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Abstract: The article presents the problems of diagnostics of low-power solar power plants with the
use of the three-valued (3VL) state assessment {2, 1, 0}. The 3VL diagnostics is developed on the
basis of two-valued diagnostics (2VL), and it is elaborated on. In the (3VL) diagnostics, the range of
changes in the values of the signals from the 2VL logic was accepted for the serviceability condition:
state {12VL}. This range of signal value changes for logic (3VL) was divided into two signal value
change sub-ranges, which were assigned two status values in the logic (3VL): {23VL}—serviceability
condition and {13VL}—incomplete serviceability condition. The state of failure for both logics applied
of the valence of states is interpreted equally for the same changes in the values of diagnostic signals,
the possible changes of which exceed the ranges of their permissible changes. The DIAG 2 intelligent
system based on an artificial neural network was used in diagnostic tests. For this purpose, the
article presents the structure, algorithm and rules of inference used in the DIAG intelligent diagnostic
system. The diagnostic method used in the DIAG 2 system utilizes the method known from the
literature to compare diagnostic signal vectors with the reference signal vectors assigned. The result
of this vector analysis is the metric developed of the difference vector. The problem of signal analysis
and comparison is carried out in the input cells of the neural network. In the output cells of the
neural network, in turn, the classification of the states of the object’s elements is realized. Depending
on the condition of the individual elements that make up the object, the method is able to indicate
whether the elements are in working order, out of order or require quick repair/replacement.

Keywords: neural networks; intelligent systems; servicing process; diagnostic process; expert system;
knowledge base; low-power solar plant devices; diagnostic information

1. Introduction

Artificial intelligence systems including neural networks are extensively elaborated
on in the literature, particularly in the studies [1–7]. These studies constitute a sufficient
compendium of knowledge concerning the principle of the functioning of artificial neural
networks. They also contain biological and mathematical bases of the structure and
functioning of the single neuron and the neural network. The authors described well
the theoretical bases of the construction of static neural networks, and ways of teaching
and training them. These studies can be useful when designing artificial neural networks
that function based on radial base functions, including their structures, teaching and
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practice [4,5]. The authors also made great efforts drawing up chapters concerning dynamic
neural networks, principles of their construction, teaching and training. A significant part
of these studies concerns the use of sets and fuzzy knowledge in the functioning of artificial
neural networks [8–11].

The papers [12–18] constitute the first item in the references. They cover the theory of
the operation of technical devices. They include a mathematical description of a model
of a technical object as regards its reliability and operation. The papers also present an
organization of the operation process with the use of the object’s models presented. The
authors also possess a lot of experience in diagnostic testing of technical devices, the effect
of which is their previous studies.

In recent years, the direction of technical diagnostics in particular has been intensively
developed with the application of artificial intelligence systems, including artificial neural
networks. A number of different aspects, which take into consideration the complexity
of the controlling process of industrial robots of different types and an adjustment of
technological systems, are taken into account in the research concerning controlling and
diagnosing systems of technical and technological processes [16–30].

The studies [2,10,11] may be of great practical significance in the organization of a
diagnostic system with the use of artificial neural networks. In these studies, a method
was presented that shows a practical use of the results of technical diagnostics in the
organization of a technical object operation system. In the research, an idea was presented
concerning a change in states in a technical object. As a result of it, there is a decrease of its
functional properties, i.e., a change in the state. Therefore, there occurs a necessity of an
effective diagnosis of this ensuing state in the object. In the case when the state diagnosed is
the state of an incomplete operable condition or non-operable condition, appropriate counteraction
is to be undertaken through the organization of prevention (a regeneration of the object).
In the aforementioned studies, the authors presented a diagram and a description of the
structure of an artificial neural network as well as theoretical dependencies that describe
the functioning of the network in accordance with the algorithm presented therein. The
theoretical bases concerning diagnosing of technical objects were also presented in the
trivalent logic with the use of an artificial neural network. The results of the study were
supported with an example of setting up of a diagnostic information base for the device
under examination [31,32].

In the diagnostics of technical objects, the object of action is the object itself. Its
purpose, structure and specificity of functioning impose (define) the method of diagnosis.
The problem of diagnosis described in this work concerns a complex technical object. The
paper presents the specificity of the construction and operation of these types of solar
power plant devices. A novelty in this article in the aspect of solar low-power plant devices
(L-PPD) is a presentation of the method of building and developing diagnostic knowledge
bases for the (L-PPD).

The authors of the article systematically improved the reliability condition testing of
technical devices by improving the method of testing the condition of the object, consisting
of an analysis of distance metrics resulting from a comparison of diagnostic signal vector
images with their patterns. For this purpose, solutions developed on the basis of artificial
intelligence and expert systems were used. The result of this work is a diagnostic computer
program: DIAG 2 [11,31–34].

In the literature, the experiments and research results of solar low-power plant devices
are presented in the following works [35–40]. In the article by Hwang et al. [34], multilayer
neural networks (MNN) were adopted for diagnostics of solar panels of solar street lamps.
The network type that was used was based on adaptive resonance theory 2 (ART2). The
voltage was applied in the duty cycle from unloaded panels as data to the two neural
networks. The paper by Ganeshprabu et al. [36] employs a distributed on-line monitoring
system based on the XBee wireless sensor network to monitor the operating parameters of
photovoltaic panels, such as the output current, voltage and module insolation, temperature
and environmental insolation. The paper by Jiang et al. [37] presents a method of automatic
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detection and diagnostics of faults in photovoltaic (PV) systems. It combines an artificial
neural network (ANN) with a conventional analytical method for fault detection and
diagnosis. A two-layer ANN network was used for power prediction. On the basis of the
difference between projected power and measured power, the open-circuit voltage and
short-circuit current of a PV module string that is determined by analytical equations, the
authors identify up to six defined fault types.

The article by Duer et al. [38] describes research issues related to two- and three-valued
logical diagnoses developed with the use of a diagnostic system (DIAG 2) for devices in-
stalled in a low-power substation. The paper also briefly presents the intelligent diagnostic
system (DIAG 2) used for the tests presented here. The diagnostic system (DIAG 2) works
by comparing a set of actual diagnostic output vectors with their main vectors. The result
of the comparison is elementary divergence metrics of diagnostic output vectors deter-
mined by the neural network. Elementary divergence metrics include differential distance
metrics that serve as input (DIAG 2) to compute the state of the basic elements of the test
object. Predicting the output power of various types of photovoltaic cells was the main
task of Artificial Neural Network (ANN) modeling in [39]. The method was used for three
types of cells: mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-)
crystalline. The results show the following order of efficiency in electricity production:
multi-, mono- and amor-crystalline cell types. Diagnostics of damage to photovoltaic
(PV) panels was the main topic of the article [40]. The presented method is based on the
analysis of the optimal characteristics of a fault on the basis of current-voltage (I–V) curves
from various faults, including hybrid faults. In addition, a deterministic algorithm for the
reflective confidence region was proposed in combination with a metaheuristic algorithm
for particle swarm optimization (PSO) to standardize the fault characteristics. Additionally,
the multiclass adaptive enhancement algorithm (AdaBoost) was used, which is a stagewise
additive modeling using the multiclass exponential loss function (SAMME) based on the
classification and regression tree (CART).

The article presents the problem of diagnosing of low-power solar plant devices
(a complex technical object) with the use of three-valued state evaluation (3VL). The
problem of diagnostics in three-state assessment has been developed intensively in the past
10 to 20 years. The basis for the development of three-valued diagnostics, as well as of two-
valued diagnostics, was the theory of three-state logic developed by J. Łukasiewicz, 1920.
For this diagnostics, Duer [33–35] is known in the literature. Three-state diagnostics {2, 1, 0}
differs from two-state diagnostics in the third state, i.e., state “1”, which is interpreted in
it. The “1” condition is referred to in the literature as an incomplete condition [2,10,11].
The article consists of four main chapters. The second chapter of the article presents the
diagnostic algorithm implemented in the DIAG intelligent diagnostic system. It presents
the diagnostic method used, which consists of comparing the diagnostic signal vectors with
the appropriate model diagnostic signal vector assigned to them. At this stage of diagnosis,
the metric of the vector divergence vector is determined. This first stage of the diagnosis
algorithm is implemented in the input cells of the neural network. The main stage of
diagnostics is performed in the output cells of the neural network. These cells classify the
states of the basic elements in the object on the basis of an analysis of the vector divergence
vector and assign it to one of the possible range changes in the value of signal metrics.
The third chapter describes the method of classifying states for fundamental elements. In
the output cells of the neural network, the states of the basic elements in the object are
classified on the basis of an analysis of the vector divergence vector and its assignment
to one of the possible interval changes in the values of signal metrics. The fourth chapter
presents a practical verification of the diagnostic method presented with the use of an
artificial neural network in the DIAG program for low-power solar plant devices (L-PSPD).

2. The Algorithm and Structure of an Artificial Neural Network SBM in the Program
of DIAG Intelligent Diagnosis System

The comparison method of images presented in the study constitutes in a general
sense a representation of a wider theory that is known in the literature as the theory
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of image recognition presented in the studies (Tadeusiewicz and Korohoda, 1997) [10].
Those methods that describe the types of the transformations information used in a given
moment of the image recognition theory are of different types. The following are the most
frequently applied transformations: the Fourier transform, the Gabor transform and the
wavelet transform as well as the Hough transform (describing a detection of straight lines).
The above solutions are justifiable and require their use during the transformations of
images with a great complexity (integration). In the case of simple images that describe,
e.g., a diagnostic signal in a vector form in the k-surface space that describes k-features
of the diagnostic signal. For analogue sinusoidal signals, the continuous features of the
signal are the amplitude, the repetition period, the pulsation (the angular velocity of the
phase change) and the initial phase. In such a situation, the methods used in practice
that identify images are considerably simpler. The metric measures of the determination
of the conformity of similarity of the image identified with its standard image belong to
these methods.

The literature includes a description of a wide group of the methods of neural networks
that realize the task of the determination of the similarity of objects, or a group of neural
networks that qualifies objects with certain distinguished features for the class as specified
for them. Both groups of methods are very similar to one another concerning the functions
realized. These network methods are frequently used interchangeably, e.g., networks from
the group of “similarity assessment” with the group of the networks of “nearest neighbors”
in the case of a required complementation, comparison of the quality of operation, etc. The
“nearest neighbors” method has numerous applications in the identification of standards
or otherwise in the time of a generalization of the features of an object that are described in
a multidimensional space, and these are networks known as pattern recognition [1–5,10].

In the diagnostics of technical objects, the methods of neural networks can be used
based on similarity, known as the networks of the type of similarity-based methods SBM
(Figure 1). In the literature, information is provided that the theory of similarity developed
independently from the development of neural networks as such and the development of
other methods applied in the problems of qualification. No such characterization of data
was found that would allow determining which method should be selected (applied) and
which methods would be most suitable for their qualification. Each of those researchers
who examine the reality in their scope of interests suitably to their needs proposes specific
methods that guarantee to him/her specific results and their quality.

Figure 1. Diagram of an intelligent effective diagnosing system of a complex technical object.

In the diagnostics of technical objects, the method of comparing diagnostic signals
with their model signals is commonly used. This diagnostic method is presented in the
literature [2,10,31–34] in the form of the following equation:

∀
ei,j∈{Ei}

∃
X(ei,j)∈X

X
(
ei,j
)
→ ∀

ei,j∈{Ei}
∃

X(w)(ei,j)∈X(w)

X(w)

(
ei,j
)
⇒W

(
ε
(
ei,j
))

(1)
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where the following stand for: W(ε(ei,j)) is the value of state assessment logics for jth
element within ith module, X(ei,j) is the diagnostic signal in jth element of ith assembly
of the object, X(w)(ei,j) is the model signal for X(ei,j) signal, → is a symbol of diagnostic
activities, Ei is the ith assembly of the object,⇒ is a symbol of comparison.

The majority of methods applied that determine similarity-based methods SBM orig-
inate from distance measurements (metric measures of distance measurements). This
transformation is realized with the use of the determined (sought) weighting function,
which sets the measure of similarity. In the studies of (Duch and Jankowski, 1999) [10], it
was presented that good results are obtained for minimum distance methods using the
Euclidean metric for given continuous data, or the Hamming measure for binary data.
Additional parameters that may be subject to optimization are either centrally–globally
(the same in the whole space) or locally (different for each reference vector). The distance
metric most frequently used from among neural network methods is Minkowski’s measure,
which possesses one global adaptation parameter (α) for (α = 2, this is Euclidean measure),
while for (α = 1, this is Manhattan measure).

In the process of modeling artificial neural networks, the relationship developed by
Minkowski is used with the (α = 2) condition in the form of the equation:

DM(Xi, X(w)I, α) = [
N

∑
i=1

(Xi − X(w)i)
α ]1/α (2)

where the following stand for:

• DM(Xi, X(w)i α) is the standard deviation of the vector the signal metric, (α = 2),
• X(ei,j) is the diagnostic signal in jth element of ith set,
• X(w)(ei,j) is the model signal for X(ei,j) signal.

The structure of the artificial neural network used in this article is a proprietary work;
it has already been used in publications [10,11]. The network (Figure 2) consists of three
layers: F1—input layer, F2—hidden layer and F3—output layer. The neural cells of the
network process diagnostic information according to the algorithm (Figures 3 and 4). The
entirety of the issues concerning processing of information (Figure 2) by the neurons
of the network takes place in the D-dimensional diagnostic space (ω) (Figures 2 and 3)
described with the elementary vectors of signals [Xi]. The input signal with the vector
form of Xi = [x1 , x1, . . . , xI ]

T is given to all the neurons of the input layer of the network.
In the cells of the memory of input layer (F1), the standard vectors of signals [X(w)i,j] are
recorded. The algorithm of information processing in a diagnostic artificial neural network
is presented in Figures 2 and 3.

Figure 2. Structure of an artificial neural network in the DIAG system.
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Figure 3. The algorithm of diagnostic program DIAG.

Figure 4. Diagram of the bases of diagnosing based on change to the k-th property of the diagnostic
signal, for concluding in three-valued logic (3VL).
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On this basis, neurons in the input layer calculate the measures of the metrics of
the similarity of the compliance of the vector of signal to its vector of the standard in
accordance with the following dependence:

∆X(n)I =
∣∣∣Xi − X(w)i

∣∣∣ (3)

Further, the Euclidean measure of the distance metric is calculated; it is presented in
the form of the following dependence (3):

In the comparative analysis of diagnostic signals, the special case of the Minkowski
measure was applied: when parameter (α = 2) [10]. Then, dependence (3) becomes the
Euclidean measure, which is commonly used by the network. Therefore, in the process
of input data processing, the transformation is used of input information, whose pur-
pose is to level off too large initial disproportions between the values in the individual
dimensions [2,10,11,31,32].

The standardization of data in such a manner that after their conversion the values
are within the range [0,1] constitutes a reliable and at the same time quite effective method.
The standardization of the metrics of the vectors of signals is realized in accordance with
the following dependence:

∆X(n)i =
Xi−X(w)i

DMi
(4)

where the following stand for:

• ∆X(n)i is the standardized vector of the distance metric of jth signal,
• DMi is the standard deviation of ith vector of signal metric,
• X(ei,j) is the diagnostic signal in jth element of ith set,
• X(w)(ei,j) is the model signal for X(ei,j) signal.

On this basis, the calculated dependences (3) and (4) in the input layer of values for
all the input vectors are the coefficients of weights σi,j = [σ1,1 ,σ1,2, . . . ,σI,J ]

T, where: i = 1,I;
j = 1,J. Weights (υi,j) in the connections of networks have the values from range [0,1].

In the ANN network presented in (Figures 2 and 3), neuron (i) is connected with
neuron (j) and sends the signal with value (Xi) with weight coefficient (wi,j) of the activation
function presented in the form of the following dependence:

fl(x, w) =
K

∑
i=1
σi,j ·Xi (5)

If ith neuron in the network is characterized by the smallest distance of the vector of
weights from the input signal, it accepts the value of “1” on its output, and the remaining
neurons accept the value of “0”; hence, the name is “the winner takes it all”.

Therefore, for jth neuron with the title of the winner it can be written that the stimula-
tion of this neuron is expressed with the following dependence:

D
(
xi, wi,j

)
= min1≤i≤Nd(xi,σi,j

)
(6)

where the following stand for:

• D: the measurement of the similarity of the signal.
• wi,j: weight coefficient
• σi,j: coefficients of weights.

Probabilistic measurements constitute an important category for the definition of the
distance function in SBM networks. For this purpose, in the cells (D) of the layer of hidden
networks, the probability distribution functions of the normalized metric for the distance
of the jth vector of the signal from its standard F(∆X(n)i) are calculated. In the cells of the
memory of the hidden layer, the values are recorded for the normalized distribution of
Gauss random variable. When required, the cells in the hidden layer calculate (read) the
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values of the probability distribution function for the normalized vector of the distance
metric of the signal feature for the random variable of metric (∆X(n)i). The limit value of
the probability distribution function for the normalized vector of the distance metric of
the signal feature (F(∆Xi)G) is calculated for the random valuable of metric (∆X(n)i =0),
where: (F(∆Xi)G) = 1. The neurons of the hidden layer of the network that realize the
calculation of the probability distribution functions for the normalized metrics of distances
for the Gaussian-type functions cause the determination of hyper-plane (χ) for the value
F(∆Xi)G, which is the standard (limit) value of the probability distribution function for the
normalized vector of the distance metric of signal feature. The hyper-plane (χ) constitutes
the limit of the decision between the classes of states (Figure 3). This plane is parallel to
two points determined with the decision-taking threshold (ς), which lie on a line parallel
to hyper-plane (χ).

On the further stage of information processing by the network, the neural cells in the
hidden layer of the network calculate the values of weight coefficients (υi,j) on the grounds
of the following dependence:

ρi,j =
∣∣∣F(∆X(n)i − F∆Xi )G

∣∣∣ (7)

where the following stand for:

• ρi,j: the coefficient of the incompatibility of the input signal vector similarity to its
standard vector,

• F(∆X(n)i): the determined value of the probability distribution function for the normal-
ized distribution concerning the normalized vector of the distance metric of the signal
feature,

• F(∆Xi)G: the limit value of the probability distribution function (for the normalized
normal distribution) concerning the normalized vector of the distance metric of the
signal feature.

Knowing the value of the incompatibility coefficient of the similarity of the input
signal vector to its standard vector (ρi,j), on the further stage of work of the network, cells
in the hidden layer calculate the compliance coefficient of the similarity of vectors on the
grounds of the following dependence:

ωi,j = 1− ρi,j (8)

where the following stand for:

• ωi,j: the compliance coefficient of the similarity of the input signal vector to its standard
vector.

On the further stage of the transformation of information in the cells of hidden layer,
the value of the output function is calculated on the grounds of the following dependence:

yl = f

(
K

∑
i=1
ωi,j·Xi

)
(9)

where the following stand for:

• yl: output function,
• ωi,j is the weight coefficient of the network.

3. The Method of the Classification of Elements’ States and the Determination of the
State of Objects in the Diagnosing Process in an Intelligent Diagnostic System

The essence of diagnostics with three-valued state assessment (3VL) is explained in the
article. The problem of 3VL diagnostics is developed on the basis of two-valued diagnostics
(2VL); its essence is presented in Figure 1. In the 3VL diagnostics, the range of changes in
the values 2VL of signals from 2VL logic is accepted, which is assigned the {12VL} state: the
serviceability for 2VL. In the three-valued state assessment, an additional inference rule
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was applied, in which the range of signal changes for the {12VL} serviceability state was
divided into two sub-ranges, in which two state values were assigned: {23VL}: the state of
serviceability in 3VL logic and {13VL} state: incomplete serviceability state. The state of
failure for both applied valences of states is interpreted for the same changes in the values
of diagnostic signals, which exceed the possible ranges of their changes; this situation is
presented in Figure 4.

As it is presented in the studies [1–7,10], the purpose of the diagnosis of an object is to
identify its state in the values of the valence logic of the assessment of states as accepted
by the researcher. Therefore, the decision-making process concerning the classification of
states in accordance with the decision threshold accepted in a given network is realized
in the output cells of the network. For this purpose, the results obtained in the form
of dependence (9) were subject to the process of classification according to the diagram
presented in (Figure 5).

Figure 5. Ranges of the changes of the output function values.

On the grounds of the values of the output function determined in the identification
process of states, the proper classes of the states of the object in the values of trivalent logic
{2, 1, 0} were assigned to them in the classification process of states (Figure 5).

Symbols in Figure 5 represent:

• (yl
1, yl

2) is the range of insignificant changes of the values of the output function,
• {(yl

1′ , yl
1) and (yl

2, yl
2′)} is the range of significant changes of the output function values,

• {(−∞, yl
1′ ) and (yl

2′ , +∞)} is the range of impermissible changes of the output func-
tion values.

The accepted classes of states are defined in the following way:

1. State of fitness: this constitutes the fitness of an element to which the state marked
with the value “2” was assigned. In this state, changes of the output function (yl)
values are within the following range:

Rw1 : I
Yk∈Y

{
Yk ∈

(
Y1

l , Y2
l

)}
⇒
(
εl = ε2

l

)
= {2} (10)

where the following stand for: Rw1 is the 1st rule of diagnostic inference, (Y1
l , Y2

l ) is
the range of irrelevant changes for the values of the features of signal,⇒ is a symbol
of comparison, {3} is the operable condition.

2. State of incomplete serviceability: this constitutes an incomplete serviceability of an
element, which the state marked with the value “1” was assigned to. In this state, a
change in the output function (yl) value is to be within the following range:

Rw2 : I
Yk∈Y

{
Yk ∈

(
Y1′

l , Y1
l

)
∪
(

Y2
l , Y2′

l

)}
⇒
(
εi = ε1

i

)
= {1} (11)

where the following stand for: Rw2 is the 2nd rule of diagnostic inference,
(

Y1′
l , Y1

l

)
∪(

Y2
l , Y2′

l

)
is the range of changes for the relevant values of the features of signal,⇒ is

a symbol of comparison, {2} is the incomplete operable condition.
3. State of unfitness: this constitutes an unfitness of a basic element, which was assigned

with the state marked with value “0”. In this state, the change of the output function
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yl values is outside the ranges of permissible changes (defined with the decision
threshold β of the network (Figure 5):

Rw3 : I
Yk∈Y

{
Yk ∈

(
−∞, Y1′

l

)
∪
(

Y2′
l ,+∞

)}
⇒
(
εl = ε0

l

)
= {0} (12)

where the following stand for: Rw3 is the 3rd rule of diagnostic inference,
(
−∞, Y1′

l

)
∪(

Y2′
l ,+∞

)
) is the inadmissible range for the values of the features of signal,⇒ is a

symbol of comparison, {0} is the condition of inoperability.

The results were obtained from the diagnosis of the object examined according to
the diagram presented in (Figure 4), which are calculated as a result of the realization of
dependences (10)–(12), which are set up in the form of the table of states (Table 1).

Table 1. Table of the states of the object’s elements.

Number of
the

Assembly
Vector of the States of Basic Elements in the Structure of the Object {ei,j}

ε (e1,1) . . . ε (ei,j) . . . ε (ei,J)

E1 W (ε (e1,1)) . . . W(ε (e1,j)) . . . W (ε (e1,J))

...
... . . . ... . . . ...

Ei W (ε (ei,1)) . . . W(ε (ei,j)) . . . ∅

...
... . . . ... . . . ...

EI W (ε (eI,1)) . . . W(ε (eI,j)) . . . W(ε (eI,J))
where the following stand for: W (ε (ei,j)) is the value of the state of jth element in ith unit (from the set of the
accepted trivalent logic of the assessment of states—{2, 1, 0}), ∅ is the element which complements the dimension
of the table, Ei is the ith functional assembly of the object.

4. Research and Results of the Determination of a Diagnostic Information of
Low-Power Solar Plant Devices (L-PSPD) with the Use of an Artificial Neural Network

In the diagnostics of low-power solar plant devices, the proprietary intelligent DIAG 2
system operating on the basis of an artificial neural network of the RBF type was used. The
descriptive part of the article presents the algorithm of the diagnostic method implemented
in the DIAG 2 intelligent diagnostic system. The diagnostic method presented in the
DIAG 2 system utilizes the method known in the literature [10,11] used for comparing
diagnostic signals with the appropriate standard diagnostic signal vector assigned to them,
cf. Relationship (1). The form of diagnostic information developed in the DIAG 2 system
is expressed in the three-valued state evaluation {2, 1, 0}. The result of this diagnostic
information from the DIAG 2 program is summarized in a tabular form: “Table states of
objects”. In order to carry out the tests accepted in a small solar power plant system, an
experimental stand was made, as shown in Figure 6.

Figure 6. Diagram of functional and diagnostic structure of low-power solar plant devices.
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The use of the DIAG 2 diagnostic system to carry out diagnostic tests requires that
a diagnostic study of the object examined be performed beforehand. The reader will
find examples and the manner of implementing this diagnostic intention in the following
paper: [10]. For the purposes of the research, a functional and diagnostic analysis of devices
in the low-power solar plant devices was carried out. The result of this analysis is a
designated set of ith functional units {Ei}. At the next stage of the analysis, the set of jth
basic elements was determined in each ith group {ei, j}. The functional units of the object
are presented in the DIAG 2 diagnostic system, and they are marked as “units”, while the
basic elements are marked as jth “elements”. The subassemblies in the ith assemblies of the
facility are considered third-level elements: “Modules” acting as “intermediate elements”.
The modules enable bidirectional transformation of the hierarchical form of an object into a
matrix internal structure presented in Figures 7 and 8.

Figure 7. Result form of DIAG 2 program for “Structure” module.

Figure 8. Technical object classification panel for “Signal values” module.
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Starting the DIAG 2 diagnostic system requires the attachment (saving in the program
memory) of the developed diagnostic measurement knowledge base. The measurement
base consists of diagnostic signals {X(ei,j)} appearing at the output of the jth object elements
and the associated diagnostic standard signals {Xw(ei,j)}. The set of the measurement base
developed for the DIAG program is presented in Figure 8.

The diagnostic state of the object examined in the DIAG system is determined on the
basis of an examination and analysis as well as comparing the image of the set of output
diagnostic signals with their image of the reference signal (nominal) (Figure 9) [2–11].

Figure 9. Program screen DIAG 2 in the form of “Diagnostic signals table”.

The DIAG diagnostic system develops the final form of diagnostic information in
one of two possible assessments of the state of the object with 2- or 3-valued logic. The
final form of diagnostic information about the states of the object examined is compiled
in the state table for 2VL-two-valued state evaluation, where the determined states are
determined by the value from the {1, 0} set (Figure 10).

Figure 10. The result form of the DIAG 2 program “Table of states of L-PSPD” for 2VL.



Energies 2021, 14, 2719 13 of 18

The diagnostic result in the bivalent assessment of 2VL states of low-power solar
power plant equipment is shown in Figure 10. The figure shows that the states of the j basic
elements included in the subset {e1,1; e1,2; e1,3; e1,4; e2,1; e2,2; e2,3; e3,1; e3,2; e4,1; e4,2; e4,3; e5,1;
e5,2} possess the state “1”—the state of fitness. Only one basic element of the object marked
{e3,3} has the state “0”—the state of unfitness.

The final form of the diagnostic information concerning the states of the object ex-
amined is compiled in the state table for 3VL—three-valued state evaluation, where the
determined states are determined by the value from the {2, 1, 0} set (Figure 11).

Figure 11. The resulting form of the DIAG 2 program “Table of states of L-PSPD” for 3VL.

The result of the diagnostics of low-power solar plant devices in the three-valued 3VL
state assessment in Figure 11 shows that the basic elements of the subset {e1,1; e1,2; e1,3; e1,4;
e2,1; e3,1; e4,1; e4,2} possess the state “2”—the state of fitness. However, the basic elements
of the object from the set {e2,2; e2,3; e3,2; e4,3; e5,1; e5,2} possess the “1” state-incomplete
condition. As in the case of 2VL diagnostics, in the 3VL diagnostics only one basic element
marked {e3,3} has the state “0”—the state of unfitness.

Figures 12 and 13 show the screens of collective diagnostic information developed
in the DIAG 2 program for diagnosis in 3-valued logic 3VL and diagnosis expressed in
2-valued logic 2VL.

Figure 12. Screen of comparative analysis of the state assessment of L-PSPD in the DIAG 2 program.
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Figure 13. Screen of comparative analysis of the state assessment of L-PSPD in the DIAG 2 program.

Based on the diagnostic information in Figures 12 and 13, it can be concluded that
for low-power solar plant devices, for both of the state assessment logics used in the
valence test the DIAG 2 system recognized one basic element marked {e3,3} with the status
“0”-state of unfitness. On this basis, it can be concluded that the diagnostic rules presented
as dependencies (2 and 3) developed in the system DIAG 2 are correct. The analysis of
Figure 12 shows that the reasoning and informationality of the diagnoses developed in
the DIAG system in 3-valued logic (3VL) is more informative because the DIAG 2 system
additionally recognizes the {1} state—the state of incomplete compliance. Therefore, it can
be stated, which is already known, e.g., from theoretical considerations presented in the
literature [2–13], that in 3-valued logic the determined state “1”—incomplete condition,
makes this 3VL logic more informative than 2VL 2-valued logic.

Chapter Four presents the core of the issue of low-power solar plant devices. The
diagnosis process of any technical object is a complicated technical and organizational
operation. The elements of that operation include the following: 1—a functional and
diagnostic analysis of an object under examination, 2—elaborating a diagnostic system
(computer program), 3—determining a measurement data base of an object. A prerequisite
for diagnosing an object is to carry out a functional and diagnostic analysis on the object
under examination. “What is the basis of this analysis” is an accepted method of division
of the object’s internal structure, e.g., three- or four-level division. Due to that, a set of
basic elements of the object is determined, and those elements form the object’s structure;
thus, their diagnostic state determines (implicates) the states of individual units (functional
systems). The states recognized of the functional systems of an object determine the state
of the object under examination.

The use of an artificial neural network on the basis of which the DIAG 2 diagnostic
system works is an effective research and analytical tool, especially for such objects tested
as low-power solar plant equipment. The basis for the implementation of diagnostics is
an effective measurement system that will develop a measurement knowledge base. Such
a designated database of measurement knowledge (a subset of diagnostic signal values)
must be supplemented with a subset of standard diagnostic signal values designated for
this database (Figure 9).

In order to diagnose low-power solar plant devices, a method of analyzing similar
images, being presented in the paper, was used. Based on that method, an artificial neural
network algorithm and a computer program DIAG 2 were elaborated. The paper presents a
full approach to diagnosing technical objects and installations. This work model presented
by a diagnostician is essential to determine the state of the object under examination. For
that purpose, an internal structure of the object under examination was divided according
to the following three-level scheme: Object-Functional System-Basic Element or module of
the object. This resulted in a set of basic elements and a set of diagnostic signals, which are
shown in charts.
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5. Discussion

The purpose of this article, as presented in the introduction, is to prove the truth of
the thesis: diagnoses in logic (3VL) are more informative (contain more information) than
diagnoses expressed in logic (2VL). The research results obtained and their analysis, which
was carried out on the basis of the results presented in Figures 12 and 13, confirm the
research thesis presented in this way. Theoretically, the literature shows that the diagnostic
information efficiency in logic (3VL) is greater than (2VL). In the papers on the organization
of the process of refurbishing technical objects, the author demonstrated that the diagnoses
in logic (3VL) are more informative. In this manner, a strategy for organizing the process
of renewing complex technical facilities such as solar power plants was developed. The
results of papers concerning this subject are presented in the literature. In this article, the
authors attempted a practical verification of the sis presented. The research presents a high
standard of organization of the research process by meeting the following conditions:

• tests were conducted for each of the assessed logics (3VL and 2VL) on the same
test object;

• the same research tool was used in the research, i.e., the DIAG 2 computer program;
• the research was conducted on the same input data (diagnostic signals).

Organized research concerning the informational value of diagnoses for a solar power
plant is objective and independent. Hence, the obtained results were considered true. The
practical assessment of the results in terms of the informational value of the diagnoses
examined (3VL and 2VL) is as follows.

1. In each of the valences examined of diagnoses (3VL and 2VL), only one and the same
element of the object {e3,3} was designated, which possesses the state “0”: the state of
unfitness. This shows that the DIAG 2 system correctly recognizes the states, i.e., the
artificial neural network classifies the states of the elements well;

2. A practical criterion was adopted in the assessment of the informational value of
the diagnoses examined (3VL and 2VL). This criterion is based on the fact that the
evaluation of the informational value of diagnoses in a given evaluation logic is
determined on the basis of the number of additional states occurring in a given
logic, apart from the states of fitness and unfitness, because they are common in
these evaluations;

3. In logic (3VL), there is a state of incomplete fitness, which is absent in logic (2VL);
hence, the number of states, and more precisely (%) of all the states of elements with
the state “1” recognized, will directly indicate the assessment of informational value
of this diagnosis in relation to evaluation (2VL);

4. In the examination of the logic (3VL), state “1” was recognized for elements from the
subset {e2,2; e2.3; e3.2; e4.3; e5.1; e5.2}. This subset of states constitutes 40% of all the
states examined of the object’s elements. On this basis, the informational value of the
diagnosis (3VL) in relation to the diagnosis (2VL) was determined;

5. On the basis of conclusion (4), the final conclusion of the study was developed, namely
that the information efficiency of the diagnosis (3VL) is 40% greater than that of the
diagnosis (2VL).

6. Conclusions

Based on the results obtained from the research, it appears that the diagnoses presented
in 3-valued logic in terms of informationality are larger (richer) than diagnoses expressed
in 2-valued logic. The percentage share of the j-th elements having an incomplete condition
{1} (Figure 12) in the structure of the object tested is 40%. Therefore, on this basis, the
percentage information yield of three-valued (3VL) diagnostics was calculated; in relation
to the two-valued diagnostics (2VL) it is 40% higher.

The use of an artificial neural network on the basis of which the DIAG 2 diagnostic
system works is an effective research and analytical tool, especially for such objects tested
as of low-power solar plant equipment. The basis for the implementation of diagnostics is
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an effective measurement system that will develop a measurement knowledge base. Such
a designated database of measurement knowledge (a subset of diagnostic signal values)
must be supplemented with a subset of standard diagnostic signal values designated for
this database (Figure 9).

Diagnosing technical objects in 3-valued logic makes this diagnostics more useful
due to the need to use the information developed in the DIAG system for the process of
organizing technical maintenance (repair and renewal process). Interpreting (recognizing)
the incomplete condition of the facility enables the use of an optimal strategy for organizing
its technical maintenance (renewal) in the facility tested, based on an assessment of the
reliability condition of the facility’s components. Diagnostics with a three-valued state
assessment in complex technical objects is anticipatory. It means that the first repair
(renewal) of the jth elements possess the state “1”. This problem is particularly important
for the use and operation of those complex technical facilities that are characterized by
short downtime.
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Symbols and Acronyms

E1 photovoltaic system
E2 voltage regulator (driver) system
E3 electric energy storage system
E4 DC/AC converter
E5 receiving system
X(ei,j) diagnostic signal in jth element of ith set
X(w)(ei,j) model signal for X(ei,j) signal
FC max max. value of the function of the use of the object
∆X(n)i standardized vector of the distance metric of jth signal
DMi standard deviation of ith vector of signal metric
W(ε(ei,j)) valued of state assessment logics for jth element within ith module

(from the set of the accepted three-value logic of states’ assessment)
{ME(ei,j)} specialist knowledge base (a set of maintenance information of the object)
DM(Xi, X(w)i α) standard deviation of the vector the signal metric, (α = 2)
Xn the nth diagnostic signal in jth element of ith set
wi,n weight coefficient
σi,j coefficients of weights
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w(ε(0)(ei,j))i,j compliance coefficient of the similarity of the input signal vector to its
standard vector for the diagnostic signal in jth element of ith set

(4VL) four-valued state rating
DIAG Invented name of Intelligent Diagnostic System
ANN artificial neural network
RBF Radial Basis Function type of ANN
SBM similarity-based methods is type of ANN
{3} set of fitness states
{2} set of incomplete states
{1} set of critical fitness states
{0} set of states of unfitness
(3VL) three-valued state assessment
{2} set of states of fitness
{1} set of incomplete states
{0} set of states of unfitness
(2VL) two-valued state assessment
{1} set of states of fitness
{0} set of states of unfitness
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34. Duer, S.; Zajkowski, K.; Harničárová, M.; Charun, H.; Bernatowicz, D. Examination of Multivalent Diagnoses Developed by
a Diagnostic Program with an Artificial Neural Network for Devices in the Electric Hybrid Power Supply System “House on
Water”. Energies 2021, 14, 2153. [CrossRef]

35. Hwang, H.R.; Kim, B.S.; Cho, T.H.; Lee, I.S. Implementation of a Fault Diagnosis System Using Neural Networks for Solar Panel.
Int. J. Control Autom. Syst. 2019, 17, 1050–1058. [CrossRef]

36. Ganeshprabu, B.; Geethanjali, M. Dynamic Monitoring and Optimization of Fault Diagnosis of Photo Voltaic Solar Power System
Using ANN and Memetic Algorithm. Circuits Syst. 2016, 7, 3531–3540. [CrossRef]

37. Jiang, L.L.; Maskell, D.L. Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural
network and analytical based methods. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–16 July 2015; pp. 1–8. [CrossRef]
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