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Abstract: Although rare earth materials are the critical component in high torque density permanent
magnet machines, their use has historically been a commercial risk. The alternatives that have
been in the recent industry focus are synchronous reluctance machines (SyRM). They have lower
torque density but also relatively low material cost and higher overload capability. Multi-layer
IPM and SyRM machines have significant geometric complexity, resulting in a high number of
parameters. Considering that modern machine design requires the use of optimization algorithms
with computational load proportional to the number of parameters, the whole design process can take
several days. This paper presents novel SyRM parameterization with reduced number of parameters.
Furthermore, the paper introduces the novel forced feasibility concept, applied on rotor barrier
parameters, resulting in improved optimization convergence with overall optimization time reduced
by 12.3%. Proposed approaches were demonstrated using optimization procedure based on the
existing differential evolution algorithm (DE) framework.

Keywords: electric machine; synchronous reluctance; optimization; comparison; differential-evolution;
design; electric; rare-earth free; forced feasibility

1. Introduction

To reduce environmental impact, global legislation is pushing to increase electric vehi-
cle (EV) production [1]. In addition to regulatory requirements, consumers are demanding
cleaner and safer vehicles. This has led to a tectonic shift in the automotive industry, both
in terms of knowledge and production, forcing the industry to evolve rapidly.

At the moment, passenger vehicles are leading the market development (Tesla, Toyota,
BMW), mainly because of lighter vehicles that require smaller traction batteries. On the
other hand, commercial vehicles are much heavier and require large battery capacity,
resulting in significant production costs. Therefore, the commercial vehicle industry
is forced to move into niche markets, such as medium-duty, short-haul, and last mile
applications. Long-haul vehicle development is likely to take more time and have even
more sensitive financing.

Examples of commercial vehicles suitable for SyRM adoption include electric multi-
purpose vehicles (eMPVs), such as refuse trucks, hook loader trucks, or vacuum trucks [2].
eMPVs must actuate additional body systems (usually through some type of hydraulic
pump) in addition to electric propulsion. Traditionally, this actuation is done by a diesel
engine or a gearbox-mounted output shaft referred to as power take-off (PTO). Considering
price, overload capability, and production simplicity, SyRM can be a viable ePTO solution [2,3].
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This paper presents novel SyRM parameterization with a reduced number of parame-
ters (rotor nomenclature according to Figure 1). During the optimization process, infeasible
models may occur. Depending on the designer’s choice, the infeasible models can be
rejected or modified until they become feasible. The idea is that the procedure does not
discard randomly generated infeasible geometry but modifies it until feasibility is achieved
(hence the name “forced” feasibility).

Barrier bridge
Barrier post
Flux barrier
Flux carrier

"‘ Barrier numbering
Nz

7%
/\

Figure 1. SyRM rotor nomenclature [3].
2. SyRM Design
2.1. Peak Performance Requirements

The machine requirements in this paper are derived from Reference [3]. All peak
performance requirements are listed in Table 1.

Table 1. Peak operation requirements at base speed.

Description Symbol Value Unit
Base speed np 1700 rpm
Max. operating speed Mmax 2500 rpm
Max. over speed 1.2 - nmax 3000 rpm
Max. torque Timax 600 Nm
Battery voltage Upc 610 \%
Max. phase current Is max 310 Amms
RMS current density ] 18.4 A/mm?

2.2. Optimization Method

Most of the requirements for the design of electrical machines are in conflict with
each other (reduction of volume or mass, increase of efficiency, etc.). This is evident in the
problem of increasing efficiency [4-6] through global legislative initiatives [1]. For traction
drives, high efficiency in limited packaging space is an absolute imperative [7]. Therefore,
a manual design that satisfies all constraints can be an overwhelming task due to a large
number of coupled parameters that affect the performance and quality of the machine.

According to Pellegrino [8,9], the computational load increases proportionally with the
number of geometric parameters. This is inherently the case for IPM and SyRM machines,
leading to a high number of optimization variables and a longer optimization time.

Today, optimization algorithms enjoy great popularity among designers of electrical
machines [10-16]. The personal experience of the designer should not be underestimated,
but, due to the non-linearity and complexity of the relationships between the geometry of
electrical machines and their performance, it is generally believed that only mathematical
optimization can push the boundaries to better designs.

Optimization algorithms can be divided to gradient based methods and stochastic or
metaheuristic methods (PyOpt provides several open-source algorithms [17]). Gradient
type methods converge fast but have difficulties with global optima. Usually they require
feasible starting point which can be a problematic task in complex problems (Quasi Newton
method [18]). Stochastic methods are heavily used in electrical machine optimization (Pow-
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ell’s method [18], Nelder-Mead method [19]). The disadvantage is that the convergence
can last for days, and global optimum cannot be mathematically proven. On the other
hand, from engineer’s point of view, these methods can find a satisfying global result.
Popular metaheuristic methods are based on natural behavior (Evolutionary algorithm [20],
Differential evolution [21], Particle Swarm [22]).

All methods are generally set to solve a single or multi-objective problem. The goal
of design optimization is to have a chosen objective function f(¥) reach its minimum or
maximum value while keeping other engineering indices within an acceptable range [23].

The use of finite element analysis (FEA) is inevitable in the case of SyRM’s because
saturation in the rotor bridges and posts significantly affects the final performance. FEA is
computationally intensive and optimization can require thousands of calculations trough
generations. Significant time savings can be achieved if all calculations are performed
using magnetostatic simulations with fixed rotor position. Detailed explanation of differ-
ent approaches for calculation of IPM machine parameters and performance using only
magnetostatic simulations is available in Reference [24].

This paper uses an improved version of DE algorithm proposed by Zarko et al. [25]
based on Lampinen’s constraint function approach [21,26,27].

2.3. Preset Model

The number of slots and poles is chosen to be 36/4 with 4 rotor flux barriers, resulting
in a two-layer integer slot winding with distributed overlapping coils. This combination
provides a good compromise between the inherent ability to mitigate torque pulsations,
susceptibility to noise, and the ability to use multiple parallel paths.

The ideal number of turns per coil (N;) and parallel paths (a,) for matching the base
speed is automatically calculated based on winding feasibility [28] and ultra-fast scaling
laws [29].

The goal of this paper is to prove that the forced feasibility approach (which will be
discussed in later sections) yields a shorter optimization time. Considering that the selected
machine has a relatively large number of parameters, all non-rotor parameters are taken
from the optimized machine design in Reference [3] (Table 2). In addition, the initial design
is constrained by peak performance requirements at the base speed (Table 1).

A set of parameters which are subject to optimization are listed in Table 3; colors and
numbering in Tables 2 and 3 correspond to Figure 2.

12
16

Figure 2. List of parametrization variables.
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Table 2. Constant parameters.

No: Symbol Description Value Unit
1 Dq Stator diameter 240 mm
2 Dgn Shaft diameter 65 mm
3 Nph Phase number 3 -

4 N, No. of turns Auto calculated -

5 ap Parallel paths Auto calculated -

6 Ye Coil pitch 6 -

7 Npar Barrier number 4 -

8 p Pole pairs 2 -

9 N; Slot number 36 -

10 Wb Barrier bridge 0.500 mm

11 1) Airgap 0.650 mm

12 Dy /2 Shaft radius 32.500 mm

13 Atyin Barrier offset 0 mm

14 Ds/2 Stator radius 120 mm

15 Ls max Active length 344.141 mm

16 D, Stator bore 136.751 mm

17 Dy ;20 Rotor radius 67.725 mm

18 d; Tooth tip depth 0.857 mm

19 wy Tooth width 6.874 mm

20 Tsc Slot corner rad. 1.588 mm

21 ds Slot depth 25.491 mm

22 Ky Tooth tip angle 31.699 o

23 Wop Slot opening 2.935 mm

24 wp Barrier post 0.511 mm

25 ec End carrier 3.122 mm

26 Omin Min. angle 15.069

27 Omax Max. angle 42.383

28 Ty Fillet radius 0.240 mm

Table 3. Complete list of optimization parameters.

No: Symbol Description Boundaries Unit
29 A1 in Barrier offset [0 1] mm
30 AT out Barrier offset [0 1] mm
31 A1y in Barrier offset [0 1] mm
32 A7y out Barrier offset 0 1] mm
33 Ar3in Barrier offset [0 1] mm
34 AT3 out Barrier offset [0 1] mm
35 AT4 out Barrier offset 0 1] mm

3. Automated Geometry Construction

Any optimization requires automatic design generation. As mentioned earlier, a higher
number of optimization variables is associated with a longer optimization time.
Gamba et al. [30] have shown that three variables per barrier (3 - k, where k is the number of
barriers) is the appropriate number of parameters to use for a fast yet accurate description
of multi-barrier SyRM. To reduce this even further, the 2+ (2 - k — 1) alternative is proposed
in this paper. Several rotor barrier types are commonly used in SyRM design: circular,
hyperbolic, fluid (Zhukovsky), segmented, etc. (open-source SyRE project offers more
details and instructions on geometry generation [31]).

Within this paper, barrier line profiles (Figure 2) are derived from conformal mapping
theory and the Zhukovsky airflow potential formulation [30,31]. This was originally
developed to describe the flow paths of fluids channeled by two infinite plates forming an
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angle 7t/ p, and a plug centered at the origin of the reference frame (p is the number of pole
pairs). In the solid rotor context, the plug represents the non-magnetic shaft with a radius of
Dy, /2. Equations (1) and (2) express the magnetic field potential lines in parametric form.

r+Ar 2p -1
Dsh/2

r+Ar P
Dgn/2

C+4/C2 +4sin®(pd
r(8,C) = Dshﬂ (v );0219271/;7. )

2 2sin(p?)

C(0,r,Ar) = sin(p9) ( 1

3.1. Single Barrier Construction

The first step in creating the flux barrier is to select the point Ey in polar coordinates.
Ej consists of two components, the radial component ry, = (D}, — 2J) /2 — wy,,, which has
a fixed value, and the variable angle ¢y (5). The centerline parameter Cj is computed
by solving the Equation (6). Virtual center barrier line is then computed by solving
Equation (7). It is important to note that the angle vector should be generated in the

T

EI
be weighted to infinity, leading to a computational error. The point Gy (8) is the center
barrier coordinate (always lies at angle %) and a reference point for calculating the inner

range ¢ € [z?k - ﬂk} ; otherwise, if the angle is close to %, the radial component will

and outer barrier line.

The barrier is constructed from a virtual centerline, which is modified by adding
offsets Arin and Argy; to form inner and outer flux lines (Figure 3). Offsets in millimeters
are calculated from per-unitized input offset parameters according to expressions (4), (3),
where dj, and dj_, represent distance between Gy points according to Figure 4.

Per unit € [0 1]

[njﬁl .
Arkout Ar;Cout .dkout’ (3)
Perunit € [0 1]
[mm] -
Arkin = Arkin .dkin’ (4)
Ec = /S 5)
Cr (0, v, Ar = 0), (6)
7T
Tk (1’9 € |:l9k YN l9k:| ’ Ck) ’ (7)
2p

Gy = r<27;,Ck) /% ®)

The next step in the construction of the barrier is to compute Cy_, (9) and Cy, (11), which
completely define the equations of the inner and outer barriers. Solving the Equation (2) = ry
with the arguments Cy, , C . gives the intersection point angles ., , 9y - The last step is
the calculation of barrier lines 7oyt (10) and rin (12) over the given angles.

7T
Ckout (zp’ er’ Arkout) 4 (9)
7T
Tout <l9 € |:l9k0ut - 5’ l9kout:| 4 Ckout> 4 (10)
7T
Chin (mjrrckr—mkm)f (11)

Fin <19 c [ﬂkm - ;ﬂ,ﬁkm},ckm). (12)
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Figure 4. Construction of all flux barriers.

3.2. Construction of All Rotor Flux Barriers

The previous section described the flux barrier construction based on three parameters:
variable angle 9, inner (Ari,) and outer (Aroy:) barrier offsets. If all barriers were con-
structed according to this principle, the total parameter number would be 3 - k. Considering
that center virtual barrier line is not part of the final barrier, there is a way to reduce the
total number of parameters. Two angles, 9min and Imax, indicate the allowed center barrier
line range. Depending on the number of barriers k, they define angles ¢,  with equidistant
angular offsets At defining points E; j used to construct each virtual center barrier line
(Figure 4). To make the procedure robust, and to avoid clashes with the shaft, final barrier
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(closest to the shaft) inner offset value is always zero. This procedure reduces the total
number of barrier parameters to 2 + (2 -k — 1). The constant 2 refers to the parameters
Omin and max, —1 refers to the constant Argpa1in = 0, which can be removed from the total
number of parameters.

The choice of equidistant virtual flux line angle offset (Ad,) might appear to be a
design-limiting constraint, but this is not the case. The virtual lines are used only as
a reference for calculating the inner and outer barriers. Only in the special case, they
represent flux barrier middle line when VAry = VAry, . Optimization results proved that
VA, . # VOry, (Table 4). Furthermore, VAr  # 0 and VAr,, # 0 (except in the final
barrier, where Argn, i = 0 by default). This proves that the assumption of equidistant
virtual line offset angles has no effect on the final rotor design and can be used in the case
of the Zhukovsky flux barrier type.

Table 4. Optimized rotor parameters and final result comparison.

Random Generated Forced Feasibility
Result Unit 89 91 106 132 160 AVG 77 87 88 94 132 AVG

Ariin,  mm 226 1.29 1.64 1.87 251 191 253 258 275 126 276 237
Ariot mm 046 1.00 1.24 087 037 079 054 0.39 003 0.79 042 043
Arpyn, mm 2.06 213 1.77 170 1.00 173 140 130 0.81 1.03 212 1.33
Aryoqy mm  1.18 1.80 1.70 1.36 1.46 150 1.05 136 1.73 250 0.56 1.44
Arziyy,  mm 291 211 269 215 3.07 259 298 1.76 199 236 129 2.08
Arzont mm 145 1.71 124 1.87 206 1.67 185 195 219 210 230 2.08
Argoye mm 373 452 426 458 341 410 3.64 471 441 423 465 4.33 Diff. [%]

- 091 091 091 091 091 091 091 091 091 091 091 091  0.00

Tans skew NmM 603.7 602.9 603.3 603.6 603.2 603.3 604.1 605.2 604.5 604.0 604.9 604.5  0.20
Boymax T 160 1.60 1.60 1.60 1.59 1.60 1.60 1.60 1.60 1.60 1.60 1.60  0.00
Bemax T 179 179 1.80 179 179 179 179 179 179 1.79 1.80 179  0.00
cosgp - 066 066 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66  0.00
T, % 265 325 164 172 346 254 288 286 241 193 2.89 259 195

ipple

4. Optimization Procedure Details

The optimization of the 2D cross-section is set up as a single-objective problem mathe-
matically defined as: Find the vector of parameters (13), subject to D parameter boundary
constraints (14) and subject to m inequality constraint functions (15), which will maximize
objective function (16).

X = [xl,xz,...,xD], fERD, (13)

xl(L) le SXZ(U)/ l:1//D (14)
gj(_))ﬁo, ]le/ml (15)
max f(X). (16)

The applied optimization workflow is shown in Figure 5. The optimization process
starts with the problem definition (boundaries, constraints, objectives, etc.) and a preset of
constant parameters (slots, poles, active diameter, etc.).

After entering the optimization loop, the following steps are performed iteratively:

the optimization algorithm generates the vector ¥ (optimization variables);
variables are converted to model parameters;

model is generated based on the model parameters;

model is solved;

performance is extracted from the solution (values for constraints and objective
functions are calculated from the solution);

6. datais passed to the optimization algorithm.

Gl » =
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Single-objective optimization has only one objective function, which may have mul-
tiple variables and scaling factors. When the optimization converges, the value of the
objective function saturates around a certain value. Without stopping criteria, the objective
function will improve in infinitesimal steps for a very long time without any significant
design improvement. In this paper, the following stopping criteria are used: after each
generation, the last four objective function increments f; 4 are checked; if the difference
between f; and f4 is less than 0.2%, the optimization is stopped; otherwise, it continues
until the 160th generation.

5. Model and Solution Feasibility

In optimization problems, the notion of feasibility is related to the acceptance criteria
of the solution. A solution is declared feasible if it satisfies certain criteria (15). The feasibil-
ity of a solution implies that a solution exists, i.e., the problem or model that provides this
solution is solvable. During the optimization process, models may occur that are not solv-
able. These models have no solution and can be declared infeasible without solving them,
which can decrease computational burden in the case of FEA-based solver. The models
that are not solvable are declared as infeasible considering the model feasibility criteria.

Problem deﬁmtlon Optimization Generate Model draw mg
Mo del preset algorithm geometry and setup

Performanc e Model
extraction bOlVlng

Figure 5. Optimization workflow.

5.1. Geometrical Feasibility

A special subset of model feasibility criteria is geometric feasibility, which charac-
terizes whether the model geometry satisfies certain criteria (e.g., mechanical integrity;,
physicality, overlaps, etc.). In some cases, trying to solve a geometrically infeasible model
with external solvers can lead to a crash of the whole optimization routine, a problem that
highlights the need for detection methods to deal with geometrically infeasible models (e.g.,
barrier 1 (blue) collides with barrier 2 (yellow), the overlap is marked in red, Figure 6c¢).

To avoid the construction of such an invalid model, a geometric feasibility procedure
can be performed within the optimization algorithm for each candidate vector. Regardless
of the method of handling and detecting geometric infeasibility, it is always beneficial to
reduce the occurrence of infeasible models. The simplest method for reducing the occurrence
of geometrically infeasible models is to introduce lower and upper parameter bounds, which
can be in the form of linear (Figure 7a), non-linear function bounds (Figure 7b), or complex
bounds (Figure 7c).

For simple problems, the introduction of bounds can completely avoid the occurrence
of infeasible models, while for complex problems it reduces the probability of the occurrence
of the infeasible candidates. For this reason, optimization algorithms must include a
method for dealing with geometrically infeasible candidates.

In general, a geometrically infeasible candidate is discarded while the new candidate
takes its place. To generate a replacement candidate, Zarko et al. [25,32] randomly initialize
the entire parameter set (13) until a geometrically feasible replacement candidate appears.
The drawback of this method is a possible rejection of candidates with some good properties.
Moreover, this method may lead to slow convergence to the optimal solution if the optimal
candidate is on the boundary of the feasible space.

The alternative approach is forced feasibility, where each infeasible design is subjected
to parameter modification until feasibility is achieved (i.e., barrier 1 (blue) and barrier 2
(yellow) are modified until the candidate achieves the specified flux carrier width wga),
Figure 6d). This approach requires smart parametrization with minimum feasibility con-
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straints and can potentially be extremely complex. On the other hand, potential benefits
include reduced optimization time (no need to wait for a random feasible design to emerge)
and faster convergence to the final result. The substitution of infeasible candidates is
implemented in the form of a projection onto the feasible space (Figure 7d).

Projection operator can be mathematically written as:

pP= min[(forig - J_C»new) ’ Q(forig - fnew)T]/ 17)
Q=1. . . .| (18)
VX pew € RP

where X.ig represents parameter vector of original, geometrically infeasible candidate,
Xnew is its geometrically feasible replacement/alternative, and Q is weighting matrix (18) in
which its coefficients control the projection path (1, 2, and 3 in Figure 7d). If all coefficients
satisfy g1.p = 1, projection is orthogonal, and the new geometrically feasible candidate is
closest to the original infeasible candidate.

Ark(,", b
wk—lt,k ( )
A7‘1.:—1

out

w . di—1,k
goal — Ry, €[1.561,1.88]

Force feasibility
to constraint

Overlap detected

Figure 6. Empirical flux carrier width range (a); feasibility check parameters (b); infeasible geometry
(c) and forced feasibility (d).
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X2 x2
(U}
T
(D)} .
Ty
L U L U
L P
(a) (b)
€2 x2 ® Infeasible candidate
> Projection path
. ® Feasible candidate
(L) 5\)
Y2 (1) v
.Tl xl T T
(c) (d)

Figure 7. Optimization function bounds: (a) simple, (b) non-linear, and (c) complex. Candidate
projection on feasible space (d).

5.2. Forced Feasibility Algorithm

For simplicity, the functionality is explained using two barrier SyRM (Figure 6b—d).
The first step is geometry generation based on the parameterization approach from
Section 3 (Algorithm 1: In: 1-5). The next step is to compute the variables dy_1 x, Wk 1k, Wgoal
(Figure 6b) and check whether the infeasibility condition is satisfied (Algorithm 1: In: 11).
The design may be infeasible for one of two reasons: there is a barrier conflict (wy_1 x < 0)
or the flux carrier width is too small (wy_1 4 < wgear)- If not feasible (Figure 6¢), proceed to
forcing feasibility (Algorithm 2).

The purpose of the force feasibility function (Algorithm 2: In: 1) is to provide the
current position information of the barrier (wgoa1, dk 1k, A, k-1, Figure 6b) and pro-
vide minimally modified barrier offsets (Ar,’{om, Arfcilm), defining a new feasible design
(Figure 6d). The minimal deviation is secured via MATLAB function FMINCON func-
tion [33]. FMINCON default input parameters are listed in Algorithm 2: In: 2-7, where x,
represents the current barrier offset vector.

During the search, FMINCON iteratively calls COSTFCN, which is responsible for
the convergence of the search (calculates the deviation of the generated x and the initial
offset vector x.), and CONSTRAINTFCN which calculates the deviation of the generated flux
carrier width (w) from the carrier width (wg,). When the algorithm converges, FMINCON
returns Ar{com, A"llc—li,,' and a new feasible geometry is generated (Figure 6d).

In summary, when the system detects an infeasible case, such as in the example shown
in Figure 6b, where 1st and 2nd barriers overlap, Arpoye and Arqiy are iteratively modified
until flux carrier width wg, is reached (Figure 6d). This prevents the generation of too
thin or too wide barrier geometries and improves the optimization procedure. The flux
carrier width is randomly generated according to the equation wgoa = di—1x/ Ry, in
the range Ry, = [1.561,1.88] (Figure 6a). The range is empirically derived from several
optimized designs.
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Algorithm 1 Check feasibility function

1: Get:

2: 16y, > Virtual barrier mid points
30 A1y ke > Barrier outer offsets
4 Ary g, > Barrier inner offsets
5: Ry, , — Rnd([1.561,1.88]) > Flux carrier width goal ratios
6: function CHECKFEASIBILITY

7 for k=2:Np;riers dO

> Calculate distance between virtual barrier mid points

8: dk—l,k = er,l - er
> Calculate flux carrier width
9 w1k = (g, — Arey,) — (rg + A,
> Calculate minimal flux carrier width
10 Weoal = dkfl,k/ka
11: if W1k <Oor W1k < Wgoal then
> Barriers are not feasible, force feasibility
12: function FORCEFEASIBILITY(
Wooals Ak—1kr DT kyer DTk—1,,)
13: .
. / /
14: return Arkm, Arkflm

Algorithm 2 Force feasibility function

1: function FORCEFEASIBILITY

2 A, B, A¢q, Beg =[] > empty FMINCON parametes
3 opt — default > Use default FMINCON options
4  Ib=[0 0 > Lower minimization bounds
5 ub = [dr_1x  dr_14] > Uppper minimization bounds
6 x9 =0.5-ub > Initial guess
7 xc = [Arg,,, Arg_q,] > Minimization goal

> Find a solution which satisfies constraints and minimally changes input parameters x, via
FMINCON function

8: function FMINCON(COSTFCN, x¢, B, Aeq, Beg, b, ub, CONSTRAINTFCN, Wgoay, dk—1k, Xc, 0P,
k)
> FMINCON iteratively calls COSTFCN, CONSTRAINTFCN and returns values which satisfy
the constraint(s) with minimal deviation from current offset vector x,

. / /
10: return Arkw, Arkfli,,

11: function COSTFCN(x, x,, k)
> COSTTFCN is responsible for result search convergence

12: f=(x—x)2
13: F = Sum(f)
14: return F

15: function CONSTRAINTFCN(X, Wgoal, dk—1k)
> CONSTRAINTFCN calculates the deviation of generated flux carrier width from the goal

width
16: x(1) = Arg,
17: X(Z) — Ark,lin
18: w=(rg_, +x(2)) — (rg, +x(1))
19: = dk*l,k — x(l) — X(Z)
20: P=wg —w
21: return P

. / /
22: return Arkm, Arkilm
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Overall, this system does not discard randomly generated infeasible geometry, but mod-
ifies it until feasibility is achieved (hence the name “forced” feasibility). A similar procedure
can be implemented for any problem that can be described by smooth analytic functions
implemented as user-defined CONSTRAINTFCN.

5.3. Handling of Inequality Constraints

Inequality constraints usually arise from various electromagnetic, thermal, mechanical,
manufacturing, economic, or normative limits, such as maximum flux density in the stator
tooth, maximum magnet temperature, maximum stress in the rotor bridge, minimum
magnet dimensions, maximum active material cost, maximum noise, etc. [32].

The traditional approach to constraint handling uses penalty functions to penalize the
solutions that violate the constraints. This principle is implemented in terms of weighted
sums that modify each objective function. Despite the popularity of penalty functions,
they have several drawbacks. The most important is the need for careful fine-tuning of
the penalty factors responsible for efficiently approximating the feasible range. Moreover,
this method may suffer from problems related to poor choice of weighting factors, which
may affect convergence. In this paper, we use an improved constraint function algorithm
developed by Zarko et al. [34].

Inequality constraints for this particular case are defined in Table 5. The constraint
function g; checks rotor structural factor of safety at maximum over-speed (1.2 - 1max).

Table 5. List of inequality constraints.

No: Constraint Description Symbol Limit

g1 Stress yield factor at 1.2 - #1max FOSpin >2

f0) Magnetostatic torque at 1, Tstatic >600 Nm
93 Flux density in stator yoke Bsy,max <16T

4 Flux density in stator tooth Bst max <18T

g5 Power factor COS Prmin >0.6

96 Torque ripple with skewing Tripple,max <10 %

The procedure related to constraint function g, contains several subfunctions designed
according to ultra-fast scaling laws [29]. Multiple magnetostatic FEA calculations are per-
formed to find the maximum torque versus current phase advance curve and to determine
the optimal maximum torque-per-ampere (MTPA) control angle by polynomial fitting (the
input machine has one turn per coil and one parallel path). The number of turns per coil
and the number parallel paths of the machine is then matched to the required base speed.
The optimization initially assumes a fixed stack length (Table 2, parameter s max). If the
calculated torque at Is max is smaller than required, the machine design does not satisfy
the constraint. Finally, it is checked whether the stator phase current is smaller than the
maximum inverter current; otherwise, the constraint is not satisfied. After this step, all
magnetostatic calculations are completed. The results are extracted and evaluated in the
following constraint functions. Constraint g3 checks the maximum stator yoke flux density,
while g4 checks the maximum tooth flux density. The purpose is to penalize the high
saturation and the designs with increased iron losses.

Finally, a transient FEA calculation is performed at base speed to determine the power
factor, average torque, torque ripple, and terminal voltage. Constraint g5 checks the power
factor. The primary goal in this ePTO optimization case study was maximization of the
average torque, while torque ripple was of secondary importance, therefore being handled
in the constraint (gg). As a torque-ripple mitigation option, a rotor skew was selected.
Skewing angle is one stator slot or 360° /36 = 10° mechanical degrees [35]. Without loss of
generality, other more affordable, or more practical, torque-ripple mitigation techniques
can be applied to this problem [36,37]. In addition, torque ripple can be included as another



Energies 2021, 14, 2744

13 of 16

optimization objective so that the design trade-off is made on the Pareto front of torque
versus torque ripple.

If all constraints are satisfied, the final step is to compute the objective function
f (19). n is the efficiency, and Tizans skew is the transient torque with applied rotor skew.
The constants 700 and 0.96 represent scaling coefficients, which are used for combining
torque and efficiency within a single objective function. Furthermore, these values are
important for proper optimization convergence and were intentionally chosen to be larger
than the peak torque and efficiency at the base speed to constrain the objective function to
values < 2 (important for the final comparison of the optimization convergence of forced
feasibility and randomly generated geometries).

Tirans skew n
= —r—= 4 " 1
f="70 T09% (19)

6. Optimization Results

Five consecutive optimization runs of the DE algorithm with population size NP = 24
of geometries generated both randomly and with forced feasibility were performed (results
in Tables 4 and 6).

To reduce optimization time and compare both approaches, most of the design parame-
ters were taken from a previously optimized design [3]. Twenty-eight parameters were frozen
(Table 2), and only 7 parameters were used for optimization (Table 3). This trade-off yields
the same average objective function result (difference is +0.05%).

The average number of generations required to achieve convergence in the random
generation case is 115.6, and 95.6 in the forced feasibility case, which is a reduction of 17.3%.
In addition, in terms of computation time, the average convergence of forced feasibility is
3.34 h shorter (12.3% reduction).

When comparing the average torque results (Tians skew), oth approaches yield prac-
tically the same outcome (Table 4). The remaining results (7, Bsy,max, Bst,max, c0s @, Tripple)
are identical for forced feasibility and random generation. This is expected for two reasons:
most of the parameters were taken from Reference [3], and the optimization algorithm
is the same. Finally, the identical results confirm that forced feasibility does not affect
negatively the optimization outcome.

Table 6. Optimization results.

Random Generated Forced Feasibility

Generation f t [h] Generation f t[h]
89 1.8129 20.3 77 1.8136 18.9

91 1.8124 21.2 87 1.8145 212

106 1.8128 24.9 88 1.8132 21.9

132 1.8128 31.5 94 1.8133 23.8

160 1.8124 37.5 132 1.8133 329

Average Average

115.6 1.81266 27.08 95.6 1.81358 23.74

Table 4 summarizes the optimized rotor parameters for both optimization approaches.
As mentioned earlier, the most important result is the fact that all parameters are greater
than zero (neither the inner nor the outer blocking line sticks to the virtual centerline) and
VA, 7 VAT, . All optimized cross sections are shown in Figure 8, which confirms that
the position of the centerline of the virtual barriers does not affect the optimization result.
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91

Figure 8. Comparison of optimized geometries in case of random generated and forced
feasibility approach.

7. Conclusions

This paper demonstrates a novel automatic design procedure of SyRM rotor with mini-
mum number of geometric parameters, which simplifies the design generation and reduces
the optimization time. The presented procedure is implemented into an existing single
objective DE optimization algorithm framework which interrupts evaluation of constraint
functions when the inequality constraint is violated, thus saving computation time.

The second paper contribution is the introduction of novel forced feasibility con-
cept which improves optimization convergence proved by successive comparative opti-
mization runs with randomly generated rotor barrier geometries. The results show that
properly implemented forced feasibility leads to a further reduction in optimization time
(12.3% shorter).

The machine design originally presented in Reference [3] has 21 optimization vari-
ables. The entire optimization process took 7 days. Without the forced feasibility method,
the process would be 12.3% longer (approximately 1 additional day). Considering that the
optimization time is proportional to the number of parameters (i.e., a two- layer V-shape PM
machine may have 44 parameters), it can be concluded that the total calculation time can be
significantly reduced by using forced feasibility approach on different machine topologies.
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Synchronous Reluctance Machine for actuation of Electric Multi-purpose Vehicle Power Take-Off”
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Abbreviations

The following abbreviations are used in this manuscript:

EV Electric vehicle

DE Differential evolution

eMPV  Electric multipurpose vehicle
ePTO  Electric power take-off

FEA Finite element analysis

IPM Interior permanent magnet machine
MTPA  Maximum torque per ampere

PM Permanent magnet

PTO Power take-off
SyRM  Synchronous reluctance machine
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