows: (a) this research aimed to identify a model that would clearly describe urbanization—
CO2 emissions; (b) the data panel analysis requires a complete data set—data available for
all years, all countries, and all parameters.

The regression model is as follows:

CO_2it = c + a1energyit + a2ugit + a3upit + uit (1)

where:

• CO_2it—CO2 emissions;
• energyit—energy intensity;
• ugit—urban population growth;
• upit—urban population;
• uit—represents the error, which is composed of three parts: individual-specific unno-

ticed effect (αi), time-specific unnoticed effect (µ) and individual and time-specific
unnoticed effect (εit);

• c—represents the constant or the intercept;
• a1, a2, a3—model parameters to be estimated (their values are other than 0).

Given that the time dimension is larger than the cross-sectional dimension, we proceed
with the verification of the stationarity for each variable. If only some variables are non-
stationary, the use of these values in the model analysis will generate an unreliable and
unrealistic model. According to both the data presented in Table 3 and the six tests, none
of the four series is stationary.

To be able to go further, first-order differences were realized, which also led to the
series being stationary. After verifying the stationarity, the Johansen co-integration test was
applied in order to verify whether there is a statistically significant long-term connection
between the variables. If such a co-integration exists, it shows us that the combination
of variables is stationary, and it will be possible to continue estimating the model using
non-stationary variables.

Analyzing the values of Johansen Co-integration (Table 4) and using statistical hy-
potheses (H0 null hypothesis—there is no co-integration and H1 alternative hypothesis—
there is co-integration) the results show that the series is co-integrated, which presupposes
that all variables together are stationary in the long term. After verifying the co-integration,
the assessment continues with the model estimation using one of the three methods: Pooled
Ordinary Least Square method (POLS), Fixed Effect (FE) method, and Random Effect (RE)
method. To determine the relevant model, a series of statistical tests will be performed.
To choose between the FE model and the RE model, the Hausman statistical test will be
used to test the lack of correlation between unobserved effects and regression variables.
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The Breusch–Pagan test will be used to choose between the FE and POLS models to test for
the presence of an unnoticed effect. The F test for the FE model will also be used to test
whether all unobservable effects are zero, thus distinguishing between POLS and FE. Using
a regular regression and the POLS method, no distinction will be made between countries,
thus denying the heterogeneity or individuality of each country. If a panel regression was
used, it can be concluded that the individuality of each country was considered [82]. The
results obtained for the regression equation using the methodologies for Pooled OLS, FE,
and RE are presented in Table 5. According to the Breusch–Pagan, F tests for fixed-effect
models, and the Hausman test, the best method for estimating the model is the fixed-effect
panel data method.

Table 3. Panel unit root tests.

Test Statistic CO2
Emissions

Energy
Intensity

Urban
Population

Urban Population
Growth

Levin, Lin, Chu

Level −2.41
(0.00)

−2.22
(0.01)

−0.97
(0.16)

−0.49
(0.30)

Im, Pesaran, Shin W-test

Level −1.86
(0.03)

−0.06
(0.47)

1.31
(0.90)

−3.25
(0.00)

ADF-Fisher Chi-square

Level 33.87
(0.02)

30.09
(0.06)

28.16
(0.10)

45.46
(0.00)

PP-Fisher Chi-square

Level 48.75
(0.00)

29.48
(0.07)

17.37
(0.62)

33.49
(0.02)

Breitung

Level −0.13
(0.44)

−1.40
(0.07)

0.66
(0.74)

0.17
(0.56)

Hadri

Level 9.26
(0.00)

6.42
(0.00)

11.60
(0.00)

2.80
(0.00)

Table 4. Johansen Co-integration.

Hypothesized Fisher Stat.* Fisher Stat.*
Prob.

No. of CE(s) (From Trace Test) Probability (Prob.) (From Max-Eigen Test)

None 192.7 0.00 117.3 0.00

At most 1 101.2 0.00 77.37 0.00

At most 2 45.78 0.00 39.76 0.00

At most 3 33.72 0.02 33.72 0.02
* Probabilities are computed using asymptotic Chi-square distribution.

After establishing the type of model, the correlation of the residues with the Pesara
CD test was checked. The series of the random variable does not show the correlation
phenomenon. Regarding homoscedasticity, after applying the modified Ward test, the
model is heteroscedastic and chosen to correct this hypothesis using Cross-section SUR
(Cross-section Seemingly Unrelated Regressions). The results obtained by applying SUR
method are presented in Table 6.



Energies 2021, 14, 2775 14 of 23

Table 5. Estimation of parameters for the model.

Exogen Variables POLS FE RE

energy_intensity 1.52
(0.00)

0.49
(0.00)

0.67
(0.00)

urban_population 1.46 × 10−5

(0.00)
2.64 × 10−5

(0.00)
1.61 × 10−5

(0.03)

urban_population_growth 10.61
(0.00)

2.29
(0.05)

3.30
(0.00)

Constant −27.92
(0.00)

−96.63
(0.00)

30.55
(0.00)

Country FE Yes Yes Yes

Year FE Yes Yes Yes

N 260 260 260

R2 0.94 0.99 0.53

AIC 9.00 7.36

Breusch–Pagan test(POLS versus RE) 1844.38
(0.00)

F-test for fixed effects(POLS versus FE) 124.12
(0.00)

Hausman test(FE versus RE) 116.70
(0.00)

Table 6. Fixed Effect model using the Cross-Section SUR method.

Dependent Variable: CO2

Variable Coefficient Std. Error t-Statistic Prob.

C −98.83 3.97 −24.85 0.00

ENERGY_INTENSITY 0.46 0.01 23.98 0.00

URBAN_POPULATION_GROWTH 1.82 0.17 10.19 0.00

URBAN_POPULATION 2.67 × 10−5 6.12 × 10−7 43.63 0.00

Effects Specification

Cross-section fixed (dummy variables)

Weighted Statistics

R-squared 0.99 Mean dependent var 5.36

Adjusted R-squared 0.99 S.D. dependent var 21.85

S.E. of regression 1.01 Sum squared resid 252.40

F-statistic 8184.49 Durbin-Watson stat 1.28

Prob. (F-statistic) 0.00

Unweighted Statistics

R-squared 0.99 Mean dependent var 80.54

Sum squared resid 21,699.33 Durbin–Watson stat 0.34

Analyzing the data provided by the new model, it can be observed that an increase by
one unit of energy intensity will increase carbon dioxide by 0.469030 units. The increase
in carbon dioxide will be 1.82 units as population growth is increased by one percentage.
As far as the total urban population is concerned, this will increase carbon dioxide in the
atmosphere, but to a much lesser extent.



Energies 2021, 14, 2775 15 of 23

The trends presented in Figures 5 and 6 confirm that our study determines and
visually describes the relationship between urbanization, carbon emissions, and energy
consumption.

Figure 5. Urban population growth and CO2 emissions.

Figure 6. Urban population growth and energy consumption.

The panel data analysis properly formalized the strong existing relation between
CO2 emissions and energy intensity, urban population growth, and total urban population.
However, through a multiple linear regression approach, the available data allowed an even
deeper analysis of the CO2 emissions, taking into consideration energy-related parameters
associated with the urbanization process. As such, a number of eight relevant MLR models
were identified, each of them described by high values of the adjusted R-Sq both on training
and test data—see Table 7.

The in-depth analysis based on the MLR linear regression models gives us a detailed
image on how carbon emissions evolve depending on energy-related variables and urban-
ization. The first two models (Equations (2) and (3)) explain the influence of electricity
consumption (2) and total energy consumption on CO2 emissions (3). Thus, according
to Equation (2), there is a strong positive impact of all parameters on CO2 emissions: a
1% increase in electricity consumption in transportation or households or industry will
lead to 0.27%, 0.42%, and 0.61% increase of the CO2 emissions, respectively. Based on the
equation coefficients, electricity consumption belonging to industry affects CO2 emissions
the most, followed by the households’ electricity consumption. Thus, for the 10 countries
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in our study, industrial electricity consumption holds an important share in explaining
CO2 emissions variance.

Table 7. Linear equations adjusted R-Sq and test R-Sq.

Equation No. Adjusted R-Sq Test Data R-Sq

(2) 95.60% 94.40%

(3) 96.00% 94.00%

(4) 91.60% 91.20%

(5) 95.52% 93.57%

(6) 75.68% 65.41%

(7) 78.14% 73.96%

(8) 87.78% 87.17%

(9) 87.78% 87.17%

The model presented in Equation (3), related to energy consumption, displays the
same important share for industrial consumption and confirms the importance of the
sector in terms of carbon emissions. Accordingly, a 1% increase of the energy consumption
per industry, transportation or households leads to 0.6%, 0.18%, respectively, to a 0.31%
increase of the CO2 emissions.

CO2Emissions = −3.22 + 0.27 ∗ El_Trans_Cons + 0.42 ∗ El_Resid_Cons + 0.61 ∗ El_Industry_Cons (2)

CO2Emissions = −2.17 + 0.60 ∗ En_IndustryAll_Cons + 0.18 ∗ En_TransTotal_Cons + 0.31 ∗ En_ResidTotal_Cons (3)

The urban population linearly explains the CO2 emission values (Equations (4) and
(5)), a 1% increase of the urban population leading to a 1% increase of the CO2 emis-
sions. These results also confirm the findings reported by other authors [83–85] that the
urban population scale is an important factor in residential energy consumption and CO2
emissions.

Also, as observed in Equation (4), the energy intensity also influences the CO2 emis-
sions, a 1% increase of the energy intensity leading to a 0.49% increase of the CO2 emissions.

CO2Emissions = −5.48 + 0.47 ∗ Energy_Intensity + 1.02 ∗ Urban_Population (4)

CO2Emissions = −5.00 + 1.01 ∗ Urban_Population (5)

As backed by other authors [86], this research study shows that the households also
have an impact on carbon emissions in terms of energy consumption based on coal and
natural gas (model 6), the contribution of the two energy-related variables being not
significantly different, a one percent increase of each variable, if the other one remains
constant, leading to a 0.30% and 0.22% increase of the CO2 emissions, respectively.

CO2Emissions = 0.46 + 0.30 ∗ En_ResidCoal_Cons + 0.22 ∗ En_ResidNaturalGas_Cons (6)

The last three models (Equations (7)–(9)) discuss individual relationships between
energy-related features (residential and transportation energy consumption), urbanization
and carbon emissions. As presented in Table 7, all three models show high values for the
adjusted R-sq, explaining how the transportation and households’ energy consumption
(two major features for urban areas and urban development) are influenced by the urban
population and also how they determine the CO2 emissions.

En_TransTotalCons = −2.22 + 0.84 ∗ Urban_Population (7)

En_ResidTotal_Cons = −3.30 + 1.02 ∗ Urban_Population (8)
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CO2Emissions = −1.57 + 0.93 ∗ En_ResidTotal_Cons (9)

As it can be observed in the above equations, the urban population displays a consis-
tent impact on energy consumption levels both for transportation and households, a 1%
increase of the urban population leading to a 0.84% increase in the transportation energy
consumption, respectively, 1.02% of the household’s energy consumption. Due to the high
correlation (0.87) existing between the transportation energy consumption and residential
energy consumption, the CO2 emissions variance is explained by using the parameter
semantically closer to the urbanization process, that is residential energy consumption.
Thus, it was possible to identify that an overall household’s energy consumption increase
of 1% will lead to a 0.93% increase in CO2 emissions, confirming what was emphasized by
other authors [87], that is, that the direct energy consumption of urban households heavily
influences the CO2 emissions.

4. Discussion and Conclusions

The analysis of scientific literature emphasizes that most of the recent research was
conducted in China or other Asian countries. The reason for this is explained by the authors
as being attributable to the fact that these regions are still in full process of urbanization or
have important asymmetries between the different regions of the same country (the case of
China). It is considered that developed countries are already urbanized and have a clear
image of the process’s impacts. It is needed, therefore, to assess the urbanizing impact on
environment especially during the urbanizing process. Even so, it is highly important to
overview other study cases for emerging countries outside Asia because urbanization has
an important component in the cultural dimension. Another fact is that a lot of emerging
economies are in fact urbanized European countries from the ex-communist Eastern Block.
These countries have an important rate of urban population, but the urban areas are still
changing due to the structural transformations of the national economy.

Urbanization is considered a developing phenomenon, having stages and levels of
complexity and being interrelated with a lot of other processes like population migration,
economic growth, industrial diversification, infrastructure transformations, and so on.
When it develops, urbanization determines changes in the geographic distribution of
economic activities but also an increasing transportation diversification and intensity. It
is also strongly connected to energy intensity and technological development, but not
always as a determinant of the two but mostly in a mutual relationship. The complexity
of urbanization is given by the complexity of modern human society and that social
development supposes in the modern technological society. The variety of variables
is similar to other modern phenomena, a sum of modernization factors from different
dimensions (economic, social, demographic, technological, cultural, etc.).

According to other authors [88,89], long-run relationships could be distinguished
between environmental degradation indicators, CO2, economic growth, fossil fuels, natural
resources, and renewable energy, while CO2 is considered a temporary impact indicator.
Therefore, this supports the methodology applied in present research, which analysis
database distributed over a long period (26 years), predicting therefore the CO2 emissions
based on historical movements.

During the first stages, urbanization has a direct and positive impact on carbon
emissions (most used descriptor for the environmental impact). Then, as urbanization
continues, during its later stages of development carbon emissions levels stall and tend to
decrease. The explanation for this is that the effort of transforming non-urban to urban areas
is higher at the beginning and decreases afterwards by the time the main infrastructure
is built and the population growth is less explosive. Moreover, when all urban facilities
are in place, the economic growth reaches certain levels and the communities seek new
approaches regarding its evolution, embracing sustainable development patterns and
seeking to implement green technologies. There are previous studies which reported
cointegration relations, identified among lower-middle income economies, which involves
both CO2 emissions and renewable energy. However, some authors [90–92] conducted
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research for determining the relationship between economic growth and environmental
degradation measured by CO2 emissions and revealed that only some countries were found
to abide to the hypothesis according to which their income per capita once it reaches and
increases beyond the kink point, it will generate afterwards, declining of CO2 emissions.
Also, other authors [93] reported positive effects of the per capita income and per capita
CO2 emissions on the renewable energy demand, a fact which confirms the strong bound
between the economic and environmental sustainability. However, when an economy
starts its increasing trend, an increase in its energy requirements, a decrease of the share
of renewable sources, and an increase in environmental pollution from fossil sources will
be registered, according to other authors [91]. The economic growth can be used as a tool
in order to ameliorate environmental damage by providing eco-friendly machines and
services [94].

The European Union (EU) member states’ commitment regarding carbon reduction
and cleaner environment by increasing the share of renewable energy in the energy port-
folio [89] can be achieved through the mechanism of economic globalization [93]. Thus,
the EU has a target of at least an average of 27% renewable energy by 2030, with France
targeting 40%, Spain and Germany exceeding 30%, and Italy registering 16% in 2015. The
use of panel data technique on European countries [95], considering a 14 years period
dataset, revealed that the increase of gross domestic product (GDP) is the main factor which
positively influences the renewable energy [92,95].

However, according to other authors [96], it is considered that if achieving a high level
of energy efficiency, the concerns about emissions will be significantly diminished and
insignificant relationship between economic growth and CO2 emissions will appear.

The subject is still critical for most economies and regions as the societal urban or-
ganization is seen as a key factor for growth and for sustainability issues. Most of the
researchers consider that an urban society is able to target sustainable development and to
have a more environmentally friendly behavior. The desideratum is to reach to the stages
of urbanization at which the society is more sustainability oriented. That is because during
the first stages, the process supposes a high energy consumption and hence an important
environmental impact (carbon emissions and others). Most of the authors identify the role
of the decision-makers in finding the proper development patterns that ensure the mini-
mum environmental impact on early stages and a fast orientation to green approaches later.
Other authors [40] consider that stock market development is the key source of financing
clean and renewable energy investment, allocating climate funds and sharing techno-
logical innovations—a positive energy consumption shock tends to increase countries′

environmental performance levels (EPI) while decreasing the level of CO2 emissions. Also,
other studies [88] consider that policies elaborated in order to improve environmental
sustainability must be extended also to built-up land, carbon absorption land, crop land,
fishing grounds or forest areas. Also, the natural resource abundance and green internet
are considered to reduces per capita CO2 emissions [91,96].

The value of the present study for the state of the art derives both from the methodol-
ogy applied and the dataset used, as it employs machine learning algorithms for assessing
the selected parameters attributed to a group of European emerging economies. Moreover,
our empirical results confirm the relationship between urbanization and carbon emissions
for the countries included in our study and between the different energy parameters and
the CO2 emissions as well.

It can be concluded that considering the present study’s applied methodology, CO2
is mostly influenced by industry energy consumption, followed by residential (coal and
natural gas consumption), and the transportation sector’s energy consumption. However,
the urban population is directly related to both residential and transportation sector energy
consumption. This could be due to a mode intense development of industrial sector
outside the urban areas. Therefore, it can be considered that both energy consumption of
residential and transportation sector can be considered proper indicators for the evaluation
of urbanization impact on CO2 emissions, for Central–Eastern European Countries.
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Like most studies, the design of the current study is subject to limitations. The dataset
does not include data from the previous five years since most of the analyzed countries did
not revealed them. However, since CO2 is considered a temporary impact indicator [88,89],
as previously mentioned, the 26 year dataset time period could be considered substantial
for emphasizing the impact of urbanization and other energy-related factors upon CO2
emissions, for the studied area.

Thus, the present study includes a combination of methodological instruments meant
to better describe the relationship between the chosen features. Also, the group of analyzed
countries is not found in previous studies, nevertheless they have similarities with other
developing regions around the globe.

The identified models confirm previous studies’ observations made for other countries
and regions. As a result, it may be concluded that the urbanization, as a process, affects
the environment (carbon emissions) more than the actual urban regions do, as the urban
growth has a larger effect in the identified model, on CO2 emissions, compared to the total
urban population. It is proper to say that urban areas tend to embrace modern, more green
technologies; but the road to achieve urban and responsible areas is accompanied by not so
environmentally friendly industries (such as cement industry) and a high consumption of
nonrenewable energy.

After sampling the best fitted features using the machine learning algorithms, we
developed explanatory linear regression models. These models aid in having an in-depth
image on how carbon emissions evolve depending on energy-related variables and urban-
ization. Our findings relate with previous studies and confirm the fact that urbanization
has an impact on carbon emissions. For the group of countries comprised in our study,
the identified energy-related variables are also important for the carbon emission trends
and should be considered by decision makers when planning green development strate-
gies. Clearly, the non-renewable sources of energy influence CO2, but also relate to the
urbanization processes.
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Appendix A

Figure A1. Energy Total Production and CO2 emissions—Country Clusters (Poland excluded).
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47. Buhari, D.O.Ğ.A.N.; Lorente, D.B.; Ali Nasir, M. European commitment to COP21 and the role of energy consumption, FDI, trade
and economic complexity in sustaining economic growth. J. Environ. Manag. 2020, 273, 111146. [CrossRef]

48. Salari, M.; Javid, R.J.; Noghanibehambari, H. The nexus between CO2 emissions, energy consumption, and economic growth in
the U.S. Econ. Anal. Policy 2021, 69, 182–194. [CrossRef]

49. Wang, Y.; Ge, X.L.; Liu, J.L.; Ding, Z. Study and analysis of energy consumption and energy-related carbon emission of industrial
in Tianjin, China. Energy Strateg. Rev. 2016, 10, 18–28. [CrossRef]

50. Liu, J.; Murshed, M.; Chen, F.; Shahbaz, M.; Kirikkaleli, D.; Khan, Z. An empirical analysis of the household consumption-induced
carbon emissions in China. Sustain. Prod. Consum. 2021, 26, 943–957. [CrossRef]

51. Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment.
J. Environ. Manag. 2012, 98. [CrossRef]

52. Wang, S.; Ma, H.; Zhao, Y. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing-
Tianjin-Hebei region. Ecol. Indic. 2014, 45. [CrossRef]

53. Wang, S.J.; Fang, C.L.; Wang, Y. Quantitative investigation of the interactive coupling relationship between urbanization and
eco-environment. Shengtai Xuebao/Acta Ecol. Sin. 2015, 35. [CrossRef]

54. Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional sustainable development
scenarios using the Urbanization and Eco-environment Coupler: Case study of Beijing-Tianjin-Hebei urban agglomeration, China.
Sci. Total Environ. 2019, 689. [CrossRef]

55. Zhao, Y.; Wang, S.; Zhou, C. Understanding the relation between urbanization and the eco-environment in China’s Yangtze River
Delta using an improved EKC model and coupling analysis. Sci. Total Environ. 2016, 571. [CrossRef]

56. Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H. Te Coupling coordination analysis of urbanization and eco-environment in
Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114. [CrossRef]

57. Lupu, D.; Petrisor, M.B.; Bercu, A.; Tofan, M. The Impact of Public Expenditures on Economic Growth: A Case Study of Central
and Eastern European Countries. Emerg. Mark. Financ. Trade 2018, 54, 552–570. [CrossRef]

58. Patiño, L.I.; Alcántara, V.; Padilla, E. Driving forces of CO2 emissions and energy intensity in Colombia. Energy Policy 2021,
151, 112130. [CrossRef]

59. Apeaning, R.W. Technological constraints to energy-related carbon emissions and economic growth decoupling: A retrospective
and prospective analysis. J. Clean. Prod. 2021, 291, 125706. [CrossRef]

60. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [CrossRef]
61. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
62. Li, B.; Peng, L.; Ramadass, B. Accurate and efficient processor performance prediction via regression tree based modeling. J. Syst.

Archit. 2009, 55, 457–467. [CrossRef]
63. Dietterich, T.G. Ensemble methods in machine learning. In Proceedings of the Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2000; Volume 1857 LNCS, pp. 1–15.

64. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.
Syst. Sci. 1997, 55. [CrossRef]

65. Dietterich, T.G. Experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and
randomization. Mach. Learn. 2000. [CrossRef]

66. Breiman, L. Random forests. Mach. Learn. 2001. [CrossRef]
67. Rätsch, G.; Onoda, T.; Müller, K.R. Soft margins for AdaBoost. Mach. Learn. 2001, 42. [CrossRef]
68. Oza, N.C. AveBoost2: Boosting for noisy data. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.

2004, 3077. [CrossRef]
69. Goldstein, B.A.; Polley, E.C.; Briggs, F.B.S. Random forests for genetic association studies. Stat. Appl. Genet. Mol. Biol. 2011, 10.

[CrossRef] [PubMed]
70. Ziegler, A.; König, I.R. Mining data with random forests: Current options for real-world applications. Wiley Interdiscip. Rev. Data

Min. Knowl. Discov. 2014. [CrossRef]
71. Jankovic, R.; Amelio, A.; Ranjha, Z.A. Classification of Energy Consumption in the Balkans using Ensemble Learning Methods.

In Proceedings of the 2019 2nd International Conference on Advancements in Computational Sciences, ICACS 2019, Lahore,
Pakistan, 18–20 February 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019.

72. Bogner, K.; Pappenberger, F.; Zappa, M. Machine Learning Techniques for Predicting the Energy Consumption/Production and
Its Uncertainties Driven by Meteorological Observations and Forecasts. Sustainability 2019, 11, 3328. [CrossRef]

73. Parmar, H.H.; Sentiment Mining of Movie Reviews using Random Forest with Tuned Hyperparameters. Conf. Pap. 2014.
Available online: https://www.academia.edu/9434689/Sentiment_Mining_of_Movie_Reviews_using_Random_Forest_with_
Tuned_Hyperparameters (accessed on 12 February 2021).

74. Van Rijn, J.N.; Hutter, F. Hyperparameter Importance Across Datasets. In In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 19–23 August 2018. [CrossRef]

http://doi.org/10.1016/j.energy.2020.118162
http://doi.org/10.1016/j.jenvman.2020.111146
http://doi.org/10.1016/j.eap.2020.12.007
http://doi.org/10.1016/j.esr.2016.04.002
http://doi.org/10.1016/j.spc.2021.01.006
http://doi.org/10.1016/j.jenvman.2011.12.025
http://doi.org/10.1016/j.ecolind.2014.04.006
http://doi.org/10.5846/stxb201306021271
http://doi.org/10.1016/j.scitotenv.2019.06.430
http://doi.org/10.1016/j.scitotenv.2016.07.067
http://doi.org/10.1016/j.ecolind.2020.106331
http://doi.org/10.1080/1540496X.2017.1419127
http://doi.org/10.1016/j.enpol.2020.112130
http://doi.org/10.1016/j.jclepro.2020.125706
http://doi.org/10.1007/s11704-019-8208-z
http://doi.org/10.1002/widm.1249
http://doi.org/10.1016/j.sysarc.2009.09.004
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1023/A:1007607513941
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1023/A:1007618119488
http://doi.org/10.1007/978-3-540-25966-4_3
http://doi.org/10.2202/1544-6115.1691
http://www.ncbi.nlm.nih.gov/pubmed/22889876
http://doi.org/10.1002/widm.1114
http://doi.org/10.3390/su11123328
https://www.academia.edu/9434689/Sentiment_Mining_of_Movie_Reviews_using_Random_Forest_with_Tuned_Hyperparameters
https://www.academia.edu/9434689/Sentiment_Mining_of_Movie_Reviews_using_Random_Forest_with_Tuned_Hyperparameters
http://doi.org/10.1145/3219819.3220058


Energies 2021, 14, 2775 23 of 23

75. Liu, B.; Chamberlain, B.P.; Little, D.A.; Andˆ Andˆangelo Cardoso, A. Generalising Random Forest Parameter Optimisation to
Include Stability and Cost. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Skopje, Macedonia, 18–22 September 2017.

76. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.

77. Lucas, A.; Pegios, K.; Kotsakis, E.; Clarke, D. Price forecasting for the balancing energy market using machine-learning regression.
Energies 2020, 13, 5420. [CrossRef]

78. Mohammadiziazi, R.; Bilec, M.M. Application of machine learning for predicting building energy use at different temporal and
spatial resolution under climate change in USA. Buildings 2020, 10, 139. [CrossRef]

79. Qiu, X.; Zhang, L.; Nagaratnam Suganthan, P.; Amaratunga, G.A.J. Oblique random forest ensemble via Least Square Estimation
for time series forecasting. Inf. Sci. 2017, 420. [CrossRef]

80. Han, H.; Guo, X.; Yu, H. Variable selection using Mean Decrease Accuracy and Mean Decrease Gini based on Random Forest. In
Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, Beijing, China, 26–28
August 2016.

81. Nicodemus, K.K.; Malley, J.D.; Strobl, C.; Ziegler, A. The behaviour of random forest permutation-based variable importance
measures under predictor correlation. BMC Bioinform. 2010, 11. [CrossRef] [PubMed]

82. Baltagi, B.H. Econometric Analysis of Panel Data, 4th ed.; Wiley: Hoboken, NJ, USA, 2008.
83. Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China—Evidence from

city-level data. Ecol. Indic. 2017, 73, 29–37. [CrossRef]
84. Rahmani, O.; Rezania, S.; Beiranvand Pour, A.; Aminpour, S.M.; Soltani, M.; Ghaderpour, Y.; Oryani, B. An Overview of

Household Energy Consumption and Carbon Dioxide Emissions in Iran. Processes 2020, 8, 994. [CrossRef]
85. Liu, L.; Qu, J.; Maraseni, T.N.; Niu, Y.; Zeng, J.; Zhang, L.; Xu, L. Household CO2 Emissions: Current Status and Future

Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 7077. [CrossRef] [PubMed]
86. Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Muhd, M.Z. A global review of energy consumption, CO2 emissions and

policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015,
43, 843–862. [CrossRef]

87. Feng, Z.H.; Zou, L.L.; Wei, Y.M. The impact of household consumption on energy use and CO2 emissions in China. Energy
2011, 36. [CrossRef]

88. Altıntaş, H.; Kassouri, Y. Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2
emissions? Ecol. Indic. 2020, 113, 106187. [CrossRef]

89. Bekun, F.V.; Alola, A.A.; Sarkodie, S.A. Toward a sustainable environment: Nexus between CO2 emissions, resource rent,
renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. 2019, 657. [CrossRef]

90. Maneejuk, N.; Ratchakom, S.; Maneejuk, P.; Yamaka, W. Does the environmental Kuznets curve exist? An international study.
Sustainability 2020, 12, 9117. [CrossRef]

91. Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources
contribute to CO2 emissions? Energy Policy 2018, 113. [CrossRef]

92. Apergis, N.; Payne, J.E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy
Policy 2010, 38. [CrossRef]

93. Gozgor, G.; Mahalik, M.K.; Demir, E.; Padhan, H. The impact of economic globalization on renewable energy in the OECD
countries. Energy Policy 2020, 139. [CrossRef]

94. Ozcan, B.; Tzeremes, P.G.; Tzeremes, N.G. Energy consumption, economic growth and environmental degradation in OECD
countries. Econ. Model. 2020, 84. [CrossRef]

95. Al-Mulali, U.; Ozturk, I.; Lean, H.H. The influence of economic growth, urbanization, trade openness, financial development,
and renewable energy on pollution in Europe. Nat. Hazards 2015, 79. [CrossRef]

96. Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A
panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [CrossRef]

http://doi.org/10.3390/en13205420
http://doi.org/10.3390/buildings10080139
http://doi.org/10.1016/j.ins.2017.08.060
http://doi.org/10.1186/1471-2105-11-110
http://www.ncbi.nlm.nih.gov/pubmed/20187966
http://doi.org/10.1016/j.ecolind.2016.09.031
http://doi.org/10.3390/pr8080994
http://doi.org/10.3390/ijerph17197077
http://www.ncbi.nlm.nih.gov/pubmed/32992633
http://doi.org/10.1016/j.rser.2014.11.066
http://doi.org/10.1016/j.energy.2010.09.049
http://doi.org/10.1016/j.ecolind.2020.106187
http://doi.org/10.1016/j.scitotenv.2018.12.104
http://doi.org/10.3390/su12219117
http://doi.org/10.1016/j.enpol.2017.10.050
http://doi.org/10.1016/j.enpol.2009.09.002
http://doi.org/10.1016/j.enpol.2020.111365
http://doi.org/10.1016/j.econmod.2019.04.010
http://doi.org/10.1007/s11069-015-1865-9
http://doi.org/10.1016/j.rser.2016.04.018

	Introduction 
	Materials and Methods 
	Dataset Description 
	Analysis Methodology 

	Results and Discussion 
	Discussion and Conclusions 
	
	References

