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Abstract: Non-Intrusive Load Monitoring (NILM) refers to the analysis of the aggregated current and
voltage measurements of Home Electrical Appliances (HEAs) recorded by the house electrical panel.
Such methods aim to identify each HEA for a better control of the energy consumption and for future
smart grid applications. Here, we are interested in an event-based NILM pipeline, and particularly
in the HEAs’ recognition step. This paper focuses on the selection of relevant and understandable
features for efficiently discriminating distinct HEAs. Our contributions are manifold. First, we
introduce a new publicly available annotated dataset of individual HEAs described by a large set
of electrical features computed from current and voltage measurements in steady-state conditions.
Second, we investigate through a comparative evaluation a large number of new methods resulting
from the combination of different feature selection techniques with several classification algorithms.
To this end, we also investigate an original feature selection method based on a deep neural network
architecture. Then, through a machine learning framework, we study the benefits of these methods
for improving Home Electrical Appliance (HEA) identification in a supervised classification scenario.
Finally, we introduce new transfer learning results, which confirm the relevance and the robustness
of the selected features learned from our proposed dataset when they are transferred to a larger
dataset. As a result, the best investigated methods outperform the previous state-of-the-art results
and reach a maximum recognition accuracy above 99% on the PLAID evaluation dataset.

Keywords: Non-Intrusive Load Monitoring (NILM); Home Electrical Appliances (HEAs); identifica-
tion; feature selection; transfer learning; deep learning

1. Introduction

During the last decades, the electricity consumption in the residential sector increased
steadily with the worldwide population growth and became a major ecological issue. Prior
studies show that a real-time feedback down to the HEA level can help to effectively
reduce consumption, with almost 15% of energy savings [1]. For consumers, the main
advantages are the control and the understanding of their electricity consumption through
a transparent access and a promptly forwarded information. For utilities, it can improve
the load-forecasting accuracy and provide a basic scheme to set up energy management
strategies [2]. In this context, Non Intrusive Load Monitoring (NILM) methods offer an
efficient answer, since they provide a breakdown of the residential energy consumption
without instrumenting each HEA.

Here, we are interested in event-based NILM systems, where the current and volt-
age measurements are recorded using a single sensor connected to the house electrical
panel [3–7]. An event detection method is used to predict the changes in the aggre-
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gated power signals that occur at each HEA’s operating state [6]. Then, relevant features
that meet the additive criterion [8] (which is required for the subsequent steps) are com-
puted to recognize the HEA electrical signature that triggered an event using a pattern
matching method.

NILM encounters several challenges that concern the correct identification of HEAs.
Indeed, in a house, a broad range of HEAs can be present, and many of them can rely
on the same electrical behavior [9–11]. Hence, discerning the most relevant and informa-
tive features is of paramount importance for any NILM application whose performances
depend on the HEA signature uniqueness [4,9,12]. This is the reason why an HEA must
be described by a reduced number of relevant features. To date, prior studies have fo-
cused on HEA recognition performance and often involve non-physics-related and difficult
to interpret features. This is the case for the features provided by deep convolutional
neural networks (CNN), which can suffer from the robustness issue with adversarial ex-
amples [13,14], which require the use of attention mechanisms [15]. However, only a few
works investigate in detail the role and the meaning of Feature Selection (FS) methods in
NILM problems when addressed through a pattern recognition approach [16–20].

Thus, this study aims at filling the gap by investigating different FS techniques to tackle
the HEA identification problem in a supervised machine learning scenario when a large
number of electrical features are available and when HEAs from distinct manufacturers
belonging to the same device category are considered. The goal is to show the benefits
provided by FS in terms of HEAs’ classification performance and interpretability, and
for enhancing the generalization capability by reducing overfitting of the trained models.
Thus, transfer learning [21], which deals with the generalization capability of the selected
features for different datasets, is also an important NILM challenge that is investigated in
this study.

This paper is organized as follows. In Section 2, the addressed problem is formulated.
In Section 3, we introduce the two HEAs’ datasets considered in this study. In particular,
we present a novel dataset of HEAs’ current and voltage measurements in steady-state
conditions, and we detail the electrical features computed from these measurements.
In Section 4, several FS methods are presented. Two of them that are novel are detailed:
a heuristic forward method and a method based on a trained Dense neural network.
Finally, in Section 5, the selected features are used in combination with several classification
algorithms on both considered datasets to demonstrate the importance of selecting the
suitable combination of features and classification algorithm. The paper is concluded with
future work directions in Section 6.

2. Problem Statement
2.1. Supervised HEA Identification

From the values of a set of features describing a unique HEA signature, we aim at
identifying the closest pre-registered HEA, referred to (according to the machine learning
literature) as a class. To this end, we use a supervised machine learning framework trained
on an annotated dataset. The overall HEAs’ recognition problem can be illustrated in the
flowchart of Figure 1, which also includes references to the paper sections where each
method is detailed. During the training step, several features (or descriptors) deduced
from voltage and current HEAs’ measurements are first computed and used to derive a
discriminative model for each HEA. Then, the most discriminant features are automati-
cally selected to obtain the optimal classification accuracy. During the test and operating
procedures, the selected features are computed from the observed measurements to predict
the class of the corresponding HEA.

Since this work is motivated by HEA recognition for energy consumption estimation
and prediction, the same appliance type can thus be considered from a different class
when the HEA is recorded at different power levels, or when its energy consumption
sufficiently differs due to a different manufacturing brand. Hence, we use a larger and more
complicated classification taxonomy than those commonly used for HEA identification
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in the literature. From another hand, we only consider loads in steady-state condition
because switching on (or off) introduces transient signals or fluctuations which are often
not sufficient to accurately characterize an HEA. In fact, transients are also affected by HEA-
independent factors such as the time on the voltage waveform where the HEA is switched
on/off, the network impedance, supply voltage distortion, the sampling frequency or the
switching on/off mechanism [22]. To deal with transient signals and state change detection
for multiple HEA recognition, the reader can for example refer to a multivariate statistical
approach recently proposed in [6,23].

input voltage
and current

measurements

class labels

Computation
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input voltage
and current

measurements

of p electrical features

Feature selection

of d<p optimal features

Class modeling

(classifier training)
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Figure 1. Flowchart of the general process for supervised HEA identification.

2.2. Features Selection for HEA Identification

Let F = { f1, f2, . . . , fp}, with fi ∈ R, ∀i ∈ [1, p] be the overall set of p features.
The FS process aims at finding the optimal subset of features F′ ⊆ F that maximizes the
identification accuracy such that its cardinality verifies card(F′) = d ≤ p [24]. This process
induces several benefits such as avoiding the curse of dimensionality and overfitting
phenomenon [25], improving the classification performance with the removal of non-
discriminating features and decreasing the computational cost by only collecting the
needed features. In contrast to the other dimensionality reduction techniques [24], FS does
not change the original meaning of features and therefore allows further interpretation by a
domain expert. Our work consists in evaluating several feature selection techniques when
applied to an HEA recognition scenario, in terms of recognition accuracy and in terms of
robustness by investigating two distinct datasets and several classification methods.

2.3. Transfer Learning

The last challenge addressed in this study concerns transfer learning [21], which con-
sists in using the knowledge extracted from a given dataset to tackle a new problem based
on a different dataset with a different setup and classification taxonomy. The investigated
datasets can be of different natures since they use different recording protocols, different
grid properties and different annotation taxonomies. This main motivation is to show the
validity and the generalization capability of the selected features from one dataset to an-
other. To this end, we introduce a novel dataset recorded on a French grid (utility frequency
at 50 Hz) which is different from the other existing publicly available datasets such as
PLAID [26], which was recorded recorded in the USA grid with utility frequency at 60 Hz.
Hence, our new proposed dataset contains a large variety of HEA types including new
ones such as LCD and Plasma TV, Coffee maker, and oven.

3. Materials
3.1. HEAs Datasets

To test the performance of an NILM technique, it is important to consider real data.
Due to the challenges in the creation of such datasets, mainly related to the required
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time and the high costs involved, we investigated in this study two data sets that are
freely available: the PLAID dataset [26], which is shared online and is used as common
reference, and our novel publicly available dataset freely accessible at http://dx.doi.org/
10.21227/ww76-d733). Both datasets contain individual HEAs measurements which are
convenient for extracting features, training models, conducting performance evaluation
and performing benchmarking on a common basis. Indeed, some existing datasets include
scenarios of multiple simultaneous loads [27]. However, before conducting disaggregation
(i.e., decomposing the whole energy consumption of a dwelling into the energy usage of
individual HEAs), it is important to build an initial signature database that is key to many
NILM techniques.

For both datasets considered in this study, a class of HEA corresponds to a brand of
a category of HEA, e.g., the class “Incandescent light bulb-Electrix-soft white”, which is
distinct from the HEA class “Incandescent light bulb-Philips Durama”. Furthermore, we
only consider steady-state conditions, and we extracted for each class of HEAs in both
datasets several periods of the current and voltage steady-state waveforms. Indeed, during
HEAs’ switching On/Off, momentary fluctuations of the current and voltage signals occur
before settling in to a steady-state value. These fluctuations are called transients and can
characterize a given HEA. However, one major drawback of the switching transients is
their reproducibility, since they can be affected by HEA-independent factors.

3.1.1. PLAID Dataset

This dataset [26] contains current and voltage measurements sampled at 30 kHz from
11 different HEA types present in more than 60 households in Pittsburgh, Pennsylvania,
USA. The goal of this dataset is to provide a public library for high-frequency measurements
that can be used to assess existing or novel HEA classification algorithms. There are 11
categories of HEAs, which correspond to: air conditioner, compact fluorescent lamp,
fridge, hairdryer, laptop, microwave, washing machine, bulb, vacuum, fan, and heater.
Each category of HEA is represented by more than ten different instances. For each HEA,
three to six measurements are collected for each state transition (i.e., on/off changing state).
As mentioned, we only consider the steady-state operations, and we extracted for each
class of HEAs in the PLAID dataset several periods of the current and voltage steady-state
waveforms such that we have a total of 71 HEAs (with different categories and brands) and
n = 36, 720 distinct recordings (also called individuals in the statistical terminology).

3.1.2. New Proposed Dataset

We introduce a novel publicly availabledataset containing 24 categories of HEAs
(e.g., fans, fridges, washers, etc.) considered with distinct brands (35 types) and that were
recorded at several power levels to lead us to a total of 61 considered HEAs. For HEAs
with a wide variety of operational programs or adjustable settings such as temperature or
intensity, we recorded all power consumption patterns and considered that an HEA power
level corresponds to a specific class of HEA, although power consumption patterns refer to
the same device. Figure 2 lists the considered categories of HEAs.

http://dx.doi.org/10.21227/ww76-d733
http://dx.doi.org/10.21227/ww76-d733
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Number Category of HEA Number Number Category of HEA Number Number Category of HEA Number
of HEAs of power of HEAs of power of HEAs of power

levels levels levels

2 Flat iron 1 1 Plasma TV 1 1 Microwave 1
1 LCD TV 1 2 Hand Mixer 1 1 Washing machine 9
1 Fryer 1 1 Coffee Maker 1 1 Rice cooker 2
1 Waffle iron 1 2 Laptop 1 1 Vacuum 1 5
1 Iron 1 2 Fridge 1 1 Vacuum 2 2
1 Fan 3 1 Oven 2 1 Radiator 3
2 Hair dryer 4 2 LED lamp 1 3 Kettle 1
3 Incandescent lamp 1 1 Iron 1 2 Low energy lamp 1

Figure 2. Measured appliances included in our new proposed dataset.

The HEAs have been recorded in steady-state conditions in a French 50 Hz electrical
grid. The measurement setup consists of an AC current probe (E3N Chauvin Arnoux) with
a 10 mV/A sensitivity and a differential voltage probe with a 1/100 attenuation. Voltage
and current waveforms were captured by an 8-bit resolution digital oscilloscope (RIGOL
DS1104Z). The sampling rate was set at fs1 = 250 kHz for some of the recordings and
fs2 = 50 kHz for the other part. Electrical assembly and instrumentation are depicted
in Figure 3. Hence, each HEA of this dataset is described by 8 periods of the current
and voltage steady-state waveforms, resulting consequently in a set of n = 8× 61 = 488
distinct individuals.

Figure 3. Electrical assembly and instrumentation.
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3.2. Electrical Features Computed from Current and Voltage Measurements

We can describe the different HEAs using 90 features extracted at each voltage period
summarized in Table 1. The detail of their computation was introduced in [19], based on
the latest IEEE 1459-2010 standard for the definition of single phase physical components
under non-sinusoidal conditions [28,29]. From the voltage v(t) and current i(t) signals, we
compute the Fourier coefficients vak, vbk, iak and ibk, using the following formulas:

xak =
2
M

M−1

∑
m=0

x[m] cos(2πmk f0/ fs), xbk =
2
M

M−1

∑
m=0

x[m] sin(2πmk f0/ fs) (1)

where x[m] = x(m/ fs) is the sampled discrete-time signal, fs is the sampling frequency, f0
the utility frequency (e.g., 50 Hz in France) and M = fs/ f0. From these Fourier coefficients,
the following features can be computed for any harmonic rank k ∈ N.

• The Root Mean Squared (RMS) value of the kth harmonic component of the voltage Vk
and currents Ik, and their sum VH and IH :

Vk =

√
v2

ak + v2
bk

2
, Ik =

√
i2ak + i2bk

2
, VH =

√√√√ 15

∑
k=2

V2
k , IH =

√√√√ 15

∑
k=2

I2
k (2)

• The RMS voltage V and current I:

V =
√

V2
1 + V2

H , I=
√

I2
1 + I2

H (3)

• The kth harmonic component of the active, reactive, and apparent powers Pk, Qk, Sk,
and their sums PH , QH , SH :

Pk =
1
2 (vakiak + vbkibk) PH =

15

∑
k=2

Pk (4)

Qk =
1
2 (vakibk − vbkiak) QH =

15

∑
k=2

Qk (5)

Sk = Vk × Ik SH = VH × IH (6)

• The active, reactive apparent, and distorsion powers P, Q, S, and D:

P = P1 + PH , Q = Q1 + QH , S = V × I, D =
√

S2 − P2 −Q2 (7)

• The voltage and current total harmonic distortion THDV and THDI :

THDV =
VH
V1

, THDI =
IH
I1

(8)

• The voltage and current distortion powers DV and DI :

DV =VH I1, DI =V1 IH (9)

• The non-fundamental apparent power SN :

SN =
√

D2
I + D2

V + S2
H (10)

• The voltage and current crest factors for m ∈ [0, M− 1]:

FCV =
max |v[m]|

V
, FCI =

max |i[m]|
I

(11)
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• Finally, the global and harmonic power factors Fp and Fpk:

Fp =
P
S

, Fpk =
Pk
Sk

(12)

Table 1. Summary of the proposed electrical features [19]. The features colored in red meet the
additivity criterion given by Equation (13).

Electrical Features Name Number of Computed Features

Effective current I and its harmonics Ik for k ∈ {1, . . . , 15} and IH (A) 17

Active power P and its harmonics Pk for k ∈ {1, . . . , 15} and PH (W) 17

Reactive power Q and its harmonics Qk for k ∈ {1, . . . , 15} and QH (VAR) 17

Apparent power S and its harmonics Sk for k ∈ {1, . . . , 15} and SH , SN (VA) 18

Current harmonic distortion THDI 1

Distortion power D, DI , DV (VAD) 3

Power factor Fp and Fpk for k ∈ {1, . . . , 15} 16

Current crest factor FCI 1

Total 90

Since the NILM problem consists in the breakdown of an unknown mixture of HEAs
into a set of identifiable HEAs signatures possibly belonging to a database, it is important
to consider the electrical features that meet the additivity criterion [8] such that:

f (v, i) =
Ns

∑
n=1

f (v, in) for i =
Ns

∑
n=1

in (13)

where f (v, i) is an electrical feature, v is a vector of voltage, i a vector of current samples
acquired during one voltage period and Ns is the number of HEAs that are simultaneously
switched on. Thus, when an HEA is connected (resp. disconnected) to the power network,
an “additive” feature is increased (resp. decreased) by an amount equal to that produced by
this HEA operating individually. Among the 90 features, p = 34 features meet the additivity
criterion and are reported in red in Table 1. This property is required for extracting HEAs
features from an aggregated signal and for comparing them with the dataset of individual
HEAs signatures. For example, a change detection method as proposed in [6] can be used
in order to separate the distinct contribution of each HEA when several ones are switched
on simultaneously. Hence, this study only focuses on the additive features computed for a
unique observed HEA. Both datasets are stored in an n× p normalized matrix X̄, where
the p = 34 features detailed earlier are in columns and have been normalized with a zero
mean and a unit standard deviation.

4. Feature Selection

Existing approaches for feature selection can be categorized into filter-based methods
and wrapper-based methods [30,31]. Filter-based methods perform FS independently of
the classification process. Features are individually assigned to relevance scores, which are
assumed to reflect their usefulness in the classification task. Hence, the features are sorted
by descending order of the obtained score of relevance [32]. Filter-based methods are often
computationally faster but are known to be less accurate than other approaches. On the
other hand, wrapper-based methods use the classifier of interest to score feature subsets
according to the classification accuracy. This allows selecting an optimal subset of features
that maximizes the classification accuracy with an improvement of the computational
cost [32].
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4.1. Investigated Feature Selection Methods

This paper investigates the methods listed below, which are comparatively assessed
in the remainder. More details are given to the sequential forward FS method and our
original contributions concerning the DNN methods, in light of the other methods’ litera-
ture review.

4.1.1. Existing Methods

• Principal Component Analysis (PCA) can be used as a filter-based method based on
the maximization of the dataset dispersion [33,34].

• Linear Discriminant Analysis (LDA) can be used as a supervised filter-based method
maximizing the separation between classes (see Section 5.1).

• Mutual Information (MI) is a filter-based method measuring the amount of informa-
tion each feature conveys from the class labels [35].

4.1.2. New Proposed Sequential Forward Method

This approach is an iterative wrapper-based FS method that aims at maximizing
the classifier accuracy when adding each feature one-by-one [30,36–39]. The first iter-
ation starts with an empty set of selected features, and each feature f ∈ F, where F
is the set of p features, is tested individually using a given classifier (in this study, we
used LDA and K-nearest-neighbor (KNN) presented in Section 5). The feature that maxi-
mizes the classification accuracy (Acc) [40] of the training dataset is the first one selected.
Then, each remaining feature is added to the set of previously selected features, and the
same process is applied to find again the highest accuracy. The iterative feature selection
ends once further feature addition yields no accuracy improvement. The proposed method
is presented hereafter in Algorithm 1.

Algorithm 1 Sequential forward FS algorithm

Input: dataset Xn,p, whole set of features F, ground-truth labels Y

Output: Set of sorted features Fp

1: Initialization: F0 ← ∅

2: for k← 0 to p− 1 do

3: for f ∈ F r Fk do

4: F+ ← Fk ∪ { f }

5: evaluate (LDA or KNN classifier, Xn(F+), Y)

6: compute Acc(F+)

7: end for

8: Select the best remaining feature:
fk ← arg max

f∈FrFk

Acc(Fk ∪ { f })

9: Update feature set: Fk+1 ← Fk ∪ { fk}

10: end for

11: return Fp

4.1.3. New Proposed Deep Neural Network (DNN) Feature Selection Method

This method is inspired by [41], which is a filter-based approach that uses our proposed
neural architecture. It uses the sum of the trained weights of the first layer neurons as a
score of relevance of the input features.

Deep learning uses a combination of agents (the neurons) to learn high-level non-linear
relationships and correlations in the analyzed data. Such methods can tackle complicated
problems and become a promising approach for smart grid applications [42]. Here, we
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use a dense fully connected DNN architecture [43], where each neuron of the input layer
is associated with a feature fi as presented in Figure 4. Our architecture is made of
one input layer with p neurons and 2 hidden blocks containing one layer of 128 dense
formal neurons including a Batch Normalization (BN) combined with a dropout layer.
The output y of each neuron can be expressed as a function of an input vector x ∈ RN

such as:

y = g

(
w0 +

N

∑
i=1

wixi

)
(14)

where g is the neuron activation function chosen as REctified Linear Unit (RELU) defined
by g(x) = max(0, x) except for the last output layer, which uses the softmax activation
function [44]. The wi coefficients (w0 being the bias) are the synaptic weights, which are
learned during the training process. In our implementation, we choose w0 = 0 and we
use a BN of the output, which was shown to improve the training performances [45] when
applied on the activation of each neuron. Thus, we have BN(y) = y−µ

σ , where µ and σ are
the mean and the standard deviation computed from the processed training batch defined
with a size equal to 64. Each dropout layer is defined to randomly discard 10 % of the
connected input layer and is used in order to reduce overfitting [46]. The last layer of
our proposed DNN model applies a softmax activation function on each output neuron
(each output neuron is associated with a prediction class) returning output values in [0, 1].
This value corresponds to the probability of predicting the analyzed input as a member of
class i. Hence, the final output label corresponds to the class index which maximizes the
resulting probability of the last layer such as ŷ = arg maxiyi, yi being the output of neuron
i of the last layer. The proposed DNN is designed for classification or regression problems;
however, we propose here a new feature selection method based on the trained weights of
each neuron. Following this idea, we consider the sum of the weights of all the neurons
of the first layer linked to the same input feature as a score of relevance for this feature.
The DNN is trained on the studied datasets using cross-entropy [43] as a loss function.

input layer

drop out drop out

...

...

...

B
N

B
N

B
N

B
N

B
N

B
N

output layer

ar
g
m

ax

Figure 4. Diagram of the proposed deep neural network architecture with L hidden layers.

4.2. Feature Selection Results

In the context of event-based NILM [6], the selection of features meeting the additivity
criterion matters. Each FS method, among the five ones previously presented in Section 4.1,
is then applied on the two datasets considered in this study (see Section 3.1), where each
HEA is represented by a vector of p = 34 features meeting the additivity criterion (see
Section 3.2). Datasets are centered and reduced in order to get an (n× p) matrix X̄ with a
zero mean and a unit standard deviation. This is obtained by applying the same operation
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as used for the Batch Normalization described above (subtracting the mean and dividing
by the standard deviation of each individual). For the FS methods based on a feature
relevance score, we sort the features by descending order of relevance, and then we select
the subset before the highest decrease in the relevancy score. The results obtained on our
own dataset and the PLAID dataset are reported in Tables 2 and 3.

Table 2. Results of the features selection methods applied on the proposed dataset.

Method
Features Meeting the Additive Criterion

# Features Selected Features

P1, Q1, P7, Q3, Q, P, P3,
KNN based sequential forward FS method 12 PH , P5, Q5, QH , Q9

P1, Q, P, Q9, Q3, P3, P2,
LDA based sequential forward FS method 18 P10, Q4, P4, P6, P9, Q8, P13,

P8, Q15, Q5, Q11

P1, P, P5, Q, Q1, QH , PH ,
MI 20 P7, P15, P9, Q5, Q7, P13, Q3,

Q9, P11, Q13, P3, Q15, Q11

Q, Q1, P3, P9, P7, PH , Q5,
PCA 17 P11, Q9, P6, Q3, Q11, Q7, P15,

P12, Q6, P8

P7, Q, Q1, P9, P3, Q5, PH ,
LDA 14 Q7, P11, P5, Q9, P, P1, Q11

Q9, P3, PH , P12, Q15, Q5, Q12,
DNN 27 P6, P9, Q8, P7, Q4, P5, QH ,

P11, Q2, Q3, Q11, Q14, P10, P1,
P, P2, P4, P8, P13, P14

Table 3. Results of the features selection methods applied on PLAID dataset.

Method
Features Meeting the Additive Criterion

# Features Selected Features

PH , Q, P1, P3, QH , Q5, P5,
KNN based sequential forward FS method 25 Q3, Q1, Q7, P15, Q2, P, Q13,

P12, P7, Q15, Q9, P13, P9, P10,
Q10, Q11, Q12, Q8

LDA based sequential forward FS method 33 All features except Q9

P3, PH , P1, P, Q1, Q, Q9,
MI 20 Q7, P7, P5, Q5, QH , Q3, P9,

Q11, P11, Q13, Q15, P15, P13

PCA 31 All features except P14, Q, Q1

P3, PH , P15, Q13, Q5, QH , Q15,
LDA 12 P9, P7, Q3, Q9, Q7

PH , Q11, P3, P9, Q9, P15, P5,
DNN 17 Q7, P7, P10, Q3, QH , Q12, Q13,

Q15, P13, P6
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The following observations can be made according to the obtained results:

• For both datasets, some features such as P, P1, PH , Q, Q1, or QH are present regardless
of the used FS method;

• For both datasets, the features selected by the DNN method for FS and by the PCA
method are diversified in terms of harmonic orders;

• For both datasets, the features selected by the MI and LDA methods are related to
odd-order harmonics, which describe the power supply structures included in most
of the HEAs;

• For the sequential forward FS method, our experiments compare the results provided
by the Euclidean-based KNN classifier (where the neighborhood parameter is set
to K = 7) and to the LDA classifier. The number of nearest neighbors is set to 7
because it is the closest odd number to the number of instances in a class in the
proposed dataset, so that for each neighborhood, there is a majority vote. The selected
features are those that reach the maximum accuracy [47] reported in Tables 2 and 3.
For our dataset, only 12 features allow maximizing the KNN classifier accuracy and
18 features maximize the accuracy of the LDA classifier (see Figure 5). For the PLAID
dataset, 25 features allow maximizing the KNN classifier accuracy and 33 features
maximize the LDA classifier accuracy (see Figure 6). The low accuracy reached by the
LDA classifier in the PLAID dataset can be explained by the unbalanced training sets
(where one or several classes outnumber the other classes) [48]. Indeed, LDA is known
to not provide good performances in this setting since classification is generally biased
towards the majority classes. It is observed that for the LDA classifier, the accuracies
less rapidly reach a plateau than for the KNN. Indeed, the KNN is known to be
affected by the overfitting phenomenon [49,50], which increases the distance between
individuals of the same class and decreases the accuracy. The classifier cannot deal
with the feature relevance and is more sensitive to FS than other classifiers such as
LDA, which can handle irrelevant features [51].
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Figure 5. Classification success rate as a function of the number of the features on our dataset using KNN and LDA
classifiers with the subset of p = 34 features meeting the additive criterion.
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Figure 6. Classification success rate as a function of the number of the features on the PLAID dataset using KNN and LDA
classifiers with the subset of p = 34 features meeting the additive criterion.

5. Home Electrical Appliances Classification Results
5.1. Investigated Classification Methods

We investigate four classification methods that can be combined with the different
feature subsets provided by the FS methods presented in Section 4.

• The KNN method is widely used by the NILM community for HEAs’ identifica-
tion [12,52]. We use the Euclidean distance and K = 7, which corresponds to the
closest odd number to the number of instances in a class in the proposed dataset.
Hence, the predicted class corresponds to the most represented one in the neighbor-
hood through majority voting.

• The LDA method estimates the optimal linear combination between features using
the eigenvectors of the projection matrix (B + S)−1B of dimension p × p, where

B = 1
n

K

∑
k=1

nk(gk− g)(gk− g)T and S= 1
n

K

∑
k=1

nkVk, where Vk are the covariance matrices

built from the corresponding nk individuals (number of individuals of class k ∈

{1, . . . , K}); g = 1
n

n

∑
i=1

x̄i and gk = 1
nk

nk

∑
i=1

x̄i correspond to the mean over all the

individuals of the whole dataset X̄ and the mean over all the individuals in the class k,
respectively. Then, the tested individuals are projected into the discriminative linear
space before being assigned to the class whose centroid is the closest in terms of the
Euclidean distance.

• The proposed DNN classification method uses the same fully connected DNN ar-
chitecture as presented in Section 4.1.3 for FS. Our implementation is based on
tensorflow/keras (https://keras.io/). The training is completed with a batch size
equal to 64 and a maximal number of 350 epochs (one epoch is reached each time the
whole training dataset is processed once). The optimization is completed using the
RMSprop algorithm [43] with a learning rate set to η = 10−3.

• The Random Forest (RF) classification method creates a set of decision trees and aggre-
gates the votes from the decision trees to predict the class of the tested individuals [53].
The number of trees was set to 5 after experimental tuning to get the best results.

https://keras.io/
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Other classification methods such as Support Vector Machine (SVM) [8] or Adaboost [54]
were not evaluated in this study because they require a very high computation cost, and
our preliminary results did not reveal a significant accuracy improvement in comparison
to the four investigated methods.

5.2. Classification Test Procedure

The evaluation of the classification performances uses an 8-fold cross validation
methodology, which randomly splits the dataset into eight equal partitions, which are indi-
vidually tested using the seven remaining partitions for training. This process is repeated
eight times, until all subsamples have been used for cross validation [55]. The number
of folds was arbitrarily set to 8 so that 12.5% of the studied dataset corresponds to the
test set and the remaining 87.5% to the training set. The final metrics for classification
performances were then computed by merging the results of each partition.

Our results are expressed in terms of the classical classification metrics used for
NILM—Accuracy (Acc), FMeasure (FM), Recall (Rec) and Precision (Pre) [40,47]—which
are deduced from the computed confusion matrices. Thus, if we denote C a resulting
confusion matrix of dimension I × I (I being the considered number of classes), where Cij
corresponds to the number of individuals of the true class i (row) predicted as being in the
class j (column), the Accuracy, Precision, and Recall are computed as:

Acc =
∑i Cii

∑i ∑j Cij
Prec =

1
I ∑

i

Cii

∑j Cji
Rec =

1
I ∑

i

Cii

∑j Cij
(15)

where n = ∑i ∑j Cij is the total number of individuals. The F-measure (also called F- or
F1-score) is the harmonic mean of the Precision and Recall, computed as:

FM = 2
Prec · Rec

Prec + Rec
(16)

We also present the ratio Acc
# f eatures , which measures the efficiency and allows us to

judge on the right combination of FS method and classifier. Indeed, the goal is to achieve
the highest accuracy for a small number of descriptors. A large ratio means that a high
accuracy is reached with a small number of selected features. Each method is evaluated on
both datasets.

5.3. Self-Database Results

Sections 5.3.1 and 5.3.2 present the classification success rate as a function of the
provided subset of selected features used to describe each HEA. Overall results using
our new proposed dataset are summarized in Table 4 for which the details are provided
in Table 5. The results obtained using the PLAID dataset are summarized in Table 6
where the details are presented in Table 7. The confusion matrices of the best methods are
also presented in Appendix A. We also compare the results with the active and reactive
powers (P,Q) which are the usual features proposed in the NILM literature [56]. The results
show the clear improvement provided by the FS methods on each evaluated dataset.
In addition, to study how noise influences our training, we have trained the studied
classifiers using the selected features and Data Augmentation (DA) [57]. For this, both
studied datasets are 100 % augmented by adding a white Gaussian noise to the current
signals of each HEA class, to obtain an Signal to Noise Ratio (SNR) = 20 dB (defined as

10 log10

(
||x||2
||b||2

)
, with x the original signal amplitude and b the noise signal). This leads

to new augmented datasets containing noisy current signals, from which we compute
the 34 features meeting the additive criterion. Then, for each original dataset, we apply
cross-validation for classification evaluation using the selected features in Section 4.2 and
the classification methods used in Section 5. The experiment setup also consists of an 8-fold
cross-validation experiment, where the original datasets were partitioned into eight. For
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each of the 8 simulations, 20% of each HEA class of the noisy generated dataset was added
to the training set. No noise was added to the test part that was used for performance
generalization for each of the eight simulations in our experiments. The success rate of a
classification method for a specific subset of selected features was obtained by calculating
the average scores of the performances metrics used in Section 5. All the results presented
in the following tables are ranked in descending order of the best FM scores.

5.3.1. Proposed Dataset

Table 5 shows that the RF classifier outperforms all the other classifiers. This is consis-
tent with the findings of X. Wu et al. in [53], where an accuracy equal to 98.0% was found
using eight steady-state features (which do not meet the additive criterion). These authors
showed the advantages of RF classifier over KNN. In our experiment, RF classifier obtains
the best recognition rate equal to 99.18% with the features selected by the MI method and
DA, and 98.15% of accuracy when combined with LDA feature selection method without
DA. This leads to a ratio (Acc/# feat.) of 7.01 and a computational time that is very low.
It can be observed that the classifier performances are also better when data is artificially
augmented during training. The confusion matrix depicted in Figure A1 shows that 20% of
tested individuals that belong to class index 4 “Fan-Coala level 1” are classified as class
index 5 “Fan -Coala Level 2” and 10% of the tested individuals belonging to class index
1 “Electric mixer Moulinex” are classified as class index 7 “Fan-Coala Level 3”. Interest-
ingly, the performance of the DNN method is improved by a suitable choice of relevant
descriptors as confirmed by the usage of the MI and the DNN featurs selection methods.
Indeed, DNN classifier usually obtains the best results when using all the considered fea-
tures. This point is of interest to develop new strategies to improve the training efficiency
of DNN when used on a small training dataset. Finally, it can be observed that the results
obtained with the DNN classifier are lower than those obtained for the PLAID dataset in
Table 7. This can be explained by the small size of the training dataset. Indeed, DNN is
known to require a large number of data to efficiently be trained. It can also be observed
that for most of the classifiers, data augmentation by the addition of white Gaussian noise
can significantly improve the results. Table 4 depicts the average FM scores obtained for
each FS method considering all the studied classifiers. It can be seen that the odd order
harmonics features selected by the MI method are the ones for which the best average FM
score is reached.

Table 4. Average FM scores obtained for the several different feature subsets selected for the proposed
dataset (61 classes, n = 488) over all considered classifiers. Results are sorted in descending order of
F-measure.

Feature Selection Method FM Average (%)

MI 92.96

KNN based Seq. forw. FS method 92.58

LDA 92.42

All features 90.92

LDA-based Seq. forw. FS method 90.14

PCA 87.64

P,Q features 86.62

DNN 84.87
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Table 5. Performance (in percentage) of the classification methods applied on the proposed dataset using different feature
subsets from the additive feature set (61 classes, n = 488). Results are sorted in descending order of F-measure.

Methods (Selected Features/Classifier) Results

Feat. # feat. Classifier D.A Acc. FM Rec. Pre. Acc.
#feat.

MI 20 R.F Yes 99.18 99.17 99.18 99.30 4.95

LDA 14 R.F Yes 98.56 98.52 98.56 98.71 7.04

P,Q features 2 R.F Yes 98.15 98.15 98.15 98.24 49.07

All features 34 R.F Yes 98.15 98.14 98.15 98.28 2.88

KNN-based Seq. forw. FS (K = 7) 12 R.F Yes 97.74 97.71 97.74 97.99 8.14

LDA 14 R.F No 98.15 97.67 97.43 98.15 7.01

KNN-based Seq. forw. FS (K = 7) 12 R.F No 98.15 97.60 97.33 98.15 8.17

MI 20 R.F No 98.15 97.54 97.23 98.15 4.90

DNN 27 R.F Yes 97.34 97.32 97.34 97.60 3.60

P,Q features 2 R.F No 97.74 97.06 96.72 97.74 48.87

MI 20 LDA Yes 96.92 96.83 96.92 97.55 4.84

LDA-based Seq. forw. FS 18 LDA No 97.54 96.72 96.31 97.54 5.41

DNN 27 LDA Yes 96.72 96.62 96.72 97.49 3.58

LDA-based Seq. forw. FS 18 LDA Yes 96.72 96.57 96.72 97.43 5.37

LDA-based Seq. forw. FS 18 R.F Yes 96.31 96.29 96.31 96.77 5.35

PCA 17 R.F Yes 96.31 96.25 96.31 96.70 5.66

All features 34 LDA Yes 96.31 96.18 96.31 96.84 2.83

DNN 27 LDA No 96.93 96.14 95.77 96.91 3.59

LDA 14 LDA Yes 95.69 95.59 95.69 96.32 6.83

KNN-based Seq. forw. FS (K = 7) 12 KNN No 96.72 95.76 95.29 96.72 8.06

All features 34 KNN Yes 95.69 95.53 95.69 96.82 2.81

MI 20 KNN Yes 95.49 95.27 95.49 96.73 4.77

DNN 27 R.F No 96.31 95.22 94.67 96.31 3.57

MI 20 LDA No 96.31 95.21 94.67 96.31 4.81

LDA-based Seq. forw. FS 18 R.F No 96.31 95.21 94.67 96.31 5.35

MI 20 DNN No 96.31 95.08 94.47 96.31 4.81

KNN-based Seq. forw. FS (K = 7) 12 KNN Yes 95.28 95.02 95.32 96.68 7.94

LDA 14 KNN Yes 95.28 95.01 95.28 96.65 6.80

LDA-based Seq. forw. FS 18 KNN Yes 95.27 95.01 95.28 96.49 5.29

P,Q features 2 KNN Yes 95.28 94.97 95.28 96.66 47.64

All features 34 LDA No 96.10 94.94 94.36 96.10 2.82

All features 34 R.F No 96.10 94.91 94.33 96.10 2.82

PCA 17 R.F No 95.90 94.87 94.39 95.90 5.64

KNN-based Seq. forw. FS (K = 7) 12 LDA Yes 95.28 94.86 95.28 96.34 7.94

KNN-based Seq. forw. FS (K = 7) 12 LDA No 95.90 94.60 93.95 95.90 7.99

PCA 17 LDA Yes 94.46 94.37 94.46 95.48 5.55

LDA 14 LDA No 95.69 94.33 93.65 95.69 6.83

P,Q features 2 KNN No 95.08 93.44 92.62 95.08 47.54

PCA 17 LDA No 94.67 93.06 92.28 94.67 5.57
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Table 5. Cont.

Methods (Selected Features/Classifier) Results

Feat. # feat. Classifier D.A Acc. FM Rec. Pre. Acc.
#feat.

LDA 14 KNN No 94.46 92.96 92.21 94.46 6.74

PCA 17 DNN No 93.64 92.15 91.48 93.65 5.51

P,Q features 2 LDA Yes 93.23 91.85 93.23 93.69 46.61

All features 34 DNN No 93.24 91.34 90.44 93.24 2.74

P,Q features 2 LDA No 93.23 90.98 89.85 93.23 46.61

KNN-based Seq. forw. FS (K = 7) 12 DNN No 92.62 90.40 89.34 92.62 7.72

MI 20 KNN No 91.60 89.21 88.01 91.59 4.58

LDA-based Seq. forw. FS 18 DNN No 90.98 88.48 87.39 90.98 5.05

LDA 14 DNN No 92.01 89.89 88.99 92.01 6.57

DNN 27 KNN Yes 87.09 86.18 87.09 89.46 3.23

LDA-based Seq. forw. FS 18 KNN No 88.11 84.35 82.51 88.11 4.89

DNN 27 DNN No 86.27 82.70 88.99 92.01 3.20

DNN 27 KNN No 85.86 81.39 79.17 85.86 3.18

All features 34 KNN No 84.43 80.31 78.36 84.43 2.48

PCA 17 KNN Yes 81.14 79.87 81.14 82.58 4.77

PCA 17 KNN No 82.37 78.18 76.25 82.37 4.84

All features 34 DNN Yes 77.05 76.07 77.05 79.51 2.27

LDA 14 DNN Yes 76.84 75.40 76.84 77.41 5.49

MI 20 DNN Yes 76.84 75.33 76.84 77.18 3.84

KNN-based Seq. forw. FS (K = 7) 12 DNN Yes 76.02 74.70 76.02 77.51 6.33

PCA 17 DNN Yes 74.59 72.35 74.59 75.47 4.39

LDA-based Seq. forw. FS 18 DNN Yes 70.70 68.45 70.70 70.50 3.93

P,Q features 2 DNN No 71.52 66.43 64.28 71.52 35.76

P,Q features 2 DNN Yes 63.32 60.05 63.32 59.19 31.66

DNN 27 DNN Yes 45.08 43.36 45.08 45.34 1.67

5.3.2. PLAID Dataset

In Table 7, we can notice the improvement brought by FS approaches combined with
the KNN classifier. Indeed, the obtained ratios (Acc/# feat.) are all greater, which denotes
the fact that KNN classifier needs a small number of features to reach excellent accuracy.
The best ratio (Acc/# feat.) of 47.29 is obtained when using KNN with P, Q features,
which are usually considered for HEAs’ identification in the NILM literature, but the
reached accuracy is only of 94.58%. The best accuracy of 99.19% is reached for only
25 features selected by the KNN-based sequential forward-FS method with and without
data augmentation (according to the confusion matrix depicted in Figure A2, 10% of the
tested individuals belonging to class index 7 “Incandescent light bulb-Electrix-soft white”
are classified as class index 8 “Incandescent light bulb-Philips Duramax”). However, an
accuracy of 99.13% with a very good ratio Acc

# f eat = 4.96 is obtained when considering
the subset of 20 features selected by the MI method with the KNN classifier. As we
seek to achieve the best identification rates (close to 99% of accuracy) for the smallest
number of selected features, this combination classifier/selected features is a good trade-off.
This allows the KNN classifier to slightly exceed the performances reached by the RF
classifier with the 20 features selected by the MI method (98.91% of accuracy).
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In contrast to our dataset, the high number of individuals (n = 36 720) eases the
DNN to learn the features from the dataset and to figure out that an important number of
features is reliable and should be used. Our results outperform the previous ones reported
in [58] for the PLAID dataset using the VI trajectories features, where an F-measure of
FM ≈ 77% is given. This validates the efficiency of our approach consisting in carefully
selecting features before classification. Combining RF classifier with features selected by
the KNN-based sequential forward FS method also allows us to exceed the performances
obtained in [18], where authors also used an RF classifier applied on PLAID dataset using
an optimal subset of 20 steady-state and transient features (selected through a systematic
feature elimination process) and were able to reach an accuracy of 93.2%. The performances
obtained by the LDA are the worst ones. As mentioned, this can be explained by the fact
that the LDA classifier struggles when the number of individuals is very large, resulting
in individuals overlapping between classes. In almost all the cases, data augmentation
improves or slightly modifies the classification performance for all methods (exception for
the KNN classifier). Finally, Table 6 depicts the average FM scores obtained for each FS
method considering all the studied classifiers. The same observation as the one made for
the proposed dataset can be made: the odd order harmonics features selected by the MI
method are the ones for which the best average FM score is reached.

Table 6. Average FM scores obtained for the several different feature subsets selected for the PLAID
dataset (71 classes, n = 36,720) over all considered classifiers. Results are sorted in descending order
of F-measure.

Feature Selection Method FM Average (%)

MI 85.80

LDA based Seq. forw. FS method 85.07

KNN based Seq. forw. FS method 85.05

All features 84.56

PCA 83.53

DNN 82.52

LDA 81.61

P,Q features 58.31

Table 7. Performance (in percentage) of the classification methods applied on PLAID dataset using different feature subsets
from the additive feature set (71 classes, n = 36,720). Results are sorted in descending order of F-measure.

Methods (Selected Features/Classifier) Results

Feat. # Feat. Classifier D.A Acc. FM Rec. Pre. Acc.
#feat.

KNN-based Seq. forw. FS (K = 7) 25 KNN No 99.19 98.63 98.81 98.56 3.97

KNN-based Seq. forw. FS (K = 7) 25 KNN Yes 99.09 98.54 98.25 98.90 3.96

LDA-based Seq. forw. FS 33 KNN No 99.07 98.50 98.71 98.39 3.00

LDA-based Seq. forw. FS 33 KNN Yes 99.02 98.50 98.21 98.83 3.00

All features 34 KNN No 99.07 98.49 98.69 98.40 2.91

PCA 30 KNN No 99.00 98.46 98.60 98.41 3.30

DNN 17 KNN No 98.99 98.45 98.62 98.41 5.82

MI 20 KNN No 99.13 98.43 98.43 98.53 4.96

DNN 17 KNN Yes 98.94 98.41 98.14 98.74 5.82

All features 34 KNN Yes 99.07 98.38 98.09 98.81 2.91
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Table 7. Cont.

Methods (Selected Features/Classifier) Results

Feat. # Feat. Classifier D.A Acc. FM Rec. Pre. Acc.
#feat.

MI 20 KNN Yes 99.03 98.33 98.23 98.48 4.95

PCA 30 KNN Yes 98.95 98.28 98.00 98.69 3.30

MI 20 R.F No 98.91 98.27 98.50 98.18 4.95

LDA 12 KNN No 98.92 98.09 98.06 98.18 8.24

LDA-based Seq. forw. FS 33 R.F No 98.75 97.97 98.20 97.91 2.99

All features 34 R.F No 98.79 97.88 98.09 97.89 2.91

KNN-based Seq. forw. FS (K = 7) 25 R.F No 98.80 97.85 98.00 97.85 3.95

LDA 12 KNN Yes 98.76 97.84 97.64 98.06 8.23

DNN 17 R.F No 98.58 97.74 98.14 97.54 5.80

PCA 30 R.F No 98.67 97.66 97.84 97.60 3.29

LDA 12 R.F No 98.60 97.62 97.99 97.51 8.22

LDA-based Seq. forw. FS 33 R.F Yes 98.23 97.22 96.88 97.70 2.98

KNN-based Seq. forw. FS (K = 7) 25 R.F Yes 98.19 97.14 96.69 97.78 3.93

All features 34 R.F Yes 98.25 97.04 96.67 97.53 2.89

PCA 30 R.F Yes 98.16 96.90 95.53 97.43 3.27

MI 20 R.F Yes 98.19 96.89 96.48 97.34 4.91

LDA 12 R.F Yes 97.88 96.86 96.43 97.40 8.16

MI 20 DNN Yes 98.32 96.78 96.38 97.63 4.92

DNN 17 R.F Yes 97.96 96.61 96.07 97.62 5.76

All features 34 DNN No 98.04 96.35 96.64 96.67 2.88

KNN-based Seq. forw. FS (K = 7) 25 DNN No 97.56 96.30 96.59 96.58 3.90

MI 20 DNN No 96.26 96.05 96.99 96.28 4.81

LDA-based Seq. forw. FS 33 DNN No 96.29 94.40 95.42 94.85 2.89

LDA 12 DNN No 95.52 94.10 95.10 94.09 7.96

LDA 12 DNN Yes 95.51 92.88 91.57 95.88 7.96

DNN 17 DNN No 94.55 92.41 94.03 92.52 5.56

PCA 30 DNN No 94.45 92.15 92.85 92.63 3.15

LDA-based Seq. forw. FS 33 DNN Yes 94.81 91.66 90.72 94.43 2.87

KNN-based Seq. forw. FS (K = 7) 25 DNN Yes 94.87 91.22 90.29 93.27 3.79

P,Q features 2 KNN Yes 94.43 90.91 91.75 91.68 47.22

P,Q features 2 KNN No 94.58 90.82 91.39 90.86 47.29

PCA 30 DNN Yes 91.19 90.82 88.99 94.33 3.04

DNN 17 DNN Yes 93.28 90.52 88.14 94.84 5.49

P,Q features 2 R.F No 93.79 90.31 90.50 90.60 46.90

All features 34 DNN Yes 90.33 86.33 85.00 89.60 2.66

P,Q features 2 R.F Yes 90.63 85.84 86.14 85.70 45.32

LDA-based Seq. forw. FS 33 LDA No 45.52 53.46 59.45 54.25 1.38

All features 34 LDA No 45.31 53.25 59.42 54.05 1.33

MI 20 LDA No 44.55 53.11 58.49 53.84 2.23

KNN-based Seq. forw. FS (K = 7) 25 LDA No 44.37 51.50 57.62 52.32 1.77
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Table 7. Cont.

Methods (Selected Features/Classifier) Results

Feat. # Feat. Classifier D.A Acc. FM Rec. Pre. Acc.
#feat.

P,Q features 2 DNN Yes 65.56 50.48 51.27 55.29 32.79

P,Q features 2 DNN No 65.52 49.75 52.58 52.45 32.76

PCA 30 LDA No 42.54 48.58 54.28 49.23 1.42

LDA-based Seq. forw. FS 33 LDA Yes 42.89 48.87 49.68 57.03 1.30

All features 34 LDA Yes 42.91 48.78 49.75 56.29 1.26

KNN-based Seq. forw. FS (K = 7) 25 LDA Yes 42.72 48.67 49.61 55.40 1.71

MI 20 LDA Yes 42.45 48.50 49.49 53.77 2.12

DNN 17 LDA No 40.65 46.79 54.21 46.85 2.39

PCA 30 LDA Yes 40.59 45.42 45.64 52.09 1.35

LDA 12 LDA No 38.66 40.40 47.43 40.75 3.22

DNN 17 LDA Yes 37.09 39.20 39.66 45.50 2.18

LDA 12 LDA Yes 36.08 35.88 35.49 41.93 3.00

P,Q features 2 LDA Yes 12.12 4.29 7.11 4.19 6.06

P,Q features 2 LDA No 11.59 4.05 3.65 7.55 5.80

5.4. Transfer Learning Results

Now, we propose evaluating if the features selected from a dataset are able to be
transferred to another dataset. For this, a cross-learning strategy is adopted for both
studied datasets. The goal is to study to what extent the features selected for a particular
dataset are invariant across HEAs and can be used to get good classification performances
in another dataset. Indeed, as several common features are selected from each dataset
separately, we assume that they convey common information that can be transferred from
one dataset to another. This approach allows us to reduce the number of training samples
from unknown HEAs. First, the subsets of selected features from the proposed dataset are
tested using the several classifiers presented previously and applied to the PLAID dataset.
The results are presented in Table 8. Very good results are obtained with the KNN, the
DNN, and the RF classifiers with the different subsets of selected features. The best ones
are obtained with the KNN classifier and particularly when combined to the MI feature
selection method, which allows us to obtain the best performances with only 20 features.
Figure A3 shows the tested individuals that were misclassified, such as the following:
10% of the individuals belonging to class index 7 “Incandescent bulb light - Electrix soft
white” were classified as class index 8 “Incandescent light bulb- Philips Duramax” or 10%
of the individuals in class index 39 “Laptop-HP-C24” were classified as class index 40
“Laptop-Apple macbook air”. Second, the subsets of selected features from the PLAID
dataset were tested using the several classifiers presented previously and applied to the
proposed dataset. The results are presented in Table 9. Very good results were obtained
with the RF and the LDA classifiers with the different subsets of selected features. An
accuracy of 98.77% was obtained when combining the RF classifier to the subset of features
selected with the LDA sequential forward-FS method. The confusion matrix in Figure A4
shows that 50% of the individuals belonging to class index 5 “Fan-Coala Level 2” were
classified as class index 4 “Fan-Coala Level 1”, and 50% of the individuals that belong to
class index 53 “Washing machine-LG state (b)” were classified as class index 58 “Washing
machine-LG state (g)”. Through cross transfer learning, we show that in both situations,
the features selected from another dataset improve the classification rate. There is therefore
transfer of knowledge on the discriminating “power” of the selected features.
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Table 8. Performance (in percentage) of the classification methods applied on the PLAID dataset using the different feature
subsets selected in the proposed dataset. Results are sorted in descending order of F-measure.

Methods (Selected Features/Classifier) Results

Feat. # Feat. Classifier Acc. FM Rec. Pre. Acc.
#feat.

MI 20 KNN 99.12 98.42 98.40 98.53 4.96

LDA 14 KNN 99.10 98.36 98.53 98.31 7.08

KNN-based Seq. forw. FS (K = 7) 12 R.F 98.99 98.36 98.48 98.35 8.25

KNN-based Seq. forw. FS (K = 7) 12 KNN 99.04 98.29 98.39 98.30 8.25

PCA 17 KNN 98.95 98.28 98.54 98.17 5.82

DNN 27 KNN 98.95 98.20 98.42 98.09 3.66

LDA-based Seq. forw. FS 18 KNN 98.92 98.14 98.331 98.13 5.49

LDA 14 R.F 98.96 97.95 98.09 97.94 7.07

MI 20 R.F 98.89 97.86 97.90 9791 4.94

PCA 17 R.F 98.77 97.84 98.04 97.79 5.81

LDA-based Seq. forw. FS 18 R.F 98.76 97.64 97.79 97.62 5.49

DNN 27 R.F 98.68 97.61 97.84 97.53 3.65

KNN-based Seq. forw. FS (K = 7) 12 DNN 98.08 96.83 97.40 96.87 8.17

LDA 14 DNN 97.85 96.35 97.10 96.32 6.99

MI 20 DNN 94.85 94.82 95.86 95.10 4.74

PCA 17 DNN 96.87 94.68 95.55 94.89 5.70

DNN 27 DNN 93.76 93.66 94.86 94.17 3.47

LDA-based Seq. forw. FS 18 DNN 95.76 93.18 94.22 93.43 6.32

MI 20 LDA 44.14 52.43 58.21 53.18 2.21

DNN 27 LDA 42.36 48.29 54.22 48.48 1.57

PCA 17 LDA 41.84 43.63 50.10 43.87 2.46

LDA 14 LDA 40.75 43.54 48.95 44.3 2.46

KNN-based Seq. forw. FS (K = 7) 12 LDA 37.73 38.23 42.81 40.30 3.14

LDA-based Seq. forw. FS 18 LDA 38.65 37.70 43.20 38.74 2.15

Table 9. Performance (in percentage) of the classification methods applied on the proposed dataset using the different
feature subsets selected in PLAID dataset. Results are sorted in descending order of F-measure.

Methods (Selected features/Classifier) Results

Feat. # Feat. Classifier Acc. FM Rec. Pre. Acc.
#feat.

LDA-based Seq. forw. FS 33 R.F 98.77 98.36 98.15 98.77 2.99

MI 20 R.F 98.76 98.36 98.15 98.77 4.93

KNN-based Seq. forw. FS (K = 7) 25 R.F 97.74 96.99 96.61 97.74 3.90

PCA 30 LDA 96.51 95.46 94.95 96.51 3.21

LDA 12 R.F 96.51 95.45 94.94 96.51 8.04

LDA-based Seq. forw. FS 33 LDA 96.31 95.18 94.63 96.31 2.92

KNN-based Seq. forw. FS (K = 7) 25 LDA 96.31 95.15 94.56 96.31 3.85
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Table 9. Cont.

Methods (Selected features/Classifier) Results

Feat. # Feat. Classifier Acc. FM Rec. Pre. Acc.
#feat.

MI 20 LDA 96.31 95.15 94.56 96.31 4.81

DNN 17 R.F 95.70 94.33 93.65 95.70 5.63

PCA 30 R.F 95.49 93.98 93.23 95.49 3.18

MI 20 DNN 93.85 92.14 91.32 93.85 4.69

LDA 12 LDA 93.64 92.07 91.29 93.64 7.80

DNN 17 LDA 93.44 91.67 90.78 93.44 5.50

LDA 12 LDA 92.62 90.50 89.48 92.62 7.72

KNN-based Seq. forw. FS (K = 7) 25 DNN 93.24 91.02 89.92 93.24 3.73

LDA-based Seq. forw. FS 33 DNN 92.62 90.67 89.75 92.62 2.80

MI 20 KNN 91.80 89.27 88.01 91.80 4.59

DNN 17 DNN 90.98 88.38 87.16 90.98 5.35

PCA 30 DNN 90.37 87.56 86.27 90.37 3.01

PCA 30 KNN 85.04 80.66 78.58 85.04 2.83

LDA-based Seq. forw. FS 33 KNN 84.42 79.84 77.66 84.42 2.55

LDA 12 KNN 83.81 79.57 77.52 83.81 6.98

KNN-based Seq. forw. FS (K = 7) 25 KNN 84.01 79.37 77.11 84.01 3.36

DNN 17 KNN 77.87 72.96 70.65 77.87 4.58

6. Conclusions

In this paper, we addressed one of the main challenges of the NILM problem consisting
in the HEA identification from electrical measurements. To this end, we covered a broad
sweep of existing supervised FS and classification methods to show the efficiency of this
approach for identifying distinct HEAs using the suitable set of relevant features.

As a first contribution, in addition to a novel publicly available dataset, we introduced
a comparative evaluation of a large number of methods in an event-based NILM context,
involving all the possible combinations of these techniques applied on two distinct anno-
tated HEA datasets where each HEA signature made of relevant features is extracted from
different categories and manufacturers.

Second, thanks to our proposed data augmentation and feature selection, we have
improved the best HEA identification results on the PLAID dataset by obtaining a resulting
classification rate above 99%. To our knowledge, this result outperforms the best available
results obtained with the PLAID dataset using state-of-the-art methods. Furthermore, in
this regard, validating our solution using two datasets has helped in (i) showing its high per-
formance despite the data collection procedure being different and (ii) proving its capability
to give very good results even if HEAs are from different categories and manufacturers.

Moreover, our results show that the number of extracted features can significantly
be reduced to efficiently perform HEAs recognition. A cross transfer learning strategy
was adopted by using the subsets of features selected by FS approaches applied to our
dataset to classify HEAs of the PLAID dataset and conversely. Very good results were
obtained, which confirms that the features selected with one dataset can be transferred to
another one.

Several conclusions can be safely drawn from this study. First, the selected electrical
features can be justified by the power supply topologies included in an HEA (the front-end
circuitry that connects them to the power grid), which affect their current waveforms.
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Each subset of selected features contains for the most part odd-order harmonics related
to power components. The performance of a designed classifier can be improved by the
use of an optimal subset of features. Some features, such as P, P1, PH , Q, Q1, andQH , are
retrieved in most of the subsets of selected features, which shows their importance for
HEAs’ identification. Secondly, several observations can be made according to the chosen
classifier: DNN requires many training data and works poorly on the small proposed
dataset (and works better on the PLAID dataset); LDA is sensitive to unbalanced datasets,
and it works less well on PLAID; KNN method is efficient and sensitive to the choice of
descriptors; RF is a state-of-the art method in automatic classification before the arrival
of deep learning and is robust and gives good results in most cases. In addition, the
augmentation of data shows that it is possible to improve in almost all cases classification
performance for all methods (exception for PLAID with KNN classifier). Finally, features
selected through FS methods in a dataset could be used to correctly identify unknown
HEAs from another dataset using, for example, an unsupervised statistical modeling
approach [6]. This addresses one of the biggest NILM challenges: generalization.
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Appendix A. Confusion Matrices

Figure A1. Confusion matrix from the proposed dataset obtained with RF classifier using the subset
of 20 features selected with the MI FS method.
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Figure A2. Confusion matrix from PLAID dataset obtained with KNN classifier using the subset of
25 features selected with the KNN based Seq. forw. FS method.
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Figure A3. Confusion matrix from the PLAID dataset obtained with KNN classifier using the subset
of 20 features selected with the MI FS method from the proposed dataset.
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Figure A4. Confusion matrix from the proposed dataset obtained with the RF classifier using the
subset of 33 features selected with the LDA based Seq. forw. FS method from the PLAID dataset.
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