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Abstract: This paper presents a method that has been developed to reduce the torque ripples under
healthy and open-circuit fault-tolerant (OCFT) conditions for a multiphase permanent magnet
(PM) machine. For smooth torque, both the phase current and the back electromotive force (back-
EMF) should be purely sinusoidal. To improve the torque in a multiphase machine, higher-order
current harmonics are injected, which are related to the harmonics in the back-EMF. For this reason,
generally, multiphase machines are designed with higher-order back-EMF harmonics. However,
these harmonics produce ripples in the torque. In light of this, a torque ripple cancellation method
has been developed that first determines an additional current component from the harmonic content
of the back-EMF and then injects these additional components to cancel the torque ripple. It has been
found that this new torque ripple cancellation method works for both faultless and faulty conditions
in a five-phase PM machine. The method has been validated using Finite Element Analysis, and the
results are presented in this paper.

Keywords: five-phase machine; third harmonic current injection; multiphase machine; permanent
magnet machine; torque ripple; torque ripple suppression; torque ripple reduction

1. Introduction

A machine that has more than three phases is called a multiphase machine, as detailed
in the literature [1–3]. Multiphase machines first came about because of the limited current
ratings of power electronic devices in an inverter circuit. In recent years, multiphase
machines have drawn increasing interest by researchers, due to their advantages [4–14].
Compared to the traditional three-phase counterpart, multiphase machines have many ad-
vantages. The three most important advantages can be given as: (1) Multiphase machines
enable us to use lower rating semiconductor switches, due to power-sharing over more than
three phases [1,3,15], (2) Multiphase machines can be controlled by using only two degrees
of freedom, i.e., flux and torque producing current components. The remaining degrees of
freedom can be used for other purposes, such as controlling two or more series-connected si-
nusoidal machines independently, using a single inverter [16–22]. (3) Multiphase machines
have better fault-tolerant capability than their three-phase counterparts [23–29].

Torque ripple is one of the most important problems in electrical machines regardless
of the machine type. Many applications require a smooth (ripple-free) torque, such as
elevator systems. There are many factors causing torque ripple in a PM machine: (1) The
rotor magnetic field interacts with the stator slot even if there is no current flowing in the
stator winding. Because of this interaction, an unwanted periodic torque pulsation, called
cogging torque, arises [30–32]. (2) The second reason for torque pulsation is the interaction
between the rotor magnetic field and phase current harmonics [30,31,33]. Producing a
purely sinusoidal rotor magnet flux linkage is very difficult because of magnetic saturation
and the tolerances in the manufacturing process [32,33]. (3) The third reason for torque
ripple is due to unwanted stator current harmonics produced by the dead zone time of the
inverter circuit [34–36]. As a result, the stator current will contain the higher-order current
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harmonics. These current harmonics will interact with the PM flux linkage even if it is
purely sinusoidal, which will produce unwanted torque pulsations [35].

Many studies have been undertaken by researchers to suppress torque ripple. There
are two methods to reduce torque ripple in a machine. The first one is to improve the design
of the machine, and the second focuses on the control of the machine. From the machine de-
sign aspect, e.g., shaping rotor magnets and stator slot surface [12,37,38], skewing the rotor
magnets or stator windings [30], choosing the proper number of slots and winding distri-
bution [39], arranging PM pole arc [38], and applying the other machine design techniques
to reduce the ripple torque without changing the average torque will nearly eliminate the
cogging torque. In the control side of the machine, generally, researchers can suppress
the torque ripple by injecting the higher-order stator current harmonics [32,33,36,40,41].
Injected current harmonics can be determined by using optimization techniques, such
as the Lagrange multipliers method, or an artificial neural network, and so on. All of
these methods are used to determine the coefficients of the injected current harmonics,
and generally, these studies concentrate on the healthy condition of three-phase machines.
Some methods can also work under faulty conditions [42,43].

These methods mentioned above can also be applied to multiphase machines. Besides
the torque ripple under the healthy condition, the multiphase machine produces torque
ripple under faulty conditions as well, but with a much higher amplitude compared to
the healthy condition. This paper focuses on reducing the torque ripple of PM multiphase
machines under healthy and phase OCFT conditions. There are several methods to run
the machine under an OCFT condition [23,25,27,29]. In [23], Parsa et al. developed an
OCFT condition for a sinusoidally distributed winding or purely sinusoidal back-EMF PM
machines. However, this method will produce a torque ripple in a nonsinusoidal back-EMF
machine because of the unwanted interactions between the higher-order harmonics of
the back-EMF and phase current. In [29], a method was developed by keeping the phase
currents the same and equal to each other under OCFT control. This is a unique fault-
tolerant control method—nevertheless, it is for sinusoidal back-EMF PM or sinusoidally
distributed winding machines. Therefore, there will be ripples due to back-EMF and
phase current harmonic interaction for a nonsinusoidal machine. Dwari et al. developed
an OCFT control technique for trapezoidal back-EMF PM machines [25]. This method
produces a smooth torque under OCFT conditions, since the amplitude of the phase
currents and their relative phase angles are arranged to eliminate the pulsating terms of
the instantaneous power (I-power). This method can also be applied under the healthy
condition by considering the higher-order back-EMF harmonics. Mohammadpour et al.
proposed a fault-tolerant control method under OCFT and short-circuit fault-tolerant
conditions for multiphase machines by using the Lagrange equations [27]. This method
can be applied to both sinusoidal and nonsinusoidal back-EMF machines, and it produces
ripple-free torque under fault conditions. This method can also be applied to the healthy
condition of the machine.

In this paper, a method is presented that was developed to suppress torque pulsations,
due to the interaction between the back-EMF harmonics and the phase current harmonics
for healthy and OCFT conditions. The other sources of torque ripple are ignored. Torque
pulsations, due to harmonic interaction, are discussed in detail for both healthy and OCFT
conditions by the authors of [44]. In the healthy condition, the I-power component, due
to the interaction of the fundamental component of the back-EMFs and phase currents, is
smooth. However, the higher-order harmonics are present in the back-EMF of a nonsinu-
soidal back-EMF machine. The interaction between the fundamental current components
and the higher-order back-EMF harmonics, such as the 9th and 11th harmonics, causes
ripple under healthy conditions. If the third harmonic of the stator current is injected for
torque improvement, there will be another torque pulsation, due to interaction between the
third harmonic current component, and the 7th and 13th harmonics of the back-EMF. The
amplitude of the pulsations depends on the amplitude of these back-EMF harmonics. Both
of these pulsations have the same pulsating frequency, and it is ten times the frequency of
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the fundamental phase current. Under the OCFT condition for a multiphase machine, only
the interaction between the fundamental components of the back-EMF and phase current,
or the interaction between the third harmonic components of the back-EMF and phase
current produces smooth I-power. The other harmonic interactions between the back-EMF
and phase current cause ripple in the I-power and in the torque. Because of this, torque
ripple under OCFT conditions is higher than those under healthy conditions.

The various sources of torque ripple have been described above. If a solution can be
developed to suppress these unwanted harmonic interactions, then torque ripple can be
suppressed. At this point, an additional current component injection method is proposed
to make zero these I-power components that produce ripple. Derivation of the required
additional current component is explained in detail in Section 3. The organization of the
paper is as follows. In Section 2, the I-power approach is described. The proposed method
to reduce the torque ripple is introduced in Section 3. Analytical analysis has been made in
Sections 4 and 5 for the healthy and faulty conditions. In Section 6, the proposed method
has been validated in an FEA software model. Finally, Section 7 concludes the paper.

2. Instantaneous Power Approach

The torque produced by a five-phase PM machine is given in (1) below, where ωr is
the rotor angular speed and θ is the electrical angle.

T =
1

ωr
[ia(θ)ea(θ) + ib(θ)eb(θ) + ic(θ)ec(θ) + id(θ)ed(θ) + ie(θ)ee(θ)] (1)

The combined fundamental plus third harmonic currents can be given as in (2).

ia(θ) = ia1(θ) + ia3(3θ) + . . .
ib(θ) = ib1(θ) + ib3(3θ) + . . .
ic(θ) = ic1(θ) + ic3(3θ) + . . .
id(θ) = id1(θ) + id3(3θ) + . . .
ie(θ) = ie1(θ) + ie3(3θ) + . . .

(2)

Multiphase machines can be supplied by using only the fundamental component or
fundamental plus higher-order current harmonics. Generally, higher-order current har-
monics are injected to improve the torque of the machine. For a five-phase machine, phase
coils can be supplied with fundamental or fundamental plus third harmonic current com-
ponents. The third harmonic stator current can be applied to a nonsinusoidal multiphase
machine that includes the third harmonic in the back-EMF to improve the torque. The
fundamental current components are given in (3), and the third harmonic of these currents
can be written as in (4), where Im1 and Im3 are the amplitudes of the fundamental and third
harmonic current components, respectively. The phasor diagram of the fundamental and
third harmonic current components is illustrated in Figure 1.

ia1(θ) = Im1 sin(θ)
ib1(θ) = Im1 sin

(
θ − 2π

5
)

ic1(θ) = Im1 sin
(

θ − 4π
5

)
id1(θ) = Im1 sin

(
θ − 6π

5
)

ie1(θ) = Im1 sin
(
θ − 8π

5
)

(3)

ia3(θ) = Im3 sin(3θ)
ib3(θ) = Im3 sin

(
3θ − 6π

5
)

ic3(θ) = Im3 sin
(
3θ − 2π

5
)

id3(θ) = Im3 sin
(
3θ − 8π

5
)

ie3(θ) = Im3 sin
(

3θ − 4π
5

) (4)
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Figure 1. Phasor diagram of the phase current components: (a) Fundamental; (b) third harmonic. 
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Figure 1. Phasor diagram of the phase current components: (a) Fundamental; (b) third harmonic.

The I-power of each phase can be expressed as a product of the phase current and
back-EMF waveform of the related phase. The back-EMF waveform can be written as
in (5) for a nonsinusoidal back-EMF machine, where En represents the amplitude of the
back-EMF harmonic, and k represents each of the five phases in a five-phase machine, i.e.,
k = 1, 2, 3, 4, 5 to represents phases a, b, c, d, and e, respectively.

ek(θ) =
∞

∑
n=1,3,5,...

En sin
[

n
(

θ − (k− 1)2π

5

)]
(5)

For example, the back-EMF of phase A is as follow:

ea(θ) = E1 sin(θ) + E3 sin(3θ) + E5 sin(5θ) + . . . (6)

According to the above definition, the I-power of the five-phase PM machine can be
written as in (7). Back-EMF waveforms are obtained from the FEA model of the five-phase
PM, as shown in Figure 2 and these back-EMF waveforms are taken as a reference to
obtain the relative harmonic components of the back-EMFs, it is assumed that if E1 = 1 pu,
E3 = 0.096, E5 = 0, E7 = 0.0332, E9 = 0.0301, and E11 = 0.0052 and if Im1 = 1 pu then
Im3 = 0.2Im1 to ease the calculations.

P = [ia(θ)ea(θ) + ib(θ)eb(θ) + ic(θ)ec(θ) + id(θ)ed(θ) + ie(θ)ee(θ)] (7)
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2021 [44]”.

3. Methodology of Proposed Torque Ripple Reduction Method

In this section, a method is introduced to reduce the torque ripple by using the I-
power approach in a PM multiphase machine. The I-power, due to the fundamental current
component, can be written for a nonsinusoidal back-EMF five-phase PM machine as follow:

P1 = ia1(θ)ea(θ) + ib1(θ)eb(θ) + ic1(θ)ec(θ) + id1(θ)ed(θ) + ie1(θ)ed(θ) (8)
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The resultant I-power, due to the fundamental current is given in (9).

P1 =
5
2

Im1E1 + Im1

[
E11

11
− E9

9

]
cos(10θ) + . . . (9)

The first term of Equation (9) produces smooth torque. However, the second term
causes pulsations in the torque, since it is a cosine function, and its frequency is ten times
the fundamental frequency of the phase current.

When the fundamental plus third harmonic current is applied to the coils of the
multiphase PM machine, the resultant I-power can be written as in (10). The I-power ‘P1’ is
already derived in (9).

P = P1 + P3 (10)

The I-power, due to the third harmonic current, can be given in (11).

P3 = ia3(θ)ea(θ) + ib3(θ)eb(θ) + ic3(θ)ec(θ) + id3(θ)ed(θ) + ie3(θ)ed(θ) (11)

And the resultant I-power, due to the third harmonic, is given by:

P3 =
5
2

Im3E3 + Im3

[
E13

13
− E7

7

]
cos(10θ) + . . . (12)

The summation of the I-powers, due to fundamental and third harmonic currents, is
the resultant I-power, given in (13).

P =
5
2

Im1E1 +
5
2

Im3E3 + Im1

[
E11

11
− E9

9

]
cos(10θ) + Im3

[
E13

13
− E7

7

]
cos(10θ) (13)

The first and second terms of (13) will produce smooth torque. However, the third
and fourth parts of (13) will produce ripples in torque. Both of the pulsating terms have
the same frequency, and it is ten times the fundamental frequency. These pulsation parts
should be eliminated to produce a smooth torque. The I-power with the third harmonic
current component of each phase can be expressed as below in (14), where k is to represent
phases a, b, c, d, and e, respectively.

Pk = [ik1(θ) + ik3(3θ)]ek(θ) (14)

The I-power of the fundamental and third harmonic current components for each
phase can be expressed in (15) and (16), respectively.

Pk1 = ik1(θ)ek(θ) (15)

Pk3 = ik3(3θ)ek(θ) (16)

In Equation (15), the fundamental current component will produce smooth torque
when it interacts with the fundamental component of the back-EMF. Interaction of the
fundamental current with the other back-EMF components apart from the fundamental
back-EMF component will cause ripples in the torque in (15). As in (15), there will be
smooth torque production when the third harmonic current component interacts with
the third harmonic back-EMF components in (16). Pulsations will be produced due to
interactions with the other back-EMF harmonics apart from the third harmonic back-EMF
component. An additional current term can be added to remove the pulsating parts as
in (17).

Pk =
[
ik1(θ) + ik3(3θ) + i+k

]
ek(θ) (17)

Then, Equation (17) can be extended as below in (18):

Pk = ik1(θ)ek1(θ) +ik3(3θ)ek3(3θ) + ik1(θ)[ek(θ)− ek1(θ)]
+ik3(3θ)[ek(θ)− ek3(3θ)] + i+k ek(θ)

(18)
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The above Equation (18) can be split into two parts: One of the parts contributes to
the smooth I-power, and the other part causes pulsations. The terms that contribute to the
smooth torque is as below:

Pk_smooth = Ik1(θ)ek1(θ) + Ik3(3θ)ek3(3θ) (19)

And the terms that cause pulsations are as follows:

Pk_pulsating = ik1(θ)[ek(θ)− ek1(θ)] + ik3(3θ)[ek(θ)− ek3(3θ)] + i+k ek(θ) (20)

The pulsating part of the I-power should be equated to zero to derive the additional
current component for eliminating the pulsating parts:

0 = ik1(θ)[ek(θ)− ek1(θ)] + ik3(3θ)[ek(θ)− ek3(3θ)] + i+k ek(θ) (21)

Then the additional current for each phase can be expressed as below:

i+k = − ik1(θ)[ek(θ)− ek1(θ)] + ik3(3θ)[ek(θ)− ek3(3θ)]

ek(θ)
(22)

Hence, the new phase currents can be written as below in (23).

i′a(θ) = ia1(θ) + ia3(3θ) + i+a
i′b(θ) = ib1(θ) + ib3(3θ) + i+b
i′c(θ) = ic1(θ) + ic3(3θ) + i+c
i′d(θ) = id1(θ) + id3(3θ) + i+d
i′e(θ) = ie1(θ) + ie3(3θ) + i+e

(23)

In Equation (23), the new currents are not balanced. Therefore, a neutral connection
and a divided power bus are required for this proposed method.

4. Torque Ripple Reduction Method for the No-Fault Condition

For the healthy (no-fault) condition, there are two ways to eliminate the torque ripples.
The first one is to consider all the back-EMF harmonics as in (22) and calculating the
additional current components according to this equation. The second approach is to
take into account only the back-EMF harmonics that cause ripples in the torque. For
example, the fundamental current components interact with the fundamental, 9th, and 11th

harmonics of the back-EMF for the healthy condition. Interaction with the fundamental
component of the back-EMF produces smooth torque. However, interaction with the 9th

and 11th harmonics of the back-EMF causes ripples in the torque. Therefore, instead of
considering all the back-EMF harmonics, considering only the 9th and 11th harmonics
of the back-EMF will be enough for the fundamental current component to calculate the
additional current component for the elimination of the torque ripples. So, the resultant
I-power with the additional current components can be expressed as below in (24) for the
healthy condition.

Pk = Ik1(θ)ek1(θ) +Ik3(3θ)ek3(3θ) + Ik1(θ)[ek9(9θ) + ek11(11θ)]
+Ik3(3θ)[ek7(7θ) + ek13(13θ)] + xkek(θ)

(24)

Then the alternative additional current for each phase can be expressed as in (25).

xk = −
Ik1(θ)[ek9(9θ) + ek11(11θ)] + Ik3(3θ)[ek7(7θ) + ek13(13θ)]

ek(θ)
(25)

By adding an additional current component in Equations (22) and (25) to each phase
current in a PM five-phase machine, the resultant I-power for healthy conditions can be seen
in Figure 3. I-power graphs are plotted when only the fundamental current components,
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and the fundamental plus third harmonic current components are applied to the windings.
Without the proposed method, there are ripples in the I-power graphs. This means there
will be ripples in the torque. With the proposed method, a smooth I-power has been
obtained, so the overall torque will be smooth.
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By adding an additional current component in Equations (22) and (25) to each phase 
current in a PM five-phase machine, the resultant I-power for healthy conditions can be 
seen in Figure 3. I-power graphs are plotted when only the fundamental current compo-
nents, and the fundamental plus third harmonic current components are applied to the 
windings. Without the proposed method, there are ripples in the I-power graphs. This 
means there will be ripples in the torque. With the proposed method, a smooth I-power 
has been obtained, so the overall torque will be smooth. 
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5. Torque Ripple Reduction for the Open-Circuit Fault-Tolerant Conditions

In this section, the proposed method has been applied to five OCFT conditions with
and without third harmonic current components. In the healthy condition, there is no inter-
action between the fundamental current components and the third harmonic component of
the back-EMF, and vice versa. However, for the OCFT conditions, the fundamental current
component interacts with the third harmonic component of the back-EMF and vice versa.
These interactions cause ripples in the torque. Therefore, it is better to use Equation (22) to
calculate the additional current components for each phase to eliminate the torque ripples.
The fault-tolerant method with third harmonic current components has been considered
and developed by Yi Sui et al. [29], and the resulting torque under the healthy condition
has been considered as a reference for the post fault conditions.

5.1. Single Phase Open-Circuit Fault-Tolerant Currents

It is assumed that Phase A is open-circuited. The fault-tolerant control currents with
the third harmonic current component and the additional current are given in (26).

i∗b (θ) = 1.314
[

Im1 sin
(
θ − 3π

10
)
+ Im3 sin

(
3θ − 11π

10

)]
+ i+b

i∗c (θ) = 1.314
[
Im1 sin

(
θ − 9π

10
)
+ Im3 sin

(
3θ − 3π

10
)]

+ i+c
i∗d(θ) = 1.314

[
Im1 sin

(
θ − 11π

10

)
+ Im3 sin

(
3θ − 17π

10

)]
+ i+d

i∗e (θ) = 1.314
[

Im1 sin
(

θ − 17π
10

)
+ Im3 sin

(
3θ − 9π

10
)]

+ i+e

(26)

I-power graphs have been plotted when only the fundamental, and fundamental
plus third harmonic current components are applied. I-power graphs for the single-phase
open-circuit (SPOC) conditions can be seen in Figure 4. Without the proposed method,
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there are ripples in the torque. However, it is clear from the graphs, ripples have been
removed when the proposed method has been implemented.
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5.2. Adjacent Double Phase Open-Circuit Fault-Tolerant Currents

It is assumed that Phase A and B are open-circuited for the adjacent double phase
open-circuit (ADPOC) condition. Fault-Tolerant currents with the third harmonic and the
additional current components are given in (27).

i∗c (θ) = 1.77Im1 sin
(

θ − 14π
15

)
+ 2.14Im3 sin

(
3θ − 2π

15
)
+ i+c

i∗d(θ) = 1.77Im1 sin
(
θ − 6π

5
)
+ 2.14Im3 sin

(
3θ − 8π

5
)
+ i+d

i∗e (θ) = 1.77Im1 sin
(
θ − 22π

15
)
+ 2.14Im3 sin

(
3θ − 16π

15

)
+ i+e

(27)

I-power graphs with and without the proposed method for the ADPOC conditions
can be seen in Figure 5.
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5.3. Nonadjacent Double Phase Open-Circuit Fault-Tolerant Currents

It is assumed that Phase A and C are open-circuited for the nonadjacent double phase
open-circuit (NADPOC) condition. Fault-Tolerant currents with the third harmonic and
the additional current components are given in (28).

i∗b (θ) = 2.14Im1 sin
(
θ − 2π

5
)
+ 1.77Im3 sin

(
3θ − 6π

5
)
+ i+b

i∗d(θ) = 2.14Im1 sin
(

θ − 14π
15

)
+ 1.77Im3 sin

(
3θ − 22π

15
)
+ i+d

i∗e (θ) = 2.14Im1 sin
(
θ − 28π

15
)
+ 1.77Im3 sin

(
3θ − 14π

15

)
+ i+e

(28)

I-power graphs with and without the proposed method for the NADPOC conditions
are shown in Figure 6.
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5.4. Adjacent Three-Phase Open-Circuit Fault-Tolerant Currents

Phase A, B, and E are assumed to be open-circuited for the adjacent three-phase
open-circuit (ATPOC) fault-tolerant condition. Phase currents with the third harmonic
component for the healthy phases are given in (29). I-power graphs with and without the
proposed method for the ATPOC conditions are shown in Figure 7.

i∗c (θ) = 2.63Im1 sin
(
θ − 7π

10
)
+ 4.25Im3 sin

(
3θ − π

10
)
+ i+c

i∗d(θ) = 2.63Im1 sin
(

θ − 13π
10

)
+ 4.25Im3 sin

(
3θ − 19π

10

)
+ i+d

(29)
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5.5. Nonadjacent Three-Phase Open-Circuit Fault-Tolerant Currents

Phase A, C, and D are assumed to be open-circuited for the nonadjacent three-phase
open-circuit (NATPOC) fault-tolerant condition. Phase currents with the third harmonic
component for the healthy phases are given in (30). I-power graphs with and without the
proposed method for the NATPOC conditions are shown in Figure 8.

i∗b (θ) = 4.25Im1 sin
(
θ − π

10
)
+ 2.63Im3 sin

(
3θ − 13π

10

)
+ i+b

i∗e (θ) = 4.25Im1 sin
(

θ − 19π
10

)
+ 2.63Im3 sin

(
3θ − 7π

10
)
+ i+e

(30)
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6. FEA Simulation Results of the Proposed Method

In this section of the paper, validation of the proposed method has been undertaken by
using an FEA model of the five-phase fractional slot PM machine shown in Figure 9a. The
machine is a double-layer fractional slot PM machine. The parameters of the five-phase PM
machine model are given in Table 1. The back-EMF waveform of the machine is also shown
in Figure 2, and the harmonic content includes: 100% fundamental, the 3rd harmonic: 9.6%,
5th: 0%, 7th: 3.32%, 9th: 3.01%, 11th: 0.52%. Cogging torque of the FEA model of the
five-phase PM machine is shown in Figure 9b. The peak to the peak value of the cogging
torque is 0.33 Nm.
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Table 1. Parameters of The Five-Phase PM Machine “Reprinted from Publisher, 2021 [44]”.

Rated Power (kW) 1
Rated Speed (rpm) 2000

Rated Current (Amps)(Peak) 3.39
Rated Torque (Nm) 6.6966

Number of Poles 8
Number of slots 10

Simulations have been done at 600 rpm rotor speed (or 10 rps), and at the electrical
frequency of 40 Hz. 26 FEA simulations have been undertaken for both fundamental only,
and fundamental plus third harmonic currents with and without the proposed method.
Six of the simulations belong to the healthy condition, and the remaining simulations are
for the five different OCFT conditions. The rated current of the five-phase PM multiphase
machine has been used as a reference current for the simulations, so the fundamental
current component Im1 = 3.39A and the third harmonic current component Im3 = 0.2xIm1.

6.1. FEA Simulations of the Healthy Condition

Two different additional currents for each phase have been obtained in (22) and (25)
for the healthy condition (Healthy1 and Healthy2, respectively). Simulations have been
undertaken by using these additional currents. The new set of phase currents can be seen
in Figure 10a,b by using Equation (22). Figure 10a is for the fundamental only currents, and
Figure 10b shows the fundamental plus third harmonic currents with the proposed method.
FEA torque results of these new sets of currents also can be seen in the same figures. Torque
ripples caused by the higher-order harmonics of the back-EMF are all nearly eliminated
by using the proposed method. The only torque ripples that remain are those from the
cogging torque.
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The new set of currents also obtained by using Equation (25) for the healthy condition.
The new set of currents and the torque results are shown in Figure 11a,b. Figure 11a is
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for the fundamental only currents, and Figure 11b belongs to the fundamental plus third
harmonic currents. Torque ripples caused by the higher-order harmonics in the back-EMF
are nearly eliminated for both conditions.
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6.2. FEA Simulations of the Open-Circuit Fault-Tolerant Conditions

In this section, the simulation of five OCFT conditions has been undertaken to validate
the proposed method. Additional current component derived in (17) has been used to
obtain the new set of currents for the OCFT conditions.

Torque ripples for the SPOC (Phase A open) and ADPOC (Phase A and B open)
conditions have almost been removed. This can be clearly seen in Figures 12–16. Torque
ripples for the NADPOC (Phase A and C open) and ATPOC (Phase A, B, and E open)
conditions have also been nearly eliminated by using the proposed method apart from
small ripples occurring at eight times per revolution. For the NATPOC (A, C, and D
open) condition, there are still huge torque ripples with the proposed method. However,
the percentage of the torque ripples of the proposed method is better than without the
proposed method. Moreover, the level of the average torque has been drawn higher.

Average torque values and the percentage of the ripples can be seen in Table 2. It is
clear from Table 2 that the torque ripple has been reduced compared to the torque ripple
obtained without the proposed method. It is also clear from Table 2 that the torque has
been improved by injecting the third harmonic component of the phase currents into the
coils of the five-phase PM machine, as well as the various higher order harmonics.
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Table 2. FEA average torque results and ripples.

Only Fundamental Current Fundamental + Third Harmonic Current

without Proposed Method with Proposed Method without Proposed Method with Proposed Method

Average Ripple (%) Average Ripple (%) Average Ripple (%) Average Ripple (%)

Healthy1 6.6964 7.1934 6.6943 5.0640 6.8233 8.4299 6.8179 5.0705
Healthy2 6.6964 7.1934 6.6942 5.0417 6.8233 8.4299 6.8189 5.0399
A Open 6.6721 19.7249 6.6753 6.7930 6.7772 44.5119 6.8009 6.9170

A and B Open 6.6889 15.3699 6.6869 5.5672 6.8075 78.0180 6.8142 5.4545
A and C Open 6.5032 23.4750 6.5515 13.5374 6.5829 34.5335 6.6689 13.7595

A, B and E Open 6.5042 22.4154 6.5481 13.3304 6.5873 108.1307 6.6616 13.8070
A, C and D Open 6.1680 38.2906 6.2744 28.5654 6.1080 67.1371 6.3800 29.5695

7. Conclusions

Pulsations caused by the higher-order back-EMF harmonics should be eliminated to
obtain a nearly smooth torque. For this purpose, a method has been developed to reduce
the torque ripples for both the healthy and the OCFT conditions in terms of the I-power
approach by adding an additional current component to each phase.

In the healthy condition, the 9th and 11th harmonic of the back-EMF causes ripples in
torque for the fundamental component of the phase currents. When the third harmonic
current component is injected into the phase coils, there will be other interactions with
the 7th and 13th back-EMF harmonics that cause ripples in the torque, as well. All the
ripples produced by interaction with the higher-order back-EMF harmonics have the same
frequency, which is ten times the fundamental component of the phase currents. An
additional current component has been added to each phase current to reduce the torque
ripples for the healthy condition.

For the OCFT conditions, there is also an interaction between the fundamental compo-
nent of the phase current and the third harmonic of the back-EMF, and vice versa. However,
in the healthy condition, the sum of the interaction between the fundamental current and
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the third harmonic back-EMF is zero. For OCFT conditions, the sum of the interaction
between the fundamental and the third harmonic back-EMF and vice versa is not zero,
and it will produce ripples in the torque. Preventing these interactions will reduce the
torque ripples. Adding an additional current component to each phase prevented these
unwanted interactions.

Only the cogging torque of the multiphase machine is left when the proposed method
has been applied to the machine’s windings under the healthy condition. Also, ripples
of the torque have been reduced for the SPOC and ADPOC fault-tolerant conditions like
in the healthy condition. Torque results of the NADPOC and ATPOC conditions have
been nearly eliminated apart from small ripples. For the NATPOC condition, there are
still huge ripples. However, these ripples are smaller than those obtained without the
proposed method.
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