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Abstract: The use of formal methods and artificial intelligence has made it possible to automatically
design outdoor lighting. Quick design for large cities, in a matter of hours instead of weeks, and
analysis of various optimization criteria enables to save energy and tune profit stream from lighting
retrofit. Since outdoor lighting is of a large scale, having luminaires on every street in urban areas,
and since it needs to be retrofitted every 10 to 15 years, choosing proper parameters and light sources
leads to significant energy savings. This paper presents the concept and calculations of Levelized
Cost of Electricity for outdoor lighting retrofit. It is understood as cost of energy savings, it is in
the range from 23.06 to 54.64 EUR/MWh, based on real-world cases. This makes street and road
lighting modernization process the best green “energy source” if compared with the 2018 Fraunhofer
Institute cost of electricity renewable energy technologies ranking. This indicates that investment
in lighting retrofit is more economically and ecologically viable than investment in new renewable
energy sources.

Keywords: computer aided design; graph transformations; green energy; levelized cost of electricity

1. Introduction

The European Union’s energy policy includes the need for secure energy supplies,
sustainable energy consumption, lower fossil fuel dependence and improvements in energy
efficiency. The Fraunhofer Institute [1] showed the levelized costs of electricity (LCOE) for
different electricity sources in 2018 and its prediction up to 2035. The LCOE of onshore
wind turbines rangeds between 39.9 EUR/MWh and 82.3 EUR/MWh in 2018. As a result,
PV systems and onshore wind turbines are, on average, the least expensive technologies in
Germany, both among renewable energy technologies as well as fossil fuel power plants.
The LCOEs for other sources are as follows:

• photo-voltaic (PV) systems—from 37.1 to 115.4 EUR/MWh,
• offshore wind turbines—from 74.9 to 137.9 EUR/MWh,
• biogas power plants—from 101.4 to 147.4 EUR/MWh,
• conventional power plants:

– brown coal—from 45.9 to 79.8 EUR/MWh,
– hard coal—from 62.7 to 98.6 EUR/MWh,
– combined cycle power plants—from 77.8 to 99.6 EUR/MWh,

• PV home storage systems— from 163.4 to 473.4 EUR/MWh; both the costs of electricity
generation and storage.

The United Nations Environment Programme (UNEP) [2] estimates that replacing
globally all the inefficient on-grid lighting today would result in 1044 TWh of electricity
savings annually, which is equivalent to over USD 120 billion in electricity bills avoided
and over 530 Mt of CO2 avoided emissions annually. Our goal is to estimate the cost
and savings of the local outdoor lighting retrofit actions performed by cities; it will be
calculated as levelized cost of electricity (LCOEretro f it). Street and road lighting luminaries
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must be replaced every 10 to 15 years due to their lifespan limit. A retrofit is replacing
old luminaries with new ones on the same poles using existing power lines. Optionally
arms might be replaced as well due to their lifespan limit or technical reasons regarding
luminary mounts. A simple exchange of the luminaries gives at least 40% reduction of
energy consumption due to light source upgrade, from high pressure sodium (HPS) to
light emitting diodes (LED). On top of that, there are some examples that proper, optimized
design allows increasing this reduction up to 81% [3].

We consider such proper designs for number of cases which are: two metropolises,
Washington DC, USA, and Tbilisi, Georgia, and six other cities in Poland for which the
LCOE will be calculated, in this paper. The detailed scope is as follows:

• state of the art of the outdoor lighting systems design,
• theoretical background of Artificial Intelligence (AI) tools supporting large-scale

design to achieve optimization,
• basic assumptions on the outdoor lighting in Washington DC and Tbilisi and final

parameters of optimal designs,
• analysis of high-quality, optimized designs for six Polish cities; the selection is based

on a total of a few hundreds lighting designs for retrofits in smaller cities, each design
having less than 10 thousand light points, performed in 2020 for which the total
installed power before retrofit was known,

• calculation of LCOE for above designs,
• the prediction of LCOE for consecutive years.

Our hypothesis is that upgrading outdoor lighting by using optimized designs and
LEDs as light sources could lead to energy savings high enough that such a process would
be more economically and ecologically viable than investment in new renewable energy
sources. Analysis of such a hypothesis is possible due to technological advancements
in lighting design, which enables finding optimized settings for light-point parameters
quickly and at large scale.

2. Outdoor Lighting Design, State of the Art

To assess LCOE, some information regarding the infrastructure and cost have to
be acquired:

1. the area has to be chosen and parametrized in terms of light poles and installed
power—it is usually carried out by the installation owner;

2. a retrofit efficiency has to be evaluated, with assumptions regarding durability—it
is actual lighting design provided by a lighting engineer, specialized company or
luminary vendor;

3. cost of replacing a single luminary with assessment of price trends—it should be
provided by a luminary vendor;

4. transmission losses—carried out by the installation owner.

Items 2 and 3 represent a proper lighting design, which has a major influence on the
LCOE calculation.

The lighting design is a compromise between the safety of road users, the energy cost,
and negative health effects, such as light pollution. There are well-established lighting stan-
dards to provide safety, such as EN-13201 in EU or similar ANSI/IES RP-8 in USA; however
it is up to the lighting designer to optimize energy usage or decrease light pollution.

For many years, lighting designers were only supported by systems that could verify
the correctness of the prepared photo-metric designs, e.g., industry standard tools like
Dialux or Relux [4,5]. The design was based on the human intuition, which allows the
designer to assign the current lighting situation, describing actual geometric and technical
properties of the area under consideration to one of the established, precalculated patterns
or templates. For example, the spacing of consecutive poles at distances (27, 29, 28, 30) m
will be approximated with their maximum, which is a single value of 30 m. It results in
(30, 30, 30, 30) spacing. Adopting the maximum spacing of poles guarantees compliance
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with the lighting standards; however, it decreases energy efficiency, and incrases the power
of the lighting installation. To ensure that the final design complies with the EN-13201
lighting standard, designers similarly overestimate values of other parameters, such as:
road width, pole distance from the street etc. Such simplifications reduce design time. A
serious drawback of this approach, however, is the reduced energy efficiency implied by
the conservative assumptions on road and lighting installation layout.

There are even more simplifications being used. Values of particular geometric pa-
rameters are often grouped into certain “buckets”, with some tolerance. For example, a
lighting situation with a single lane road with a width between 3 and 4 m and pole heights
between 7 and 8 m, spacing between 26 and 33 m, etc. requires a certain type of luminaries
and power setting. Thus, one uses a set of predefined, precalculated templates, which can
be widely applied to multiple areas for which the lighting design is to be provided. This
matches lighting situations for which a design has already been calculated.

Yet another simplification is associated with the road lighting class. The lighting
class tells how much light is needed in order to make the street safe for both vehicle and
pedestrian traffic. Its identification is based on a set of parameters, which values might
be subjective.

Despite these simplifications, the human-made design process is extremely time-
consuming. For example, a relatively small project in Kraków, Poland with 3768 luminaries
took experienced designers 7 weeks to complete. Summarizing, low human productivity
makes preparation of standard compliant, energy- and cost-optimized designs for large
areas impossible in reasonable time without proper next-generation, computerized tools.

The importance of optimal design increases when we realize that it is not only a way
of achieving economic optimization but also has a significant impact on the way of tackling
climate changes and improving quality of life.

Fortunately, recent research regarding reduction of this problem’s computational
complexity makes it possible to obtain high-quality, optimized designs. This is thanks to
graph-based representation of computational problems, application of multi-agent systems
and distributed processing.

There is also active research regarding outdoor lighting investment planning and
decision support [6–8]. This indicates that proper planning increases economic viability of
such endeavors significantly. It also confirms that one of the key elements is a standard-
compliant design assessed by experts. On the other hand, one of the challenges is competing
criteria such as energy consumption, habits, satisfaction [9], or aesthetics. The latter one
plays an important role, especially if the investment regards historical or recreational sites.
(This is based on GRADIS commercial experience with infrastructure owner requirements.)
The competing criteria are also significant in terms of balance between lighting equipment
price and luminary power, especially if the vendor contractual price lists fluctuate, which is
common. (This is based on GRADIS commercial experience with cost estimates and retail.)

Similarly, retrofit planning also has a significant impact in the case of indoor lighting [10];
however, it is out of scope of this paper.

3. AI Tools Supporting Large-Scale Design

As was mentioned earlier, lighting designers have been supported by verification
software such as Dialux or Relux [4,5] for some time now. The main goal of such software
is to verify if the design prepared by a human designer complies with the given lighting
standard. There are more and more successful approaches to apply Artificial Intelligence
(AI) for lighting design to change this.

In general, lighting design is an optimization problem with multiple dimensions and
degrees of freedom. The dimensions come from actual physical properties of the area under
consideration. The degrees of freedom are requirements imposed by the infrastructure
owner or investor. In the simplified model, we have to consider 2.75 × 1022 combinations
of parameter values, which would take the computer system hundreds of years to compute.
(This takes into account variability of parameter values, which is based on analysis of actual
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designs such as fixture models, types and powers, tilt angles, arm lengths, pole heights,
pole distances from the street, distances between poles, fixture alignment shifts, lamp
arrangements, lighting classes, surface types, number of lanes, street widths, sidewalks
widths, lighting classes and distances from the street.) Fortunately, there is certain semantics
of the data on top of that, which might help in the process of computational complexity
reduction.

There are therefore two aspects of the lighting design: knowledge and computation.
Knowledge regards actual data on infrastructure—widths, heights, locations, geometries,
speed limits, qualitative and quantitative requirements, etc.—while computation provides
optimization, which is guided by the former.

Some new approaches use genetic algorithms [11–14] or neural networks [15] to
process knowledge and find a high-quality, close-to-optimal design. However, these
methods usually have a problem with computational efficiency: preparing a design for
a single street segment takes a few hours, which renders them not applicable in practice.
Other more promising approaches [16,17] combine formal methods and AI, which results
in both high-quality designs and a short computation time. Such an approach is used to
calculate LCOEretro f it as presented in this paper. The game-changing achievement, which
has sped up computations, is the use of formal methods that apply mathematical concepts
to computer science to turn them into practical applications. Graph transformations, for
the specification of the relationship among the input parameters for the design, especially
seem to provide a proper framework. If we formalize the design process as a T graph
transformation system, the number of the generated graphs that represent actual lighting
design parameters L(T) can be significantly lesser than a combination of all possible
parameter values. Such an approach reduces the state space that needs to be searched in
order to provide the actual design. Any graph G ∈ L(T) represents the parameters of a
correct lighting situation, compliant with the lighting standard, for which it is easy to select
an optimal design then [16,17]. There are two major challenges:

• to develop a graph transformation mechanism that enables correct and effective design
specification—the T graph transformation system,

• to discover the computation methods that speed up the consistency verification of
graphs that belong to L(T) according to the EN-13201 standard.

Both of them are addressed in the next subsections.

3.1. Specification of Correct Lighting Situations

One can observe that a human usually splits a complex problem into a few sub-
problems, solves it separately and merges the results. We use this idea to improve designer
efficiency in the specification of the outdoor lighting system. In the case of the graph
grammar, we prepare a separate specification for each of the sub-problems. This is a case
of Dual Graph Grammars [18]. For example, let us consider the modeling and execution
of the dynamic lighting control case. In addition to the actual lighting design mentioned
earlier, there are two independent hardware layers which require adequate representation
and handling through a uniform knowledge base, namely the sensors and luminaries. The
sensor layer dynamically gathers the data necessary for lighting class identification. To
provide adaptive control, the luminaries must be able to adjust light level to match actual
needs. All the adjustments have to comply with the lighting standards, so the design has
to reflect additional luminary power settings to enable it.

Data about luminaries, street segment, and traffic intensity detectors have to be
properly represented and aggregated. For example, to calculate actual traffic intensity, the
placement of the detectors hast to be taken into consideration. They could be doubled or
tripled at the same lane, which is a common case, and they could be placed before or after
an intersection. In the case presented Figure 1, in order to calculate the traffic intensity dt
in segment s1, one needs to perform:

dt = max(dt1, dt3) + max(dt2, (dt4 + dt5))
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If we consider a single graph grammar [19], further dynamic control of lighting
systems create unintuitive graph structure (like the one in Figure 2), in which logical
relationships among the detectors are not shown. Separation of the structure and evaluation
into a pair of graph grammars [Ψ, Θ] (Figures 3 and 4) results in clear model and enhances
further processing efficiency since different algorithms, suitable for particular grammars,
can be used. The logical model in Figure 3 represented as a Ψ grammar is similar to the
one in Figure 2 with one major difference: only one sensor of a given type is associated
with each lighting segment, a traffic detector in this case (dvt/dvt1). The Θ grammar
represents the evaluation of data from the sensors in a form of a mathematical expression
syntax tree; see Figure 4. Synchronization of both graph grammars is called the Dual
Graph Grammar mechanism [18]. The overall model ([Ψ, Θ]) becomes more intuitive, and
the graph processing becomes faster (a benchmarked speed up by 2.8 times). What is
more, the Dual Graph grammar concept can be generalized in practice to a set of pairwise
synchronized graph transformations.

l1 l2 l3 l4

dt2

dt1 dt3

dt4

dt5

s1

Figure 1. A street segment s1, with luminaires l1, . . . , l4 and multiple traffic intensity detectors
dt1, . . . , dt5.

dt/dt1 dt/dt2 dt/dt3 dt/dt4 dt/dt5

s/s1

c/c1

m3

c/c2

m4

l/l1

p(1.0)

l/l2

p(1.0)

l/l3

p(1.0)

l/l4

p(1.0) p(0.8)p(0.8)p(0.8) p(0.8)

Figure 2. A street segment, single logical model with unclear relationship among the detectors.

dvt/dvt1

s/s1

c/c1

m3

c/c2

m4

l/l1

p(1.0)

l/l2

p(1.0)

l/l3

p(1.0)

l/l4

p(1.0) p(0.8)p(0.8)p(0.8) p(0.8)

Figure 3. A street segment, logical model, structure grammar Ψ.
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dvt/dvt1

dt/dt1

max

dt/dt2

max

dt/dt3

dt/dt4

+

dt/dt5

+

Figure 4. A street segment, logical model, evaluation grammar Θ.

3.2. Improvement of the Calculation Time

Let us note that an attempt to optimize the efficiency of the lighting system is in
contradiction with the speed of the calculations. In 2016, a modern LED system with
dynamic reduction of the lighting level, when the traffic intensity decreases, as it is defined
in EN-13201 standard, was applied in a district of Krakow (3768 luminaries), Poland. The
final efficiency of this solution was 81% energy consumption reduction (16% resulted
from the dynamic control application). These calculations were made by optimizing
homogeneous sections of street segments. The averaged values for parameters within the
segments were used. The calculations took about one hour. We will refer to this method
as the standard method. To achieve maximum energy savings, we can split these uniform
segments into smaller ones and use more precise methods to obtain better results [20]. This
gives us significant 12% energy savings based on photometry design, and in the rest of
document, we will refer to it as the custom method. Unfortunately, the calculation takes
68 times longer [21]. The challenge is to achieve maximum energy savings and perform
calculations in a reasonable amount of time.

One of the methods that we can use to dynamically choose the best option (time vs.
performance) is to model lighting infrastructure as Infrastructure Abstract Graph (IAG).
Based on its graph grammar, we can split it into different size sub-graphs. These sub-graphs
can be optimized using different methods, suitable for each of them [21].

For example, we can store a street layout as an IAG, as is shown in Figure 5. It is
modeled as four segments (S). There is a series of lamps (CL) and light points (L) in each
segment. Depending on the goal, we can optimize it using standard method—in this case,
we are not interested in information about particular light points but about a series of
lamps (shown in Figure 6). Alternatively, we can use methods that give much better results
but cost much more processing time. An example is the discussed custom method. In such a
case, we are not interested in a series of lamps (shown in Figure 7) but particular light points.
The first method is the best if the installation parameters are similar to each other (e.g.,
the same pole height, similar distances between poles, etc.). The results can be obtained
in a short period of time, and they are just as accurate as the ones obtained by using the
custom method. The second method is used if there is heterogeneity in the segment and
the segments are small. In such situations, we obtain better optimization; however, the
computation time is, as mentioned above, several times longer. The mentioned graph
transformations apply not only to graph structures but also optimization criteria. Therefore,
based on one graph, we can obtain different sets of solutions for various problems that we
can easily compare.
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Figure 5. A graph storing information about road layout.

Figure 6. Transformation IAG Graph to graph that can be used for the standard approach.

Figure 7. Transformation IAG Graph to graph that can be used for the custom method.

Our goal is to consider more than one optimization criterion and more than one
luminary vendor, so we generate a set of final IAG graphs, enabling decision makers to
choose the most convenient one. For large segments, we try to find similar graphs and use
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their results as a starting point of the optimization process to reduce computation time.
Since the calculation time shifts from days to hours (see Table 1), multiple variants of the
design, for multiple vendors or different additional requirements, can be delivered easily.

Table 1. Comparison of processing times in the presented model and without.

Standard Computation Graph Model

Number of segments 606 606

Average computation time for one segment 5 min 25 s 6 min 14 s

Computation time for all segments 55 h 25 min 3 h 52 min

Acceleration of calculations after 16.2applying the graph model

At the implementation level, the cooperation of different calculation subsystems is based
on the multi-agent concept [8,22,23]. Despite the division of the problem into cooperating
subsystems, particular sub-graphs are large. Thus, the Complementary Graphs concept is
used. It automatically splits the graph into several parts (partially replicated) and defines the
implicit mechanism of the parallel execution of the graph transformations [24]. This concept
introduces parallel computation free of human (programmers) interference [8,22,23,25].

4. Outdoor Lighting Design for Washington DC, Tbilisi, and Polish Cities

An AI system based on formal methods [16,17] was used to calculate the lighting
designs. The designs are of higher quality than those provided by human designers. To
prepare them, precise data on the infrastructure is needed: street geometries, lighting
requirements (expressed in terms of lighting classes), the position of poles (on which lamps
are placed), etc.

The data sources vary for the selected projects. In the case of Washington DC, we
use the open data for pole locations [26], road shapes [27], and street segment details [28]
(e.g., road classification). These data must be automatically verified by a set of consistency
checks. As presented in Figure 8, there are initially 57,011 luminaries to consider, and
during the data cleaning (cleaning and inference, function) 2865 poles were rejected—it is
not known what exactly is illuminated by these luminaires—in such a case, they were
subject to manual corrections (verification and cleaning function). For the 54,146 luminaries
(clean inventory data object), the AI system creates the designs, which comply with the
regulations. Approximately 40,500 luminaires are covered (the actual number of luminaires
varies depending on the vendor being used; hence avg in Figure 8). The remaining cases
cannot be carried out due to violation of the standards, namely poles being too far from
each other, pole height being too short, etc. As our task is the estimation of the effectiveness
of the lighting installation for a large, varied environment, we focus on the actual design
for 40,500 luminaries. The final energy reduction is at 84%. (There is a side observation
regarding luminary efficiency: while preparing the designs for the same vendor but
different release year models, namely 2018 and 2019, the latter is 2% more energy efficient;
we use a conservative 1% for the estimation of the retrofit costs for year-to-year efficiency
improvement, however.).

We faced a different situation in Tbilisi, Georgia. In this case, the inventory for the
whole city was prepared by field survey teams. More than 91,000 poles were considered,
and for all of them, the correct designs were delivered by the AI system. The main
difference, in comparison with the Washington DC case, is a very small number of multi-
line roadways and large number of wide roads in the city, mainly in the old town. The
presented design provides 68% energy consumption reduction.
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Figure 8. Data cleaning scheme.

The designs for six Polish cities were carried out in the second half of 2020. The
efficiency assessment was made by comparing current electricity bills with planned retrofit.
The areas under consideration are rather small: the largest is less than 10,000 luminaries,
which coincides with lower expectations of the infrastructure owner regarding efficiency,
usually in the range from 50% to 70%. The optimized designs resulted in efficiencies of
61.46%, 74.40%, 76.28%, 77.84%, 81.69%, 84.00% energy consumption reduction.

The large-scale computations in the cases of Washington DC and Tbilisi took the
AI system only a few hours, instead of weeks, as it would be in the case of human de-
signers. Such a speedup enables efficiency comparison for different release year models
and vendors or replacement strategies and further strategic investment planning. (The
vendor optimization is not considered in the performed LCOE calculations since such an
optimization can violate public tender regulations, making it unrealistic.)

It needs to be pointed out that the AI-system-made designs are not only from 20% to
30% more efficient in terms of energy consumption reduction, but they also reduce up to
10% of the retrofit deployment cost, as compared to the average energy and investment
costs efficiencies obtained from human made designs. The latter is caused by the fact that
the luminaries with lower power are usually less expensive.

5. Energy Generation Levelized Costs
5.1. Assumptions

The calculation will depend on a number of parameters described below:

• size—area expressed in number of light poles;
• exchange_cost—average cost of exchanging one luminary that is the sum of the follow-

ing costs:

– luminary_cost—average cost of one LED luminary;
– arm_cost—average cost of one pole arm, which is exchanged with the luminary,
– install_cost—average cost of installation of one LED luminary with the arm replaced,

• efficiency—the retrofit efficiency evaluated as a percentage of the energy saved after
retrofit; energy consumption after the retrofit compared with the consumption before
the retrofit;

• init_power—the power of the original installation;
• trans_losses—transmission losses in the energy grid;
• durability—durability of the installation;
• lum_trends—trends in luminary prices.

5.2. Calculation Method

Street lighting is often the first or second largest local government energy consumption
source, typically accounting for 25–50% of a municipal energy bill [29]. Transitioning from
high-pressure sodium (HPS) to LED lamp technology can reduce this consumption by
about 40%. This value is guaranteed by nearly all luminary vendors. The rest of the
reduction depends on the design quality. We will consider the final reduction by 40% (the
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lowest value that can be achieved by human designers) and also by 50%, 60%, or more up
to 80% for the designs made by AI software in our estimates. The levelized cost of energy
is calculated by the following formula:

LCOE =
CAPEX + ∑

durability
t=1

At
(1+i)t

∑
durability
t=1

Mt,el
(1+i)t

The CAPEX (capital expense) retrofit cost depends on the number of exchanged
luminaries and their average exchange cost. One can notice that the exchange_cost slightly
decreases when the quality of design grows, because a better design uses lower-power
luminaries, which are less expensive. Finally, CAPEX is calculated as:

CAPEX = exchange_costefficiency ∗ size

where

exchange_costefficiency = exchange_cost ∗ (1− (efficiency− 50%) ∗ 20%)

Annual costs At are equal to zero (as there is no cost of savings). Real interest rate i in
% is assumed to be 2%.

Produced quantity of electricity SAVt,el in the respective t year is the same for all
years and depends on two parameters: design quality and transmission losses in energy
networks (we have to produce more energy than is consumed by luminaries), so:

Mt,el = efficiency ∗ (1 + trans_losses) ∗ init_power

Thus, the formula for the levelized cost of energy in the case of lighting retrofit simplifies
as follows:

LCOEret =
CAPEX

SAVt,el ∗∑
durability
t=1

1
(1+i)t

5.3. Average CAPEX

To assess the average cost of single luminary exchange, we have analyzed a set of
Polish public tenders in 2020. The results are as follows:

• luminary_cost is estimated at EUR 177;
• arm_cost is estimated at EUR 47;
• install_cost is estimated at EUR 67.

This results in an average cost of exchanging a single luminary (exchange_cost) to be
estimated at EUR 291.

Moreover, the luminary cost decreases with better design efficiency. The reason for
this is that the more efficient design uses lower-power luminaries, which are less expensive.
Our experience shows that every 5% increase in design efficiency decreases the luminary
cost by 1%. Table 2 presents the estimated CAPEX for the designs under consideration.

Table 2. CAPEX.

CAPEX Size Design Efficiency

Where 40% 50% 60% 70% 80%

Washington DC 40,327 11,722,965 11,605,735 11,489,678 11,374,781 11,261,034

Tbilisi, Georgia 91,681 26,651,453 26,384,939 26,121,090 25,859,879 25,601,280

Poland 26,363 7,663,663 7,587,026 7,511,156 7,436,044 7,361,684

average 10,000 2,906,977 2,877,907 2,849,128 2,820,637 2,792,430
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5.4. Optimal OPEX Reduction

To estimate one year saving SAVi,el of the electricity, OPEX (operating expense) cost
must be either calculated from known efficiency by comparing the bills before and after the
retrofit, or actually designed with power settings for each of the luminaries.

In both cases we have to take into account not only the power of the installation but
also the transmission losses. The losses vary from country to country. For example, to
consume 1 MWh of energy we must produce 1038 MWh in Germany, 1059 MWh in US and
1058 MWh in Georgia, as it is provided by the World Bank estimates [30].

In the aforementioned cases, Washington DC and Tbilisi, Georgia, the initial power
before the retrofit was init_powerW = 10.24 MW and init_powerT = 16.32 MW, respectively.
As the design efficiency varies from 50% (in case of human design) to 80% and even more
for the AI system, the one-year savings are presented in Table 3. Actual efficiency for the
Washington DC and Tbilisi cases was 84% and 68% respectively.

Table 3. SAVi,el in GWh.

SAV i,el Size Design Efficiency

Where 40% 50% 60% 70% 80%

Washington DC 40,327 18,095 22,619 27,143 31,667 36,190

Tbilisi, Georgia 91,681 28,794 35,992 43,191 50,389 57,588

Poland 26,363 5452 6815 8178 9541 10,904

average 10,000 3292 4115 4938 5761 6585

The annual saving is calculated as follows:

OPT = hours_on ∗ ∑
L∈Luminaries

Power(l)

SAVi,el = (init_power−OPT) ∗ (1 + trans_losses)

where:

• hours_on is equal to 4170 h, which is the lights on time per year;
• Luminaries is a set of luminaries used in the design and Power(l) is the l luminary power.

5.5. LCOEretrofit Calculations

The guarantee for luminaries is 10 years, but it is assumed that their life span is
15 years. Table 4 represents the LCOEretrofit for 15 years.

Table 4. 15 years LCOEretrofit in EUR.

LCOEretrof it Design Efficiency

40% 50% 60% 70% 80%

Washington DC 50.42 39.93 32.94 27.96 24.22

Tbilisi, Georgia 72.04 57.05 47.07 39.94 34.60

Poland 109.39 86.64 71.48 60.65 52.54

average 68.72 54.42 44.90 38.10 33.00

We can see that in case of wide, multi-lane roads that dominate in Washington DC,
the LCOE is extremely low. In the case of narrower roads, mostly occurring in old cities,
LCOE is little worse but still not bad by comparison with other electricity sources.

We can also calculate LCOEretrofit for shorter duration, equivalent to the luminaire
warranty period, which is conservative and safe; see Table 5.
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Table 5. 10 year LCOEretrofit in EUR.

LCOEretrofit Design Efficiency

40% 50% 60% 70% 80%

Washington DC 72.12 57.12 47.13 39.99 34.64

Tbilisi, Georgia 103.04 81.61 67.33 57.13 49.49

Poland 156.49 123.94 102.25 86.76 75.16

average 98.30 77.85 64.23 54.50 47.21

6. Prediction

Prediction of the LCOEretrofit is based on two assumptions:

• the price of the lamp is reduced by 1% per year,
• the efficiency of newly designed luminaries increases on average by 1% per year. (This

is a rather conservative assumption, which comes from analysis of designs regarding
the same areas, Washington DC in particular, using luminary models from 2018 and
2019; the efficiency of 2019 luminaries increased by about 2% due to improvement of
both LED technology and light distribution.).

The final prediction presented in Table 6 is based on 15 year duration. The initial
values for this prediction were calculated as:

• MaxLCOE as LCOE for 40% energy reduction in small cities;
• MinLCOE as LCOE for 80% energy reduction in large, developed metropolises.

Table 6. Prediction of LCOE in consecutive years in EUR.

Year 2020 2025 2030 2035

Max LCOE 109.39 98.73 89.10 80.42
Min LCOE 25.18 22.73 20.51 18.51

The LCOEs for all considered designs were:

• Washington DC—84% efficiency generated LCOE equal to 23.06 EUR/MWh,
• Tbilisi, Georgia—68% efficiency generated LCOE equal to 40.70 EUR/MWh,
• for six Polish cities with efficiency in the range from 61% to 84% the LCOE was equal to

68.39 EUR/M, 56.80 EUR/MWh, 55.10 EUR/MWh, 54.00 EUR/MWh, 51.46 EUR/MWh,
and 50.04 EUR/MWh, respectively. The weighted average efficiency for all designs is
76.93%, and it generates LCOE equal to 54.64 EUR/MWh.

Therefore, it seems that we can narrow the range between the minimum and maximum
LCOEretrofit to [23.06, 54.64] EUR/MWh. The prediction for this range is presented in Table 7.

Table 7. Prediction of LCOE in consecutive years in EUR, AI design

Year 2020 2025 2030 2035

Max LCOE 54.64 49.31 44.50 40.17
Min LCOE 23.06 20.81 18.78 16.95

7. Conclusions

The cost of 1 MWh electric energy generation is one of the most important factors
when building new power plants. It varies from 37.1 to 137.9 EUR/MWh in the case
of commercial green energy generation, without the cost of the energy storage, which
multiplies it four times [1].

Development of modern lighting design methods based on formal methods and AI
allows for quick, multi-scale calculations for large and diverse areas. The application of AI
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design tools shifts energy savings from a retrofit of the lighting system from 50% (in the
case of human designers) to average 70%. This results in LCOE for retrofit, understood as
cost of energy savings, to be in the range from 23.06 to 54.64 EUR/MWh. It is worth noting
that it is NegaWatt energy that does not pose problems with transmission and storage. It
also has a positive influence on the human health by reduction of light pollution, since the
amount of generated light is minimized.

As a result, the lighting replacement based on effective, high-quality and optimized
photometric designs should be recommended as a key solution in the field of renewable
energy. This would be more ecologically and economically attractive than investment in
new renewable energy sources.

The proposed approach of calculating LCOE could also be applied to other domains
of the energy market, especially those that require recurring upgrades with capital expense
which lead to savings influencing operating expense. In addition to this, there has to be
enough of a disruption to provide significant changes in operating expense. This is what
the optimized outdoor lighting design provides in the presented case.
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8. Sędziwy, A.; Kotulski, L.; Basiura, A. Multi-agent Support for Street Lighting Modernization Planning. In Proceedings of the 11th

Asian Conference on Intelligent Information and Database Systems, ACIIDS, Yogyakarta, Indonesia, 8–11 April 2019. [CrossRef]
9. Beccali, M.; Bonomolo, M.; Lo Brano, V.; Ciulla, G.; Di Dio, V.; Massaro, F.; Favuzza, S. Energy saving and user satisfaction for a

new advanced public lighting system. Energy Convers. Manag. 2019, 195, 943–957. [CrossRef]
10. Bonomolo, M.; Baglivo, C.; Bianco, G.; Maria Congedo, P.; Beccali, M. Cost optimal analysis of lighting retrofit scenarios in

educational buildings in Italy. Energy Procedia 2017, 126, 171–178. [CrossRef]
11. Plebe, A.; Pavone, M. Multi-Objective Genetic Algorithm for Interior Lighting Design. In Machine Learning, Optimization, and Big

Data; Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 222–233.
12. Santiago, R.M.C.; Jose, J.A.; Bandala, A.A.; Dadios, E.P. Multiple Objective Optimization of LED Lighting System Design Using

Genetic Algorithm. In Proceedings of the 2017 5th International Conference on Information and Communication Technology
(ICoIC7), Melaka, Malaysia, 17–19 May 2017; pp. 1–5. [CrossRef]

13. Garces-Jimenez, A.; Castillo-Sequera, J.L.; Del Corte-Valiente, A.; Gómez-Pulido, J.M.; González-Seco, E.P.D. Analysis of Artificial
Neural Network Architectures for Modeling Smart Lighting Systems for Energy Savings. IEEE Access 2019, 7, 119881–119891.
[CrossRef]

https://sdgs.un.org/publications/green-paper-policy-options-accelerate-global-transition-advanced-lighting-17856
https://sdgs.un.org/publications/green-paper-policy-options-accelerate-global-transition-advanced-lighting-17856
http://doi.org/10.1016/j.jocs.2017.09.011
https://www.dial.de/en/dialux/
https://relux.com/en/relux-desktop.html
http://dx.doi.org/10.1016/j.cor.2017.11.016
http://dx.doi.org/10.1109/TASE.2020.2966738
http://dx.doi.org/10.1007/978-3-030-14799-0_38
http://dx.doi.org/10.1016/j.enconman.2019.05.070
http://dx.doi.org/10.1016/j.egypro.2017.08.137
http://dx.doi.org/10.1109/ICoICT.2017.8074698
http://dx.doi.org/10.1109/ACCESS.2019.2932055


Energies 2021, 14, 2771 14 of 14

14. Lima, G.F.M.; Tavares, J.; Peretta, I.S.; Yamanaka, K.; Cardoso, A.; Lamounier, E. Optimization of Lighting Design Usign Genetic
Algorithms. In Proceedings of the 2010 9th IEEE/IAS International Conference on Industry Applications—INDUSCON, Sao
Paulo, Brazil, 8–10 November 2010; Voulme 8, pp. 1–6. [CrossRef]

15. Hidayat, I.; Utami, S.S. Activity Based Smart Lighting Control For Energy Efficient Building By Neural Network Model. E3S Web
Conf. 2018, 43, 01017. [CrossRef]
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