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Abstract: In the near future, microgrids will become more prevalent as they play a critical role in
integrating distributed renewable energy resources into the main grid. Nevertheless, renewable en-
ergy sources, such as solar and wind energy can be extremely volatile as they are weather dependent.
These resources coupled with demand can lead to random variations on both the generation and
load sides, thus complicating optimal energy management. In this article, a reinforcement learning
approach has been proposed to deal with this non-stationary scenario, in which the energy manage-
ment system (EMS) is modelled as a Markov decision process (MDP). A novel modification of the
control problem has been presented that improves the use of energy stored in the battery such that the
dynamic demand is not subjected to future high grid tariffs. A comprehensive reward function has
also been developed which decreases infeasible action explorations thus improving the performance
of the data-driven technique. A Q-learning algorithm is then proposed to minimize the operational
cost of the microgrid under unknown future information. To assess the performance of the proposed
EMS, a comparison study between a trading EMS model and a non-trading case is performed using
a typical commercial load curve and PV profile over a 24-h horizon. Numerical simulation results
indicate that the agent learns to select an optimized energy schedule that minimizes energy cost
(cost of power purchased from the utility and battery wear cost) in all the studied cases. However,
comparing the non-trading EMS to the trading EMS model operational costs, the latter one was
found to decrease costs by 4.033% in summer season and 2.199% in winter season.

Keywords: microgrid; renewable energy resources; Markov decision process; Q-learning; smart
control policy

1. Introduction

Increasing interest in renewable energy sources has led to massive deployment of
microgrids as they offer a scalable way of integrating renewable sources into the main
grid while allowing maximum usage of battery energy storage system. In the long run,
installation of microgrids are expected to reduce cost of power, dependency on utility
grid, and increase rural electrification [1]. Nonetheless, increased integration of distributed
renewable energy raises significant challenges in the stable and economic functioning of the
microgrid as they are extremely volatile and random. These multiple stochastic resources
combined with the load demand make preparation of accurate generation schedules very
challenging. Deploying a battery energy storage system (BESS) [2] can significantly buffer
the impacts of these uncertainties as it provides various auxiliary services to the power
system i.e., load shifting, frequency regulation, voltage support and grid stabilization [3].
However, for a microgrid to guarantee reliable supply of power and efficient utilization
of the battery storage, an energy management system (EMS) needs to be developed to
optimally dispatch and distribute these energy resources based on their availability and
associated costs.

Optimal energy management (OEM) involves the management/scheduling of various
power system variables, in a day ahead context, in order to satisfy the load demand
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at minimal or acceptable costs while satisfying all technical and operational constraints.
The main goal of developing an effective EMS is to achieve different objectives such as
levelling peak loads, balancing energy fluctuations, maximizing renewable energy usage,
reducing power losses, and increasing system load factor among others [4]. The EMS
faces significant challenges as a result of the microgrid’s existence, including small size,
DRES volatility and intermittency, demand uncertainty, and fluctuating electricity prices.
More advancements in microgrid design and control are needed to address these obstacles.
To balance the high volatility of DRESs, additional sources of flexibility must be utilized at
the architectural level. Furthermore, new, and intelligent control mechanisms are required
to optimize energy dispatch and overcome microgrid’s uncertainties.

Aimed at maximizing energy usage or reducing operational cost by managing intelli-
gently the different types of energy resources and controllable loads in a grid-tied microgrid,
several control approaches have been proposed. For years, conventional techniques such
mixed-integer linear programming, linear programming, and dynamic programming have
been proposed to optimally manage energy in microgrids [5–7]. These methods, however,
are reported to suffer from the famous curse of dimensionality and are highly susceptible
to getting sub-optimal results in environments that are highly stochastic, i.e., they contain
volatile variables such as load demand, grid tariffs and renewable energy. Such techniques,
therefore, have limited flexibility and scalability. Further, metaheuristics techniques includ-
ing particle swarm optimization (PSO), genetic algorithm (GA), and their hybrids have
also been used in literature to tackle the issue of energy management in microgrids [4,8–10].
However, these techniques involve extensive computational time and hence, they cannot
be executed online. Online operation allows computing resources to be used more econom-
ically as it doesn’t require one to have another committed computer for performing the
optimization process offline. The aforementioned algorithms also don’t have a learning
component, i.e., they are incapable of storing the optimization knowledge and reusing it
for a new optimization task [11]. Given that the load demand varies on hourly basis, it is
required to calculate the schedule for every new generation and demand profile, and this
is not computationally efficient. In addition, the performance of this techniques may
deteriorate if accurate models or appropriate state variables forecasting are unavailable.
Often, metaheuristic methods are hybridized with other linear methods for an advantage
complementation. A comprehensive review of these decision making strategies and their
methods of solution has been presented in [12,13].

In the last decade, intelligent learning-based techniques have made major progress
in decision-making problems and have also proved ideal in overcoming these limitations,
as they can automatically extract, monitor, and optimize generation and demand patterns.
Additionally, they are capable of relaxing the idea of an explicit system model to ensure
optimal control. This is of great benefit, since the problem of energy management is
normally a partly observable problem, i.e., hidden or unknown information always exists.

The reinforcement learning (RL) method, one of the machine learning algorithms,
is well known because of its ability to solve problems in stochastic environments. It aims at
making optimal time-sequential decisions in an uncertain environment. Reinforcement
learning involves a decision maker (agent) that learns how to act (action) in a particular
situation (state) through continuous interaction with the environment so as to maximize
cumulative rewards [14,15]. In the learning process, the agent is in a position to learn about
the system and to take action that affects the environment so as to achieve its objective.
In RL, the agent considers the long-term reward, instead of simply getting the immediate
maximum reward. This is very important for resource optimization problems in renewable
powered microgrids, where supply and demand are changing rapidly. Q-learning, one of
the RL methods, is commonly used to solve sequential decision-making problems as
explained by authors in [16]. Q-learning is an off-policy algorithm that doesn’t require any
prior knowledge of rewards or state transition probabilities of a system, thus making it
applicable to systems that manage real-time data. Many scholars, focusing on microgrid
EMS [11,17–19], specifically have used Q-learning to control energy. The key benefit of RL
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techniques is their adaptability to stochastic systems and ability to transfer knowledge, i.e.,
the information gained when learning policies for a specific load demand can be retrieved
to learn an optimal schedule for other load profiles [11].

Taking advantage of these characteristics, several scholars have used this approach to
solve the microgrid energy management problem. For instance, Brida et al. [20] used batch
reinforcement learning to implement a microgrid EMS that optimizes battery schedules.
Charge and discharge efficiency of the battery and the microgrid nonlinearity caused by in-
verter efficiency were considered. Elham et al. [21] presented a multi-agent RL method for
adaptive control of energy management in a microgrid. The results indicate that the grid-
tied microgrid learned to reduce its dependency on the utility grid significantly. Authors
in [22] presented an optimal battery scheduling scheme for a microgrid energy management.
A Q-learning technique is implemented to reduce the overall power consumption from the
utility in [22] and simulation results show that algorithm reduces dependency on the main
grid. However, this work fails to consider battery trading with the utility and the impact of
battery life cycle from those actions. In [23] Zeng et al. suggested an Approximate Dynamic
Programming (ADP) method to tackle microgrid energy management, considering the
volatility of the demand, renewable energy availability, real-time grid tariffs, and power
flow constraints. Authors in [24] explored the feasibility of applying RL to schedule energy
in a grid-connected PV-battery electric vehicle (EV) charging station. From the results,
the algorithm managed to successfully obtain a day-to-day energy schedule that decreases
the transactive cost between the microgrid and the utility grid. Authors in [25,26] proposed
a battery management strategy in microgrids using RL technique. However, the incorpora-
tion of the battery wear cost in the EMS model was absent. The work in [27] used RL to
develop a real-time incentive-based demand response program; the RL algorithm focused
at aiding the service provider to buy power from its subscribed customers to balance load
demand and power supply and improve grid reliability. Lu et al. [28] leveraged RL to
design a dynamic pricing demand response (DR) algorithm in a hierarchical electricity
market. From the results, the algorithm is seen to successfully balance energy supply and
demand and reduce energy cost for consumers. Nakabi and Toivanen [29] proposed a
new microgrid architecture consisting of a wind generator, an energy storage system (ESS),
a collection of thermostatically controlled and price-responsive loads, and a utility grid
connection. The proposed EMS was modelled to coordinate the different energy sources.
Different scenarios were investigated using various deep RL methods. The proposed
A3C++ algorithm was established to have an improved convergence and it also acquired
superior control policies. In [30] a microgrid control problem focusing on energy trading
with the utility is formulated. A deep Q-learning algorithm is used to learn the optimal
decision-making policies. Simulation results, on real data, confirmed that the approach was
effective, and it outperformed the rule-based heuristics methods. Samadi, et al. [31] pro-
posed a multi-agent based decentralized energy management approach in a grid-connected
microgrid. The different microgrid components were designed as autonomous agents who
adopted model-free RL approach to optimize their behavior. Simulation results confirmed
that the proposed approach was efficacious. Shang, et al. [32] proposed an EMS model
aimed at minimizing the microgrid’s operation cost, considering the nonconvex battery
degradation cost. A RL method combined with Monte-Carlo Tree Search and knowledge
rules is used to optimize the system. Although, the simulation results show the efficacy of
the proposed algorithm, a detailed model of battery degradation is not considered in [32].

In recent advances reported on the implementation of RL in microgrid energy man-
agement [20–23,25–31,33–35] modelling of microgrid operational cost with consideration
of battery degradation cost is not yet thoroughly studied. Most studies only consider the
generation cost and power exchange cost. The estimation of the degradation process is
very difficult and finding a simple and precise mathematical degradation model that can
be used in the energy management algorithm is not easy. As the charging and discharging
behaviors of a BESS have a direct impact on its life span, lifecycle degradation costs should
be factored into the complex dispatch model of BESSs [36]. It is important to note that
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Lithium ion batteries are quite expensive and incorporating a battery degradation model
while computing the overall system cost is critical as a realistic system cost estimate is
established. Thus, this paper reports on the development of an EMS for a grid-tied so-
lar PV-battery microgrid considering battery degradation in the energy trading process,
with the focus on reducing the strain on the battery. The aim of the designed EMS is to
manage energy flows from and to the main grid by scheduling the battery such that the
overall system cost (including cost of power purchased from the utility and battery wear
cost) is reduced, and utilization of solar PV is maximized. The EMS problem is modelled
as a Markov Decision Process (MDP) that fully explains the state set, action set and reward
function formulation. In addition, two case studies have been considered where, in the
first case, energy trading with the utility grid is permitted, whereas in the second case,
it’s not. To minimize the operational costs, a Q-learning based algorithm is implemented
to learn the control actions for battery energy storage system (BESS) under very complex
environment (e.g., battery degradation, intermittent renewable energy supply and grid
tariff uncertainty). Simulation results show that agent learns to improve battery actions at
every time step by experiencing the environment modelled as an MDP.

The key contributions of this work are outlined below:
Considering the technical constraints of the BESS, and the uncertainty of solar PV

generation, load consumption, and grid tariff.
Developing an EMS architecture for a grid-tied solar PV-battery microgrid and for-

mulating the control problem as a MDP considering the state, action, and reward function.
The investigation of incorporating microgrid’s constraints such that no power is scheduled
back to the utility is also presented.

Using RL algorithm to learn the electrical resources and demand patterns such that
system costs are reduced, and an optimized battery schedule is achieved.

Simulations results verify that the proposed algorithms substantially reduce daily
operating costs under typical load demand and PV (summer and winter) generation
data sets.

The novelty of the paper is presenting the design of an energy storage strategy that
focuses on energy consumption optimization by maximizing the use of available PV energy
and energy stored in the battery instead of focusing solely on direct storage control. In this
architecture excess microgrid energy can be sold back to the utility to increase revenue
however a non-trading algorithm scheme has also been studied where constraining rules
are embedded into the learning process to curtail excess energy from been sold back to the
utility. In addition, a battery degradation model is incorporated to reduce strain on the
battery during the (dis)charge operation.

The rest of the paper is structured as: Section 2 presents the EMS problem formulation
and introduces the two costs models considered i.e., grid transaction cost and battery
degradation costs. Section 3 presents the MDP framework for the EMS problem formulation.
Section 4 explains the proposed Q-learning algorithm. Section 5 presents the simulation
setup, Section 6: Results are presented, and the algorithms performance are evaluated,
and Section 7: recaps the paper’s major points and introduces future work ideas.

2. Energy Management System Problem Formulation

This section presents a brief description of the EMS and then presents the MDP
framework. This work considers a microgrid that consists of a PV system, a group of
batteries, and some local loads as illustrated in Figure 1. The microgrid is capable of
exchanging energy with the main grid at rates set by the utility company. Time-of-Use
(ToU) grid tariffs have been adopted. Energy produced by the solar PV is used to meet
the load demand at the beginning of every time step and is denoted by PPV

t (kW). Excess
energy produced by the PV during low energy demand can charge the battery. The battery
has a maximum capacity denoted as E (kWh). It is also presumed that there are no charge
and discharge losses. The microgrid system has an EMS for scheduling power flows to and
from the main grid and manage battery charge and discharge.
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2.1. Objective Function

A real-world microgrid system seeks to supply its total load demand using minimal
energy cost. On this basis, the objective function of the designed grid-tied microgrid is
computed as (1).

min
{
∑t = 24

t = 1 [(C g(t)+Cdeg(t))] (1)

Equation (1) defines the need to minimize the daily energy cost (i.e., over a 24-h
horizon); Cg(t) is the cost associated with grid and Cdeg(t) is the battery wear cost (the
two cost components are expressed in R/kWh). The two cost models that the EMS tries
to optimize will be illustrated below. Then the mathematical model of the EMS and all
system constraints will be explained in Section 3 that presents the MDP framework.

2.2. Battery Degradation Cost Model

To formulate the battery’s wear cost, stress factors that affect battery life are considered.
In general, there are two forms of battery ageing: (i) calendar ageing and (ii) cyclic age-
ing [36]. The battery’s intrinsic deterioration over time, which is influenced by temperature
and an excessively high or low state of charge, is reflected in calendar aging. Whereas the
capacity lost each time the battery is charged and discharged is referred to as cyclic aging,
and it is dependent on the depth of charge, discharge rate, ambient temperature, and other
factors. Excessively high or low state of charge (SoC) will degrade battery charging and
discharging efficiency significantly. However, to avoid over-charging or over-discharging,
the battery’s SoC can be kept within a reasonable range by constraining the maximum and
minimum SoC as seen in Section 3.1. Temperature can also have a detrimental effect on
battery life, as the decay process is accelerated at high temperatures. In practice though,
the temperature controller is often used in the battery management system. As a result,
it is presumed that battery degradation caused by thermal heating factors can be ignored.
Since DoD related stress have a significant impact to battery cycle life and represent a
proper estimation of battery degradation, this paper will only consider the effect of depth
of discharge on the battery [37].

DoD is described as a function of the battery’s SoC and is depicted as [38] DoD(t) =
1− SoC(t). Authors in [39] researched on the relationship between lithium ion battery DoD
and its life cycle data and established that the battery’s life cycles increase exponentially
with a reduction in the DoD as,

L(DoD)= αDoD−β (2)

In (2) α and β are the curve fitting constants and the authors discovered that they are
694 and 0.795 respectively. The battery wear cost (Cdeg) resulting from related dynamics of
the battery life-cycle depicted by (2) considering a battery that operates from DoD1 to DoD2
with DoD2> DoD1, could be approximated with (3) as shown below [38],

CDoD= Cbt|
(

1
L(DoD 2)

− 1
L(DoD 1)

)
| (3)
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L(DoDj) denotes the battery’s life cycle at DoDj computed by (3) and Cbt is the
initial capital investment of the battery per kWh. The cost of degradation is assumed to
be independent of the direction of power flow in the battery, hence absolute values are
considered by the solver. Finally, the battery degradation costs of the control action are
calculated as,

Ct
deg= −(C DoD(t)∆p(t)∆ t ) (4)

where, ∆p is measured in kW and ∆t in hours.

2.3. Utility Grid Model

The main grid can have two states: ON (available) and OFF (unavailable) and can
supply the unmet load demand or/and charge the battery adequately for the microgrid
whenever it is in ON state. At a given time step ∆t, the microgrid must either be supplying
power to the grid network through the battery system or buying power from the grid
system (but not both actions at the same time) through the point of common coupling
(PCC). Let Gt(t) denotes the instantaneous grid tariff given in (R/kWh). In most cases,
the selling price is usually lower than the purchasing price in order to encourage local use
of solar PV power and minimize negative effects of microgrid uncertainty on the utility
grid [40]. The microgrid selling rates are modelled as a discounted factor ϑ of the ToU tariff.
Thus, the cost of exchanging energy in the microgrid is enumerated as,

Cg(t)= −(G t(t)Pgp(t). ∆t−ϑ Gt(t)Pg_s(t).∆ t ) (5)

where 0 < ϑ < 1, Pg_p(t) denotes power purchased from the main grid and Pg_s(t) depicts
the power sold to the utility system at every time step ∆t. This power is elaborated in detail
in (12) in the next section. If Cg(t) is negative it indicates a cost to the microgrid as power
is being purchased from the main grid, and when positive it depicts the profits gained
from the microgrid selling power to the utility. The instantaneous grid power constraints
are set as 0 ≤ Pgp(t) ≤ Pmax

gp , 0 ≤ Pgs(t) ≤ Pmax
gs ∀t ∈ t, and Pgp(t) · Pgs(t)= 0 . The

microgrid owner and the distribution system operator (DSO) have a contract that governs
the maximum power that can be exchanged between the microgrid and the utility at the
point of common coupling (PCC).

3. Markov Decision Framework as Applied to EMS Formulation

Markov decision framework or MDP is a mathematical framework used to model
decision-making in situations where results are partly random and partly controllable and
has been broadly adopted to map optimization problems solved through RL [41]. An MDP
is defined as a four-tuple (S, A, T, R), where S and A are the state and action space, T and R
denote the state transition probability, and the reward function respectively. Since, for this
case the state transitions are deterministic, state transition modelling is not necessary [42]
and only the state space, action space, and reward function are considered.

3.1. State and State Space Formulation

The information provided by the state is essential for energy management as it contains
the information that the agent uses in the decision-making process at each time step t.
The state space of the EMS at any given time is defined by the utility tariff (R/kWh),
the BESS state of charge, the load demand (kW) and the PV generation (kW).

Let the state of charge of the battery at time step t be denoted as SoC = {SoC t}.
So as not to exceed the battery constraints, a guard ratio β is considered as, β·E ≤

SoCt ≤ (1− β)·E, where β ∈ [0, 0.5] [19] and E denotes the energy capacity of the bat-
tery (kWh).

At each time the state of charge of the battery is constrained by, SoCmin ≤ SoCt ≤
SoCmax, where SoCmin and SoCmax represents the lower and the upper bounds of the battery.
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Considering the above battery safety limits, the state st at each time step t is,

st =
{

t, PPV
t , SoCt, Gt, Pl,t

}
(6)

where t is the time component denoting the hour of the day, PPV
t is the generation from

solar PV at time t, Gt denotes the current electricity tariff at time t notified by the utility
company, Pl,t is the instantaneous load demand. The state space is enumerated by the
union of all set of states within the optimization horizon as, S = s0 ∪ s1 ∪ , . . . ∪ sT−1.
The intraday microgrid operation has been divided into T timesteps, indexed as {0,1, 2 . . . ,
T−1}, where T represents the optimization horizon under consideration.

3.2. Action and Action Space Formulation

In order to meet the load demand in every time step ∆t, the EMS of the microgrid first
uses the available energy from the solar PV and the BESS, then the remaining energy is
purchased from the utility. Net load PNet

l,t of the microgrid at each time step t is described as
the total demand (P l,t) minus the energy generated by the solar PV (PPV

t ) as shown below:

PNet
l,t = max

(
(P l,t− PPV

t ), 0
)

(7)

Here, “max” ensures that the complier takes the maximum value always. For instances,
if the PV is large than the load, that equation will output a negative value, which is not the
case as the net load is not negative. To prevent that a zero is put (it will be the max value at
that time step) meaning the load has fully been covered by the solar PV.

Since the total load demand Pl,t and PV generation PPV
t fluctuate stochastically in

a real microgrid, the net demand of the microgrid, PNet
l,t is an unknown variable. First,

the EMS tries to satisfy the net demand PNet
l,t through the energy stored in the BESS. Then,

the remaining load demand that cannot be covered by the BESS is provided by the utility.
It is described as the reminder energy Prem

l,t which can be enumerated as:

Prem
l,t = max(P Net

l,t −
(

SoCt−SoCmin
)

.E, 0) (8)

The amount of energy that need to be purchased at each time step is denoted as Prem
l,t .

At each time step, after covering the load demand the quantity of energy contained in the
BESS denoted as SoCnext

t , is calculated as shown in (9).

SoCnext
t = min(SoC max, (max

(
PPV

t −Pl,t , 0
)
+ max


(

SoCt−SoCmin
)
·E− PNet

l,t

E
, 0

) (9)

This equation is generally computing the amount of energy remaining in the battery.
The first section checks if there is any remaining solar power after supply the load, if yes,
the solver will charge the battery, if there isn’t, zero will be taken. Since the EMS is designed
to first check if there is any energy in the battery before purchasing from the utility as show
in (8), the second part of the equation calculates the remaining energy in the battery after
supplying the load so that we can have the accurate state of charge for the next time step.

Since the agent can only dispatch the battery, i.e., manage charge and discharge.
To simplify this problem, the actions are discretized here into discharging/charging action
category. The power unit ∆p depicts the amount of power that is used to discharge/charge
the battery in each discrete instant. The discrete action space is defined as

Ast = {−k ∆p, . . . ,−∆p, 0,∆p, . . . , k∆ p }, (10)

where k∆p and −k∆p are the maximum amount of charge and discharge power from the
BESS in each time step respectively, while 0 indicates that the battery is idle. at ∈ Ast is
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defined as the action selected at time step t by agent, where Ast represents all the possible
actions in the action space A under state St.

Given the action set Ast in Equation (10), at every time step ∆t, the agent chooses
one possible at, from Ast by following a policy π, that describes a decision-making strategy
for the selection of actions. More details on π can be found in the next section.

Let the function of the amount of power supplied to the battery when an action at,
is taken by the agent be denoted as BESS (at) and computed as,

BESS(at) =

{
− k(a t)

E k(a t)/E, if at= discharging
k(a t)

E , if at= charging

}
(11)

where the negative values indicate discharge from the battery and positive values indicate
charging of the battery. The result of the agent action BESS(at) to the battery is based on
the status of the BESS SoCnext

t .
It is presumed that if the action taken at(charging) increase the SoCt+k(a t)/E past

the maximum guard capacity Emax, only the energy chargeable SoCmax− SoCt is used to
charge the battery and the extra energy is discarded. Similarly, for the discharging action,
only SoCt−SoCmin is discharged and the extra discharge energy is discarded, hence the
battery constraints are never violated.

3.3. Reward Function Formulation

Reward is a scalar value used to express to the agent the goal of the learning process.
Once the agent performs an action and moves to the next state, a reward is presented.
Intelligent “reward engineering” is key as it links the agent actions to the objective of the
algorithm [43]. The objective of the optimization process is to minimize the transaction
cost of power purchased from the utility and reduce battery wear cost.

Reward r(s t, at) of the proposed EMS is structured to evaluate two aspects of the
system management, one is the objective function and the other two aspects suggested
by [44] are adopted to improve the agent’s performance. The objective function factors
in the amount of money incurred by purchasing energy from the main grid Cg, and
battery degradation costs Cdeg. To improve algorithm performance, Cb and Co have been
incorporated. Cb represents gains from pre-charged energy and Co is a penalty payment
charged to the agent when it chooses an action that exceeds the limits of the battery.

The pay reward Ct
g represents the cost incurred by trading power with the utility at

each time step. The agent receives a negative reward if the amount of energy purchased
from the grid is greater than the amount of energy sold. Otherwise, the agent will receive a
positive reward of Ct

g calculated as given below.

Ct
g= −

(
Prem

l,t +BESS(at).E
)

.Gt (12)

In (12) Prem
l,t represents the total unmet load in the microgrid at each time step (kWh)

while Gt denotes the instantaneous grid tariff (R/kWh). The sum total of Prem
l,t +BESS(at).E

indicates the power being exchanged with the utility grid at each time step ∆t.
In the non-trading mode of operation, the energy supplied to the load (when a

discharge action is selected) at any time slot cannot be higher than the load demand.
Equation (13) ensures energy cannot be sold back to the utility. During training if the
learning agent tries to select actions that causes power to being scheduled back to the utility
a small negative penalty Ct

p will be charged.

Prem
l,t +BESS

(
at.discharging

)
.E ≥ 0 (13)

Ct
p= Prem

l,t +BESS
(

at.discharging

)
.E.Gt.ϑ (14)
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Next, Ct
b is computed as the amount of available energy in the battery to cover the

net load demand PNet
l,t from the energy stored in the BESS SoCt. This reward mainly

encourages the agent to always ensure that the SoC of the battery can satisfy the net load
at any time. When current grid tariff Gt increase, this benefit reward increases as well.
In simple terms, the reward reflects reduced payment that result from using the battery
instead of purchasing power from the grid.

Ct
b =

 PNet
l,t ·Gt i f PNet

l,t ≤ (SoC t−SoCmin
)

.E(
SoCt−SoCmin

)
.Gt.E, else

(15)

Then, Ct
o as shown in (14) below, represents a penalty received by the agent at each

time step for any extra energy supplied but is not used in the charging/discharging of
the battery due to enforced constraints. As the grid tariffs Gt increases, the over-charged
penalty becomes high.

Ct
o =


−((SoCt+k(a t)−SoCmax).Gt.E i f (SoCt+k(a t)> SoCmax

−(|k(a t )|− (SoCt+SoCmax)).Gt.E eli f (SoCt+k(a t)< SoCmin

0 else
(16)

Finally, the cost of battery degradation Ct
deg is considered as a negative reward received

by the agent and it is calculated as show in (4).
Let r(s t, atst+1) denote the cumulative reward that the agent receives when it takes an

action at at state st. The total reward that the agent gets at each time step is given by (17),
however in the non-trading mode of operation Ct

p is incorporated in Equation (17)

r(st, at)= Ct
g+Ct

deg+Ct
b+Ct

o (17)

As an RL agent traverses the state space, it observes a state st takes an action at and
moves to the next state, st+1. In order to compute the impact of an action taken by the
agent on future rewards while following a certain policy π, Vπ

t (s ) has to be computed. It is
defined as the cumulative discounted rewards at time slot t and calculated as

Vπ
t (s)= r(st, at) +

∞

∑
i = 1

γir(st+1, at+1) (18)

The first term in (18) is the immediate reward at time step t and the second term is
the discounted rewards from the next state st+1. Here, γ ∈ [0,1] is the discount factor,
which determines the weight given to future rewards by the agent, where a high value
makes the agent more forward thinking. π is used to represent a stochastic policy that
maps states to actions: π(s t, at)→ S× A . The agent’s goal is to find a policy π (battery
schedules) that maximizes the long-term discounted rewards. An optimal policy π∗ is the
MDP’s solution, i.e., a policy that constantly selects actions that maximize the cumulative
rewards for the (T) hours horizon starting from the initial state s0 [14]. To solve the MDP,
several RL techniques can be applied. Model-based methods, such as Dynamic program-
ming (DP), assume that the dynamics of the MDP are known (i.e., all state transition
probabilities). On the other hand, model-free techniques such as Q learning learn directly
from experience and do not assume any knowledge of the environment’s dynamics. To get
the solution of the MDP designed above Q-Learning has been adopted and it is explained
in detailed below.

4. Q-Learning Algorithm for Energy Management Problem

Q-learning is the most widely used model-free RL algorithm i.e., it can implicitly learn
an optimal policy (a sequence of battery action selection strategy) by interacting with the
environment without any prior knowledge of the environment (as opposed to model based
methods where the agent has to learn the entire dynamics of the system then plan to obtain
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the optimal policy) [14]. Q-learning involves the finding of the so-called Q-values where
Q-values are defined for all state action pairs, (s, a). The Q-value gives the measure of
goodness of selecting an action a in state s.

Let Q(s, a) represent the State-Action value function that computes the estimated total
discounted rewards as calculated in (20), if an action at is executed at state st when a policy
π is followed. It will be described as,

Q(st, at)= E{V π
t (s)

}
(19)

Q(st, at)= E{r (st, at) +
∞

∑
i = 1

γir(st+1, at+1)} (20)

where E indicates the expected action value for each state action pair.
The Q-value that reflects the optimal policy is denoted as Q∗(s, a)= Qπ∗(s, a), ∀s ∈ S,

∀ a ∈ Ast . If all possible actions in each state s are selected and executed multiple times in
the environment and their Q-values updated a sufficient number of times, then Q-values
eventually converge [16] and the optimal action in that state can be found by taking the
action that maximizes the Q-values. The optimal Q-value is given by,

Q∗(s, a) =
max

a
Qπ(s, a), ∀s ∈ S, ∀a ∈ Ast (21)

And the optimal policy is acquired as (22) for each state s,

π∗(s)= argmaxa∈AQ∗(s, a) (22)

Equation (22) implies that an optimal action-value in any state s is described as
Q∗(s, a∗)> Q∗(s, ai), ∀ai 6= a∗, where a∗ is the optimal action for state s, commonly known
as the greedy action ag. During the learning process, the agent interacts directly with
the dynamic environment by performing actions. Generally, the agent observes a state st
as it occurs, with the possible action set Ast , and by use of an action selection technique,
it selects an action at and consequently, moves to the next state st+1, and receives an
immediate reward, r(s t, at, st+1). Then updating of the Q-values is done based on the
Bellman equation as shown in (23),

Qn+1(s, a)= Qn(s, a)+α[ r (st, at, st+1)+γmaxat+1
Qn(st+1, at+1)−Qn(s, a)

]
(23)

where α ∈[0,1] denotes the learning rate which determines the extent by which the new
Q-value is modified, Qn(s, a) is the current estimate of Q-value, Qn+1(s, a) represents the
next estimated Q-value in the next iteration, whereas γ ∈ [0, 1 ] denotes the discounting
factor and n is the specific iteration number. When α is sufficient small, and all possible
state-action pairs are visited enough times Qn eventually converges to the optimal value Q∗

so that best action will be selected at each state in the successive iterations [16]. When the
agent reaches the terminal state sT−1, since there are no future rewards, the Q-value is
update as shown in (24) below:

Qn+1(s, a)= Qn(s, a)+α[ r (st, at, st+1)−Qn(s, a)
]

(24)

As an agent chooses actions from the action set, it is always necessary to cleverly
deal with the exploitation versus exploration dilemma [11,45]. Exploration helps the
agent to avoid getting stuck in a local optimum while as exploitation allows the agent to
selected best actions in the later episodes. Epsilon greedy (εgreedy) method is adopted here
because of its simplicity. Epsilon greedy is a method of selecting actions with uniform
distribution from an action space. Using this strategy, it is possible to select a random
action (exploration) from the action space Ast with probability ε. It is also possible to
choose a greedy action (exploitation) with probability 1− ε, for ε ∈ [0, 1], from the Q-values
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at the given state in each episode. An exponential decay function is also leveraged, so in
each iteration, the value of ε is modified as follows; ε = εmin+(ε max−εmin)exp

{
−{×n

}
,

where εmin and εmax represents the minimum and maximum values of ε respectively, { is
the exponential decay rate and n denotes total number of iterations.

It is to be noted that epsilon ε varies from case to case depending on system design.
But the idea is to allow the agent to explore all the actions in the initial episodes so as to
learn. As learning proceeds ε epsilon should gradually be decreased to enable the agent
to choose greedy actions. But we should still leave a very small percentage for taking a
random action as there is a probability that current estimate may be wrong and there is
another better action. For practical problems during training start with a very large number
of epsilons i.e., ε = 1 and keep lowering that value to 0.001 or 0.01. so that the agent can
exploit the best action in the final iterations.

Algorithm for Learning Energy Management

To tackle the MDP, a Q-table is first created and initialized with zeros. At the beginning
of the learning, initialization of hyperparameters γ, ∝, and ε is done in lines 2–3 of the
algorithm shown below. Lines 6 to11 shows the loop for every time step ∆t. In line 5
the microgrid environment is initialized, while in line 6, the algorithm reads the current
state. In line 7 action at, is selected depending on the action selection policy π. In line 8,
the selected action is executed in the environment and the environment produces a reward
r(s t,at) and the next state st+1. Based on the return of the environment, Q(st, at) is updated
according to Equation (19) and if it’s a terminal state update is done by (20) in line 9; In
line 10, the time step t is incremented by one, t + 1 and the system move to the next state.
After the terminal state T−1, the next episode proceeds with an updated value of ε. Then,
the learning process continues as seen in Algorithm 1 below.

Algorithm 1 EMS Algorithm Using Q Learning

1. Create a q-table and initialize Q(s, a)∀s ∈ S,∀a ∈ A, with zeros,
2. Initialize learning rate and gamma (∝ and γ)
3. Initialize epsilon (ε)
4. For episode (n) = 1, max Episode do
5. Initialize Microgrid Environment
6. For time step (t) = 0, T−1 do
7. Read the current state
8. Select an action at using at from Ast using the ε greedy policy πε(s) (5)
9. Execute the selected action at in the Simulation Environment and observe the reward rt and the

next state st+1
10. Update q-values according to (19)
11. t = t + 1
12. End
13. Update ε

14. n = n + 1
15. End

5. Simulation Setup

To evaluate the performance of the proposed energy management algorithm using
Q-learning, this work considers a commercial load grid-tied microgrid environment with
solar PV and BESS. Numerical simulations are performed based on a commercial building
load profile data adopted from [46]. Summer and winter solar PV output data for (Novem-
ber (summer) and June (winter)) in a 250 kWp solar PV system located in Cape Town,
South Africa adopted from [47] are used in the simulation. To facilitate the assessment of
optimized control strategy the work considers an hourly time of use (ToU) tariff obtained
from Eskom a utility company operating in South Africa which specifies three price levels
applied based on time of day during summer and winter seasons. Peak prices are equiva-
lent 130.69 R/kWh, mid-peak prices equal to 90.19 R/kWh and off-peak prices equal to
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57.49 R/kWh during summer while during winter peak tariff is 399.17 R/kWh, mid peak
is 121.46 R/kWh and off peak price is 66.27 R/kWh [48]. The forecasted time series inputs
to the algorithm which include the commercial load demand and solar PV generation are
shown in Figure 2a,b for summer and winter season respectively. The peak load of the com-
mercial consumption profile is noted to occur between 09:00 and 16:00 when most HVAC
and loads are switched on. For the BESS, two Lithium-ion batteries are used, where each
battery has a capacity of 200 kWh. The initial SoC of the BESS is set to 0.25, and the
guard ratio β = 0.05 is considered since any value in this range [0, 0.5] can be selected.
Thus, the maximum and minimum limit of the BESS are set up to Emax = 380 kWh and
Emin = 20 kWh respectively. The initial battery cost is determined based on the current
market price of Li-ion battery which is 135 USD/kWh (2025 R/kWh) [49]. The charge and
discharge power unit ∆p is set to 25 kW, where the charge power of BESS is uniformly
discretized to k is 6. Thus, the discretized charging and discharging power of the battery is,
A = {−150, . . . , −50, −25, 0, 25, 50, . . . 150} in kW, 150 and −150 represent the maximum
charging and discharging power; 0 indicates the battery is idle, while the rest are values
within the limit’s interval. The maximum charge and discharge power are limited to 150
and −150 to ensure safe battery operation limit while the charge and discharge power unit
is set to 25 kW to give the agent more variables in the action space. For simplicity purposes,
power inverter efficiencies for Solar PV and battery is assumed to be 1. The algorithm is
implemented in Python programming (version 3.7.6) and executed by a computer with a
1.60 GHz processor and 8 GB RAM.
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It is critical to properly select parameters, especially those to which the algorithm is
highly sensitive, such as the learning rate and the discount factor, in order to achieve a
suitable convergence speed and quality policies. If a large step-size rate is selected, Q(s, a)
values can oscillate significantly and if it is too small, Q-values might take long before
they converge. The choice of α was by trial and error and a value of 0.01 gave the best
convergence. The ε-greedy parameter ε was initialized to 1 to ensure the entire search
space is explored as much as possible, and a discount factor γ of 0.85 (for winter case) and
1 (for summer) is taken as the future rewards are significantly important as the immediate
rewards. The simulation input parameters for the EMS algorithm can be seen in Table 1.

In order to evaluate the performance of the proposed grid-tied microgrid energy
management system, two case studies are simulated on the basis of the data characteristics
mentioned above. First, two different seasons are examined to assess the impact of PV
penetration. Second, the comparison between including and excluding grid constraints at
the interconnection point is then performed with the aim of studying the impact on total
operating costs. In the case of grid constraints (non-trading algorithm) Equations (13) and



Energies 2021, 14, 2700 13 of 24

(14) are included in the optimization model to ensure that the microgrid does not sell its
surplus energy back to the utility grid, while for no-grid constraints (trading algorithm)
they are removed.

Table 1. Simulation Parameters.

Hyperparameters Selected Values Values

Epsilon ε 1.0
Learning rate α 0.01

Discount factor γ 1 summer data/0.85 winter data
Timestep ∆t 1 h

Battery initial cost Cbt 2025 R/kWh
Battery capacity Eb 400 kWh

Initial SoC of the ESS SOC0 0.25
Battery guard ratio β 0.05

Power unit ∆p 25 kW
Selling price discount factor ϑ 0.75

Grid power limits (trading algorithm) Pmax
gs

/Pmax
gp

−150/250 kW
Grid power limits (non-trading algorithm) Pmax

gs
/Pmax

gp
0.0/250 kW

6. Results and Discussion
6.1. Summer Solar PV and Grid Tariff Profile

The performance of the proposed energy management system in a one-day summer
operation will be assessed in the current section. The summer PV profile and the summer
grid tariffs are considered. Summer solar PV is considered to be the best-case study in the
trading algorithm as it is more profitable to increase operating revenues by selling any
excess energy back to the utility grid. The total produced energy by PV during summer is
1587 kWh.

6.1.1. Reward Convergence during Summer

The primary assessment explores how the system performance is improved by the
EMS algorithm as the learning process progresses. Figure 3a,b displays the training curves
for the trading and non-trading case studies respectively, which show the average Q-
learning algorithm’s cumulative reward profile for 20,000 training episodes. Between
episode 0 and 5000, the agent is still in the initial stages of learning and the reward curve
starts at a lower average value of −R 140,000 for the trading algorithm and −R 175,000 for
the non-trading as can be observed in the Figure 3a,b below (here negative values for the
reward indicates a cost to the microgrid as power is being purchased from the main grid).
This is because initially, for both cases, value of ε is set to 1.0, i.e., every action has equal
probability of being selected as the action space is still being explored on a trial-and-error
basis by the learning agent. Later, as exploration rate decays, and the learning agent starts
to exploit the best actions, it is seen that the training curves begin to rise and then they
converge at higher value at about episode 7500 for the trading algorithm and 8000 for the
non-trading one. Convergence is achieved because the agent begins to select better actions
learned through the process of experiencing more state-action pairs. It can be observed
that the non-trading reward curve reaches a high value of about 0 compared to the trading
algorithm which only achieves −R 60,000. The reason for this is non-trading algorithm has
an additional negative penalty on the reward formulation if the grid constraint is violated
as show in Equation (14) which is not present in the trading algorithm. It can be concluded
that both proposed energy management schemes are able to achieve optimized policies
and Figures 4a and 5a show the selected battery actions of the optimal policy for both the
trading and non-trading algorithm respectively.
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6.1.2. Energy Management
6.1.2.1. Results for Case Study 1 (Trading Algorithm)

This section presents the results of the trading algorithm which is executed through
Equation (12) i.e., the agent obtains revenue by discharging the battery if the reminder
power Prem

l,t is zero at any time step t. Analysis of how energy stored in the BESS is used as
the EMS seeks to meet net demand is also carried out. When it comes to system running
cost, charging the battery when tariffs are low and discharging the battery when tariffs are
high is important so as to rip some revenue. Since the energy demand varies randomly,
an efficient charging management algorithm should manage to effectively cope with any
unanticipated event and still reduce system operational costs. Between 00:00 and 05:00 PV
power is zero. Hence, in Figure 4b, a decrease in the SoC is seen since the battery is
supplying the net load. Also, the load that is not met by the battery, however small, is met
by the grid at low prices. Between 11:00 and 17:00, the SoC of the BESS is seen to gradually
increase to 0.85 as the battery is being charged by the utility grid. The utility peak load
occurs two times in a day i.e., between 07:00 to 09:00 and 18:00 to 19:00. During the first
peak load, it is seen in Figure 4a that the algorithm learns to lower power intake from the
utility to 25 kW. In the second peak we see the algorithm learns to raise the battery SoC
to 0.85. From 17:00 to 20:00 battery SoC decreases because the battery is fully supplying
the microgrid’s net-load and zero grid power has been scheduled at that time as the prices
are very high. From 21:00 to 23:00 a low SoC is seen as only 25 kW is being charged to the
battery. A final SoC of 1.25 is recorded as seen in Figure 4b. Given the stochasticity of the
load demand, grid tariff and solar PV, it is crucial that the battery energy can deal with
unforeseen circumstances, and we can see the agent learns policies to increase the SoC to
meet its load demand fully during peak tariff hours.

Figure 4a displays energy schedules of the grid and the battery plotted besides the solar
PV and microgrid’s load curve. Between 00:00 and 07:00 it is clearly seen that the algorithm
opts to charge the battery with 50 kW throughout that period. From 02:00 to 06:00 a gradual
increase in power absorbed from the utility is seen, because the battery cannot fully meet
the net load, hence the unmet load is being covered by the grid. Furthermore, the tariff
is very low (please refer to Figure 2a), and it would be optimal to utilize the cheap grid
power to supply the net load and charge the battery. At 07:00 there is a sharp increase in
grid tariff (R 40 increase is noticed), and the algorithm lowers the amount of power drawn
from the utility by (25 kWh) for two consecutive hours. At 10:00, the agent sells 25 kW back
to the utility during mid peak tariff thus maximizing its revenue. This would be evident by
looking at Figure 4a and Figure 11a simultaneously. In Figure 4a, at 10:00 grid power is
−25 kW and also in the same hour in Figure 11a, it is seen that R 2000 was deducted from
total cost as power was sold to the utility at that hour. From 10:00 to 15:00 solar PV power
is sufficient to fully cater for the load, however the algorithm opts to constantly charge the
battery with 50 kW from 11:00 to 17:00. At 18:00, grid tariff shoots to its peak prices and
it is clearly seen that the algorithm schedules zero grid power from 18:00 to 20:00 as the
battery can fully cater for load even when solar PV is scarce. This shows that the algorithm
manages to foresee the utility peak load and takes proactive decisions of buying power
from the utility at mid-peak price, and thus shifts its load from 18:00 to 20:00. At 20:00 the
grid prices decrease by R 40, and the agent beings to gradually increase utilization of the
grid’s power. A full utilization of the main grid is observed from 22:00 to 23:00 as the grid
tariffs are at their lowest value and solar PV is not available at that time.

6.1.2.2. Results for Case Study 2 (Non-Trading Algorithm)

Figure 5a displays energy schedules of the grid power and the battery for the non-
trading algorithm which constraints microgrid’s power exchange with the utility such
that at each time step no energy can be sold back to the grid as Equation (13) has been
incorporated in the optimization model. In comparison to Figure 4a, it is seen that at 07:00
when the grid tariff is increased by R 40 (peak tariff) the algorithm doesn’t reduce its battery
power intake unlike in the trading case study. However, at 09:00 while the grid tariff is
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still peak, we see the algorithm schedules zero grid power, thus managing to support
the grid by lowering its power intake for one hour. From 10:00 the algorithm raises the
battery SoC by consecutively charging the battery with 50 kW and 25 kW. At 19:00 and
20:00, when solar PV is zero and grid tariff is high, it can be observed the agent shifts its
load by scheduling zero power from the utility at that time. During off-peak prices at 21:00
and 23:00 we observe maximum usage of utility power as also power from solar PV isn’t
available. In Figure 4a the energy trading algorithm (case 1) is seen to sell 25 kW back to
the main grid at 10:00am however, in case 2 in Figure 5a (and later in Figure 11b) where
grid constraints are enforced no trading of power was observed. It can be concluded that
both algorithms learn to reduce power absorbed from the main grid at utility’s peak load
demand during which buying prices are very high, however with the trading algorithm
better policies are achieved as the operational cost is lower. Also, it learns to delay drawing
power from the utility for 3 h (from 18:00 to 20:00) until the energy prices lower as seen in
Figure 4a in contrast to the non-trading algorithm shown in Figure 5a that delays for 2 h
(from 19:00 to 20:00).

Figure 5b shows the battery SoC trajectories as the non-trading algorithm is being
executed. Similar to Figure 4b from 01:00 to 09:00 the battery SoC decreases slightly and
then remains constant since the battery is partly supplying the net load. Between 10:00 and
15:00, the peak load is catered fully by the PV, and the surplus solar PV can charge the battery.
The second utility peak demand occurs between 18:00 and 19:00 when PV power is scarce,
it can be observed that the SoC of the BESS gradually increases to 0.87 at around 15:00 to
support the main grid during its peak demand. From 17:00 to 21:00 the SoC decreases as can
be seen in Figure 5a zero power is scheduled from the utility for two consecutive hours and
PV power is decreasing thus the battery is fully supplying the microgrid’s net load. A final
SoC of above 0.125 is recorded. The plot shows that learning agent learns to increase SoC to
cope with any unanticipated uncertainties, maintains reasonable SoC trajectories throughout
the 24-h horizon and ensure no battery’s constraints are violated.

6.1.3. Operational Cost during Summer

Figure 6a,b represent the total daily operation cost plotted versus the training episode
number. The moving average values are computed for every 100 episodes window. A de-
creasing trend can be noticed as the learning episodes increase. The daily operating cost
at any time step is the grid trading cost and cost of battery degradation as shown by
Equations (4) and (5). As can be seen in the graph, the agent explores different possible
energy dispatches during the initial stages of learning and very high costs are registered
during the initial stages of learning. For the trading algorithm an average value of about R
120,000 is registered and for the non-trading algorithm a value of is R 140,000 recorded.
As the agent learns better policies, it begins to constantly exploit control actions which
reduce energy cost in the final iterations. In the final episodes we can see the algorithm
finishes at an average global cost of about R 105,000 for the trading algorithm and R 110,000
for the non-trading algorithm.

6.2. Winter Solar PV and Grid Tariff Profile

This section evaluates the behavior of the proposed EMS during a day operation in
winter season. The winter PV profile is considered to be the worst-case study as the PV
energy output is expected to be lower than summer output as a result of shorter daylight
hours, change in the angle of the sun which reduces the sun’s rays hitting solar panels,
and extreme atmospheric conditions such as cloud covers and wet weather. The total
energy output of PV production during the considered day amounts to a sum total of
801 kWh. Also, it can be noted that the winter tariff is rather high compared to the summer
tariff as cold and dark weather cause people to stay indoors more, to turn on the lights
for longer hours, and to switch on heating equipment, thereby increasing energy demand.
In addition, extreme weather conditions could also damage the power system, resulting in
high repair costs.
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6.2.1. Reward Convergence during Winter

In Figure 7a,b, it can be observed that both the trading algorithm and non-trading
algorithm are capable of increasing the average reward over 20,000 training episodes.
Between episode 0 and 5000, the agent is still in the initial stages of learning and the
reward curve starts at a lower average value of −R 500,000 for the trading algorithm and
−R 540,000 for the non-trading algorithm. This is because initially the learning agent is
still exploring the stochastic environment on a trial and error. Later, as exploration rate
decays, the learning agent starts to exploit the best actions, it is seen that the training curves
begin to rise and then converge to higher values ats episode 12,500. It can be observed
that the trading algorithm converges to a lower average value (−R 380,000) in comparison
to the non-trading algorithm which converges at an average value of about −R 300,000.
The reason for this is non-trading algorithm has an additional negative penalty on the
reward formulation if the grid constraint is violated as show in Equation (14) which is not
present in the trading algorithm. The retrieved optimal winter battery schedule is shown
in Figure 8a for the trading case and Figure 9a for the non-trading case. In comparison to
the summer PV profile and tariff, it can be seen that rewards converge to very low values
for the winter case. This is mainly attributed to the low PV profile and high winter grid
tariffs for any energy purchased from the utility.
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6.2.2. Energy Management
6.2.2.1. Results for Case Study 1 (Trading Algorithm)

Figure 8a displays energy schedules of the grid power and the battery plotted besides
the winter solar PV output and grid tariff. As can be seen in Figure 2b the PV system
produces small amount of energy between 08:00 and 16:00. Consequently, the trading
operation will be limited as the total available PV generation will partly cover the micro-
grid’s demand. Also, the winter peak prices occur at 06:00 to 08:00 unlike the summer-time
case where utility peak load starts at 07:00 [48]. In the trading algorithm, the EMS begins
by scheduling zero grid power as the battery initial energy can fully meet the net load
and later on a gradual increase in grid power utilization is seen. Between 00:00 and 05:00
the tariff is at its lowest, thus for about four hours very high-power absorption from the
utility is recorded. When grid tariff increases during 06:00 to 09:00, the algorithm is seen
to drastically lower the amount of power purchased from the main grid. At 11:00 when
prices have reduced to mid-peak, the algorithm decides to increase power intake from
the distribution network. From 13:00 to 23:00 the agent takes control actions of constantly
charging the battery with 25 kW and supplying the remaining net load with power for
the utility. In Figure 8b, it can be observed that the algorithm gradually increases the SoC
of the battery up to 0.45 in the morning hours (04:00 to 06:00) to meet its net load as it
anticipates the utility peak tariff which occurs from 06:00. As a result of raising the SoC,
the algorithm is able to shift a large percentage of its net load until grid prices are reduced.
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Unlike, during summertime it can be seen that battery utilization is rather low. As the
PV is insufficient throughout the optimization horizon, the high deficit load computed by
Equation (8) must be supplied by the utility grid. Thus from 13:00 the algorithm opts to
keep the charge power as low as possible so as not to incur high cost of importing utility
power to cover its deficit load and charge the battery. Similarly, the fact that the winter
tariff is more expensive makes the algorithm to schedule lower charge energy so that the
amount of power drawn from the grid is minimized. Finally, it can be observed that the
SoC is maintained at its lowest level and the battery constraints are not violated.

6.2.2.2. Results for Case Study 2 (Non-Trading Algorithm)

Figure 9a presents the results of case study 2 which, as mentioned in Section 6.2.2.2,
ensures that no energy is sold back to the utility grid. Between 00:00 and 05:00 the grid
tariff is very low and PV power output is zero. a gradual increase in grid power utilization
is observed as the algorithm chooses to charge up the battery with the cheap grid power so
as to supply its net load as it would be optimal to do so. Between 06:00 to 09:00 the grid
tariff shoots to its peak (R 278 increase in grid tariff is noticed in Figure 2b), the algorithm
drastically lowers power intake from the utility and a constant charge power of 25 kW is
recorded. At 09:00 to 17:00 when the tariff changes to mid-peak it can be observed that the
algorithm slightly increases the battery charging power to 50 kW. A constant power intake
by the battery is seen until the next peak tariff which occurs at 17:00 where the algorithm
reduces the charging power to 25 kW. Observing Figure 8a, the trading algorithm learns to
raise the SoC value to 0.45 unlike the non-trading which only reaches about 0.3 at 04:00,
this causes the latter algorithm to only lower the grid power for one hour and later on rely
heavily on the utility as the energy stored in the battery cannot support the microgrid’s
net load. However, in Figure 8a the power drawn from the utility is lowered for two
consecutive hours during peak prices. In both cases, solar PV is very low and peak grid
prices are also very high, however the algorithm learns to lower cost in these extremities.

6.2.3. Operational Cost during Winter

Figure 10a,b represent the average running cost variations during training. These curves
tend to have almost similar characteristics although the non-trading plot is more erratic
compared to the trading one. At the beginning of the training, the learning agent explores
the action space and learns to avoid actions that result in high cost. In the final episodes
actions that minimize cost are exploited for both cases. A final average global cost of about
R 395,000 is recorded for both scenarios.
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6.3. Comparative Cost Study for Case 1 and Case 2

This section presents the energy cost comparison assessment for the optimized energy
schedules. The comparison is based on the two case studies investigated, i.e., trading
and non-trading cases, using both summer and winter PV and grid tariff data. Table 2
below shows the retrieved schedule energy cost for the two case studies in different season
profile. In this problem, energy cost is the product of the power imported from the grid to
cover microgrid’s deficit power or/and charge the battery and the grid tariff. In the case of
trading algorithm, the cost of exported energy is deducted.

Energy cost =
t = 24

∑
t = 1

Gt(t)Pg_p(t)− ϑ Gt(t)Pg_s(t) (25)

where Pg_p(t) denotes the power imported from the main grid, Pg_s(t) is the power ex-
ported to the utility grid, Gt(t) is the instantaneous grid tariff and ϑ represents the selling
price discounting factor. From the table it’s apparent that in summer, the total operating
costs are the lowest in both cases compared to the winter season. It can be reported that
increasing PV generation would result to a much more profitable EMS operation in both
the summer and winter seasons.

Table 2. Overview of energy cost for the optimal episode in the case studies considered.

Energy Cost Summer Data (PV & Grid Tariff) Winter Data (PV & Grid Tariff)

Trading Algorithm R 103,708.71 R 367,322.73
Non-Trading Algorithm R 107,891.05 R 375,403.00

To calculate the increase in percentage of total operating costs between the trading
and non-trading case studies, Equation (26) is used.

ITC =
TCnon−trading−TCtrading

TCtrading
× 100 (26)

ITC denotes the increase of the total operational cost, (in percentage) TCtrading and
TCnon−trading are the total operational cost of the trading and non-trading studied algo-
rithms, respectively. The implementation of the proposed EMS for commercial load profile
considering the no grid constraints (excess energy can be sold back to the utility) the total
operating costs can reduce by 4.033% for summer data and 2.199% for winter data when
compared to the non-trading algorithm. This phenomenon happens because, with the
trading case there is more flexibility to feed power to the utility and earn some revenue
whereas for the non-trading algorithm, less flexibility is experience by the agent when
learning the environment as grid constraints cannot be violated. However, taking into
account grid constraints is also technically beneficial particularly from the perspective of
the local utility grid operators as the non-trading EMS avoids feeding any power back
to the utility and this could lead to both technical and economic benefit to the microgrid
owner and utility system operator.

Figure 11a–d below display the dispatching cost for both case studies for the retrieved
optimized schedule.

Two case studies have been considered trading and non-trading settings. The objective
is to reduce the total daily operation cost under the uncertainty of PV power, load demand,
and grid tariff in both summer and winter seasons. Using numerical simulations and proper
hyperparameter tuning, we confirmed that the proposed energy management schemes
can efficiently minimize system operational costs (battery wear cost and cost of power
purchased from the grid) under widely used south African time of use (ToU) grid tariff,
and achieves desirable control actions which maximize solar PV usage while minimizing
strain on the local utility during peak hours. The proposed energy management algorithm
is intended to be applied in a number of intelligent grid environments including residential
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microgrids and smart energy facilities under different tariff structures to optimally schedule
for energy consumption by efficiently managing the total energy produced and trading the
surplus energy into the utility grid to make some profits.
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In comparison to the work presented in [50,51] the scheme proposed in this paper
ensures that microgrid uncertainties to the utility (caused by stochastic nature of PV
generation) are reduced where no excess PV is exported back to the utility. Still, the EMS is
designed such that the battery can take advantage of the daily energy price fluctuations to
buy the cheapest energy available during the period of low demand and sell it at the highest
price. Also, a battery degradation model is embedded to ensure the battery is operated
at power levels that do not significantly reduce its cycle life. Better battery utilization has
also been achieved (for environments where peak PV production almost matches peak
demand, and cases where PV is less compared to total load demand) thus supporting the
grid shifting demand during peak load.

7. Conclusions

In this research, an energy management algorithm based on reinforcement learning
was proposed for a grid-tied solar PV-battery microgrid supplying power to a commercial
load. The novelty of the proposed work is mainly computational energy scheduling so-
lutions for grid-tied microgrids in a highly stochastic setting where battery degradation
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model is also considered. To ensure practical application, the EMS is formulated as a
Markov decision process considering state, action, and reward function. Considering a ToU
grid tariff and stationary battery degradation cost, simulation results indicate that cost min-
imization has been achieved. Moreover, the findings show that responding appropriately to
the dynamic grid tariff is a critical component of cost reduction and system efficiency. It is
noteworthy that Q learning algorithm managed to lower operational costs in the two case
studies regardless of the different tariff structures and the seasons considered. However,
comparing the non-trading EMS to the trading EMS model, the energy trading algorithm
achieved slightly better results as it reduced the energy costs by 4.033% more in summer
season and 2.199% in winter season. The reinforcement learning approach successfully
avoided high operational prices, efficiently utilized PV generation, and ensured reasonable
SoC levels thus has the potential to be used in grid support applications such as peak load
shaving and increasing system efficiency.

As future work, more scenarios can be explored using deep reinforcement learning
techniques and other different grid tariffs. Also introducing flexibility on the demand
side can be an interesting axis for future research. It is also to be noted that the behavior
of some batteries can be characterized by rather complex relation between the SoC and
the maximum power that the battery can deliver during discharge and, especially, absorb
during charge. This issue can be explored further using elaborate techniques as proposed
in this paper. This work has not considered thermal ageing of the battery and the reason for
that is explained in Section 2.2. However, the proposed method can be further developed in
future to include battery degradation due to thermal heating. The EMS is designed in a way
that for different types of load curves, the algorithm can learn policies to increase the SoC
of the BESS to meet the net demand independently or lower energy drawn from the grid at
that time. Indeed, different load curves would affect the battery operation, but the designed
algorithm is expected to handle the unexpected load peaks. However, a comparison of
performance of the proposed method for slow, medium and fast demand fluctuations can
be undertaken in future as a part of further uncertainty studies, which could not be covered
in this paper due to unavailability of data for fast and slow demand fluctuations.
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