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Abstract: This paper presents a method for the performance analysis of high-speed electric machines
supplied with pulse-width modulated voltage source inverters by utilizing a fast analytical model.
By applying a strict mathematical procedure, effective expressions for the calculation of rotor eddy
current losses and electromagnetic torque are derived. Results obtained by the approach suggested
in this study are verified by the finite element model, and it is shown that the proposed method is
superior in comparison to the finite element method in terms of computation time. The proposed
method enables fast parameter variation analysis, which is demonstrated by changing the inverter
switching frequency and electric conductivity of the rotor and analyzing the effects of these changes
on rotor eddy current losses. The presented work separately models effects of the permanent magnet
and pulse-width modulated stator currents, making it suitable for the analysis of both high-speed
permanent magnet machines and high-speed induction machines.

Keywords: high-speed machines; pulse width modulation; eddy current losses; electromagnetic
torque; harmonic modeling; finite element modeling; voltage source inverters; permanent magnet
machines; solid rotor induction machines; electrically assisted turbochargers

1. Introduction

In modern times, the use of electric machines in automotive applications increases con-
tinuously. Current tendencies in this field mainly assume the development of fully electric
and hybrid vehicles, where propulsion is done solely or partly by electric machines [1–4].
Electric machines in vehicles are also widely used in different auxiliary systems, such as
transmission oil pumps [5] and cooling fan systems [6]. They can also be found in elec-
trically assisted turbochargers [7]. Here, a very high-speed (above 100,000 RPM) electric
machine is used to drive a compressor independently of the engine, eliminating turbo lag
and improving the overall performance [8]. When there is enough power supplied from
the exhaust to the turbine inlet, the machine can work in the generator mode [9], reusing
some energy contained in the exhaust heat.

High-speed permanent magnet (PM) machines are widely used for turbochargers as
they provide high power density imposed by the limited machine volume. A significant
setback associated with high power density is the high loss density. In a high-temperature
environment, where heat removal from the rotor is very difficult, high loss density increases
the risk of demagnetization. Furthermore, high-speed machines are driven by power
electronics converters that inject non-sinusoidal currents in stator windings. Distorted
current waveforms cause eddy current losses in the rotor, further increasing the risk of
overheating and demagnetization which can result in a serious fail.

To properly predict the performance of a machine supplied with non-sinusoidal
currents, a thorough modeling approach that takes into account all significant effects has
to be applied during the design process. Although finite element method (FEM) is used
by some authors [10–12], for high-speed machines supplied with pulse-width modulated
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(PWM) currents, this method is very time consuming, which limits possibilities to perform
effective parameter variation analysis. Namely, the accuracy of transient FEM simulations
is very sensitive to the size of the simulation step, which has to be chosen according to
the highest frequency in the spectrum of stator currents. In the case of PWM currents,
harmonic components appear at frequencies that are an order of magnitude (and more)
higher than the fundamental frequency. This requires a small simulation step and results
in a very long computation time.

As alternatives to transient FEM, analytical methods are preferred, since they require
shorter computation time and allow fast parameter optimization. A widely used analytical
technique for the modeling of electric machines is the magnetic equivalent circuits (MEC)
method [13,14]. It requires that the magnetic flux lines are known in advance. Therefore,
it is not easily applicable when PWM currents are present in stator windings, as it is
difficult to predict the exact spatial distribution of PWM caused eddy currents in the rotor.
Consequently, when MEC is used to model eddy currents, it typically does not include
the effect of the eddy current reaction field [15,16]. In high-speed applications, this can
significantly overestimate the field and consequently eddy current losses. Furthermore, the
accuracy of MEC is determined by the size of individual MEC elements, similarly to the
accuracy of FEM which depends on the quality of the mesh.

A very effective method for the analysis of eddy current-related problems in electric
machines is the harmonic modeling (HM) method. It is based on Fourier analysis of spatial
harmonics in the circumferential direction of the machine and it has been proven as a
suitable tool for the analysis of the electromagnetic field in high-speed machines [17,18].
It is a mesh-free method that easily accounts for the reaction field of eddy currents and
allows multiple time harmonics in stator currents. However, the available literature on
this method rarely treats PWM supply specifically and in sufficient detail. Peculiarities
associated with PWM modulation are mostly not considered and time harmonics in stator
currents are usually modeled in a manner that does not reflect realistic PWM currents.
In [19], PWM caused current ripple is represented by a single sinusoidal waveform at
switching frequency. This oversimplifies PWM harmonic content and does not allow to
study effects of interactions between different PWM harmonics. More recent references
typically treat stator currents in a generic way, allowing multiple time harmonics, but
assuming that they are located at frequencies that are integer multiples of the fundamental
frequency [20–22]. This assumption can be found even in papers that specifically model
PWM supplied high-speed machines and compare their performance against machines
driven by other modulation strategies [23]. Although this assumption can indeed hold
for PWM supply, this is not always the case. Namely, frequencies of PWM harmonics are
determined by the switching frequency. In high-speed applications, inverter switching
losses can be very high. To limit these losses, switching frequency in practice can be set
to values that do not give integer frequency modulation ratio, violating the previously
discussed assumption of integer orders of PWM harmonics. The work presented in this
study does not put any assumption on the harmonic content of stator currents, but treats it
as a function of the arbitrary switching frequency.

To accurately assess the performance of a high-speed machine supplied by a PWM
inverter, interactions caused by higher order time and spatial harmonics need to be properly
addressed to reflect conditions corresponding to PWM supply. In contrast to another often
used assumption, applied, for instance in [24], the phase shift between current harmonics in
different phases of a PWM supplied machine is not determined by the absolute harmonic
order, but by the position of the harmonic in a sideband or a baseband [25]. As the
phase shift determines the rotational sequence of traveling waves generated by each PWM
harmonic, it has a significant influence on the machine performance. The model derived
in this study applies this phase shift correctly, accurately representing conditions under
PWM supply. Furthermore, all spatial harmonics of both the rotor and the stator field
are taken into account, which is often omitted by authors who solely focus on the proper
implementation of PWM harmonics, as done in [26,27].
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Starting from models based on the harmonic modeling method, presented previously
by the same author in [28,29], this paper develops an extensive study for the performance
analysis of high-speed PWM supplied electric machines. Effects related to both spatial
harmonics (determined by the machine structure) and time harmonics (determined by the
modulation strategy and switching frequency) are properly included. This fills the gaps in
the existing work which, as discussed previously, typically focuses only on one of these
2 aspects. Rotor eddy current losses and electromagnetic torque, as main indicators of the
machine performance, are formulated in terms of the specific time and spatial harmonics
which actually exist in a given machine. This makes the implementation of analytical
expressions derived in this study more straightforward in comparison to typically used
expressions which include multiple infinite summations over generic time and spatial
harmonics, as done, for instance, in [21,30].

2. Magnetic Field in High-Speed PM Machines Supplied by PWM Inverters

The analysis shown in this study utilizes previously developed models of the magnetic
field in high-speed machines. The field generated by stator currents and the field created
by the magnet are modeled separately. Both models include effects of eddy currents in
solid conducting regions in the rotor, and they are developed in the polar coordinate
system. Models assume two-dimensional (2D) magnetic field distribution. Therefore, the
magnetic field strength H [A/m] and the magnetic flux density B [T] have only radial and
circumferential components, while the induced electric field E [V/m] and the magnetic
vector potential A [Wb/m] have only the axial component.

A slotted high-speed PM machine with a diametrically magnetized magnet, displayed
in Figure 1, is used as a benchmark topology to illustrate the presented method.

Figure 1. Cross section of the benchmark high-speed PM machine. Adapted with permission from
ref. [31]. Copyright 2015 IEEE.

Arrows in the rotor indicate the magnetization pattern which is commonly referred
to as diametrical magnetization. The magnet is contained in a retaining sleeve made of a
material with high mechanical strength. Parameters of the machine are given in Table 1.

If the rotor magnetization is set to zero, the topology shown in Figure 1 resembles the
structure of solid rotor or copper-coated solid rotor high-speed induction machines [32,33].
Therefore, qualitative findings of the analysis presented in this study can also be applied to
induction machines, if only the field associated with PWM stator currents is considered.
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Table 1. Dimensions and parameters of the benchmark high-speed PM machine.

Parameter Value Unit

Fundamental frequency 4 kHz
Magnet recoil permeability 1.035 -

Magnet conductivity 6.25× 105 S/m
Magnet remanence 1.19 T

Sleeve relative permeability 1 -
Sleeve conductivity 8.33× 105 S/m
Slot opening width 7.5 degree

Active length 25 mm
Magnet radius 5.5 mm

Sleeve outer radius 7.5 mm
Stator inner radius 9 mm
Slot outer radius 19 mm

As derived in [28], the axial component of the magnetic vector potential in the air-
gap of a high-speed PM machine, created by 3-phase currents supplied by a pulse-width
modulated voltage source inverter (PWM VSI), can be expressed as

Āar
z (r, θr, t) =

∞

∑
L=−∞

∞

∑
m=0
m>0

∞

∑
n=1

n=−∞

ˆ̄Aar
z (r, L, m, n)ej((3L−n)(θr+θ0)+(m·mf+3L)ω0t), (1)

where ˆ̄Aar
z is the complex harmonic peak value, r [m] is the radial coordinate, θr [rad] is

the circumferential coordinate in the reference frame of the rotor, and θ0 [rad] is the initial
rotor position. Index L is an integer, while mf represents the frequency modulation ratio
of the inverter (the ratio between the switching and the fundamental frequency). Indices
m and n indicate baseband (for m = 0) and sideband (for m > 0) harmonics in the PWM
inverter output voltage, as shown in Figure 2. Combination (m = 0, n = 1) represents
the fundamental component. The fundamental angular frequency of armature currents is
indicated by ω0 [rad/s], while t stands for time. Expression equivalent to (1) can be used to
model magnetic field in the air-gap of high-speed solid rotor induction machine. Namely,
instead of assuming that the mechanical speed of the rotor is ω0, as done while deriving (1)
in [28], any other rotor mechanical speed can be assumed.

f

V̂mn

m = 0 m = 1 m = 2

n = 8

n = 4

n = 2

n = −8

n = −4

n = −2

Figure 2. Harmonic components of PWM VSI line-to-line output voltages.

Analytical expressions for the output voltage of a 3-phase inverter with various mod-
ulation strategies can be found in [25]. By transforming these expressions, the amplitude
of any harmonic component of phase voltage in Y connected 3-phase machine can be
formulated as

V̂P
mn =

8VDCmf
3π(m ·m f + n)

Jn

(
(m ·m f + n)πma

2mf

)
sin
(
[m + n]

π

2

)
sin2

(
n

π

3

)
, (2)

where VDC [V] is the inverter DC bus voltage, and ma is the amplitude modulation ratio
of the inverter. Term Jn is the Bessel function of the first kind of order n. Equation (2)
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corresponds to asymmetrical regular PWM sampling modulation strategy. While other
modulation strategies give different amplitudes of individual harmonics, all of them allow
only components for which the following condition is fulfilled

n 6= 3M, M ∈ Z, (3)

as seen in (2). Index n determines the phase shift between currents corresponding to the
same harmonic component in different phases [25]. Therefore, condition (3) expresses
the fact that in stator windings there are no harmonic components corresponding to
zero-sequence currents. Although this is always true if phase windings are connected in
Y connection, it would also hold for the inverter fed machine in ∆ connection, since it
can be shown that harmonic components for which n is a multiple of 3 cannot be present
in the inverter line-to-line output voltages [25]. Furthermore, as spatial harmonics in (1)
are defined as (3L− n), it can be concluded that spatial harmonics with the order which
is a multiple of 3 do not contribute to the magnetic field of stator currents. As n gives
the phase shift between different phases, it defines in which direction the resultant stator
magnetic field corresponding to that harmonic component rotates. If n takes one of the
following values

n = 3M + 1, M ∈ Z, (4)

the considered harmonic component gives so-called positive sequence and the stator
magnetic field corresponding to that harmonic component and the fundamental spatial
harmonic rotates in the same direction as the rotor. Naturally, the fundamental component
of stator currents is of a positive sequence. Conversely, if n takes one of the following values

n = 3M− 1, M ∈ Z, (5)

the considered harmonic component gives so-called negative sequence and the stator field
corresponding to that harmonic component and the fundamental spatial harmonic rotates
in the direction opposite of the rotor.

Similarly to (1), as derived in [29], the axial component of the magnetic vector potential
in the air-gap of a high-speed 3-phase PM machine created by a magnet with diametrical
magnetization is given by

Anl
z (r, θr, t) =

∞

∑
kp=−∞

ˆ̄Anl,0
z (r, kp)ej(kpθr+lp(kp)θ0+lp(kp)ω0t), (6)

where ˆ̄Anl,0
z is the complex harmonic peak value defined for a single initial position of the

rotor, kp is the spatial harmonic index, and lp is time harmonic index of the PM field in
the rotor reference frame. For the benchmark topology shown in Figure 1, existing kp and
associated lp are shown in Table 2.

Table 2. Values of kp for the benchmark machine with corresponding values of lp.

kp ±1 ±11 ±13 ±23 ±25 ±35 ±37 ±47 ±49

lp 0 ±12 ±12 ±24 ±24 ±36 ±36 ±48 ±48

In most general terms, kp takes values ±1 for the fundamental harmonic, and ±kpm
for higher order spatial harmonics, where kpm is defined as [29]

kpm = pNs ± 1, p ∈ N, (7)

with Ns being the number of slots. As the number of slots in 3-phase machines is always a
multiple of 3, it follows that the magnetization pattern shown in Figure 1 cannot generate
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spatial harmonics with orders which are multiples of 3. For a given kp, lp is always the
closest integer which is a multiple of 3. Due to fixed relation between kp and lp, it is
possible to describe field variations in both space and time using a single summation term,
as shown in (6). Mathematically, this implies that each spatial harmonic, as seen in the
rotor reference frame, varies with a single frequency. Physically, this means that each
spatial harmonic is described by a single traveling wave that moves at a fixed speed. This
comes as a consequence of having only the fundamental spatial component in the rotor
magnetization. Higher-order spatial harmonics result from the interaction between the
fundamental component of the magnetization and stator slots. The fact that each spatial
harmonic is associated with a single traveling wave has a significant effect on the machine
performance at no-load conditions, as will be discussed later.

In a 2D model, the magnetic flux density in the air-gap is expressed using its radial
component Br and the circumferential component of the magnetic field strength Hθ as

~B = Br~ir + µ0Hθ
~iθ , (8)

where µ0 [H/m] is the permeability of vacuum, and~ir and~iθ are unit vectors in the radial
and circumferential direction, respectively. On the other hand, the vector potential ~A is
defined as [34]

~B = ∇× ~A. (9)

For a 2D approximation, field quantities are invariant in the axial direction. As only the
axial component Az is present, (9) simplifies to

~B =
1
r

∂Az

∂θr
~ir −

∂Az

∂r
~iθ . (10)

By comparing (8) and (10), Br and Hθ can be expressed as a function of Az in the reference
frame of the rotor as

Br =
1
r

∂Az(r, θr, t)
∂θr

; Hθ = − 1
µ0

∂Az(r, θr, t)
∂r

. (11)

By combining (9) with Faraday’s law given by (A3) in Appendix A, the axial component of
the induced electric field can be expressed as

Ez = −
∂Az(r, θr, t)

∂t
. (12)

The estimation of eddy current losses, as one of the main indicators of electric machine
performance, requires volume integration. The field solution in polar coordinates with
included eddy current effects contains Bessel functions [28,29]. Performing the volume
integral of Bessel functions can represent a significant challenge [35,36]. However, by us-
ing Poynting’s theorem, eddy current losses can be calculated using a surface integral.
Generalized Poynting’s theorem for a structure containing the imposed current density~Ji
(representing stator currents) and permanent magnets with the remanent flux density ~Brem,
can be expressed, as shown in [24] and derived in Appendix A, by

−
∮
S

(
~E× ~H

)
·~ndS =

µ0

2
∂

∂t

∫
V

µr|~H|2dV +
∫
V

σ|~E|2dV

+
∫
V

~H · ∂~Brem

∂t
dV +

∫
V

~E ·~JidV, (13)

where µr is the relative permeability, S is a closed surface surrounding volume V, and~n is
the outward normal on surface S. All field quantities in (13) are in the real domain. If the
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goal is to calculate rotor eddy current losses, S can be chosen as a closed cylindrical surface
located in the air gap and fixed to the reference frame of the rotor. In that case, the last
term on the right side of (13) vanishes, as there is no externally imposed current density
enclosed by S. Furthermore, the second last term on the right side of (13) also vanishes,
even in the case of PM machines, as the volume V rotates together with the rotor magnets
and there is no variation of the remanent flux density. For a 2D model used in this work,
expression (13) therefore transforms into

∫
Sr

Ez(r = rS, θr)Hθ(r = rS, θr)dSr =
1

2µ0

∂

∂t

∫
V

B2
r

µr
dV

+
µ0

2
∂

∂t

∫
V

µrH2
θ dV +

∫
V

σE2
zdV, (14)

where Sr is the part of surface S with the normal ~n directed in the radial direction, where
the integral over the closed surface gives a non-zero result. Parameter rS [m] represents the
radius in the air-gap at which Sr is located. The first 2 terms on the right side of (14) represent
the rate of change of the energy stored in the magnetic field, while the last term represents
eddy current losses generated inside the considered volume V. Therefore, by using (14), only
the time-independent component of rotor eddy current losses can be calculated. In that case,
the first 2 terms on the right side vanish, and average eddy current losses can be determined
by performing the surface integral on the left side of expression (14).

By using Maxwell’s stress tensor [34], the electromagnetic torque created by 2D
magnetic field can be obtained by evaluating the following surface integral [37]

T =
rS
µ0

∫
Sr

Br(r = rS, θr)Bθ(r = rS, θr)dSr, (15)

with Sr and rS representing the same surface and same radius in the air-gap as in (14),
respectively. Like in (14), both radial and circumferential components of flux density Br
and Bθ in (15) are real numbers. With all significant aspects defined in this section, it is now
possible to analyze machine performance using previously established field solution and
accompanying relations.

3. Analysis of High-Speed Machine Performance Due to PWM Currents

As seen in (1), the field of stator currents is the combination of field components created
by different PWM harmonics shown in Figure 2. This is described by the summation over
m and n. Interactions between different PWM harmonics cause significant variations in
instantaneous values of the electromagnetic torque [26,27] and rotor eddy current losses,
obtained by (15) and (14), respectively. To illustrate these interactions, 2 angular frequencies
ω1 and ω2 can be introduced as

ω1 = (m1 ·mf + n1)ω0 ; ω2 = (m2 ·mf + n2)ω0. (16)

All terms in (14) and (15) contain a product of 2 field quantities. To model interactions
between these quantities caused by different PWM harmonics, it is useful to introduce
generic quantities Ḡ1 and Ḡ2. When referring to the right side of (14), then Ḡ1 = Ḡ2.
Conversely, when referring to the left side of (14) or the right side of (15), then Ḡ1 6= Ḡ2.
Ḡ1 and Ḡ2 are created simultaneously by both PWM components with angular frequencies
ω1 and ω2 given by (16). By dropping the summation over m and n, and replacing it by the
exact terms corresponding to ω1 and ω2, the form of Ḡ1 and Ḡ2 given by (1) becomes
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Ḡ1 =
∞

∑
L1=−∞

(
ˆ̄G1(L1, m1, n1)ej((3L1−n1)(θr+θ0)+(m1·mf+3L1)ω0t)

+ ˆ̄G1(L1, m2, n2)ej((3L1−n2)(θr+θ0)+(m2·mf+3L1)ω0t)
)

, (17)

and

Ḡ2 =
∞

∑
L2=−∞

(
ˆ̄G2(L2, m1, n1)ej((3L2−n1)(θr+θ0)+(m1·mf+3L2)ω0t)

+ ˆ̄G2(L2, m2, n2)ej((3L2−n2)(θr+θ0)+(m2·mf+3L2)ω0t)
)

, (18)

where ˆ̄G1 and ˆ̄G2 are the generic complex harmonic peak values. Generic quantities G1
and G2, which have to be inserted into (14) and (15), are real numbers—real parts of
corresponding quantities Ḡ1 and Ḡ2. Therefore, it can be written

G1 = <(Ḡ1) =
1
2
(Ḡ1 + Ḡ∗1 ) ; G2 = <(Ḡ2) =

1
2
(Ḡ2 + Ḡ∗2 ), (19)

where ∗ stands for the complex conjugation and < is the real part of a complex number.
Due to the shape of the closed surface S, all integrals in (14) and (15) assume integration

in the circumferential direction in the range from −π and π. Therefore, a generic integral
Iar, contained in all previously introduced surface and volume integrals, can be defined as

Iar =

π∫
−π

G1G2dθr. (20)

By inserting (19) into (20), Iar can be further developed as

Iar =
1
4

π∫
−π

(Ḡ1 + Ḡ∗1 )(Ḡ2 + Ḡ∗2 )dθr =
1
4

π∫
−π

(
Ḡ1Ḡ2 + Ḡ1Ḡ∗2 + (Ḡ1Ḡ2 + Ḡ1Ḡ∗2 )

∗)dθr

=
1
2

π∫
−π

<(Ḡ1Ḡ2)dθr +
1
2

π∫
−π

<(Ḡ1Ḡ∗2 )dθr = Iar
1 + Iar

2 . (21)

By inserting (17) and (18) into (21), qualitative spectral analysis of the instantaneous torque
and rotor eddy current losses can be performed, in order to reveal results of the mutual
interaction between different PWM harmonics in the stator voltages and currents. If (17)
and (18) are inserted into (21), the following expression can be derived for integral Iar

1

Iar
1 =

1
2

π∫
−π

<(Ḡ1Ḡ2)dθr =
1
2

∞

∑
L1=−∞

∞

∑
L2=−∞

·
π∫
−π

(
<
(

ˆ̄G1(L1, m1, n1)
ˆ̄G2(L2, m1, n1)ej((3(L1+L2)−2n1)(θr+θ0)+(2m1 ·mf+3(L1+L2))ω0t)

)

+<
(

ˆ̄G1(L1, m1, n1)
ˆ̄G2(L2, m2, n2)ej((3L1−n1+3L2−n2)(θr+θ0)+((m1+m2)mf+3(L1+L2))ω0t)

)
+<

(
ˆ̄G1(L1, m2, n2)

ˆ̄G2(L2, m1, n1)ej((3L1−n2+3L2−n1)(θr+θ0)+((m2+m1)mf+3(L1+L2))ω0t)
)

+<
(

ˆ̄G1(L1, m2, n2)
ˆ̄G2(L2, m2, n2)ej((3(L1+L2)−2n2)(θr+θ0)+(2m2 ·mf+3(L1+L2))ω0t)

))
dθr

= Iar,a
1 + Iar,b

1 + Iar,c
1 + Iar,d

1 . (22)
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The integration of a periodic function over an integer number of periods results in zero.
Therefore, integrals in (22) give a non-zero result only if functions under these integrals
are independent of θr. Consequently, integrals Iar,a

1 and Iar,d
1 take non-zero values if the

following conditions are met, respectively

L1 + L2 =
2n1

3
; L1 + L2 =

2n2

3
. (23)

Since L1 and L2 are integers, and n cannot be a multiple of 3, as stated by (3), conditions
given by (23) are never fulfilled. Consequently, integrals Iar,a

1 and Iar,d
1 always have a zero

result and do not contribute to Iar
1 . Integrals Iar,b

1 and Iar,c
1 take non-zero values if

L1 + L2 =
n1 + n2

3
. (24)

Condition (24) states that spatial harmonics of the same order within G1 and G2, caused by
different PWM harmonic components in stator currents, interact mutually. Since spatial
waveforms corresponding to the same spatial harmonic in the air-gap, but to 2 different
PWM harmonics, move around the machine circumference at different speeds, the result of
this interaction is time dependent. By inserting (24) into (22) and taking into account (16),
the frequency associated to non-zero terms of Iar

1 can be expressed as

ωI1 =
(
(m1 + m2)mf + 3(L1 + L2)

)
ω0 =

(
(m1 + m2)mf + n1 + n2

)
ω0 = ω1 + ω2. (25)

Therefore, (22) can be rewritten as

Iar
1 = π ∑

L1,L2

<
((

ˆ̄G1(L1, m1, n1)
ˆ̄G2(L2, m2, n2)

+ ˆ̄G1(L1, m2, n2)
ˆ̄G2(L2, m1, n1)

)
ej(ω1+ω2)t

)
, (26)

where only combinations of L1 and L2 which satisfy (24) are allowed. Since both L1
and L2 are defined as integers, the right side of (24) needs always to give an integer. If
expressions (4) and (5) are inserted into (24), it can be seen that this will be the case only if
one of the considered PWM harmonic components gives positive sequence currents, and
the other one gives negative sequence currents. Therefore, only these combinations of
PWM harmonics in the stator currents actually contribute to Iar

1 . If (17) and (18) are again
inserted into (21), the following expression can be derived for integral Iar

2

Iar
2 =

1
2

π∫
−π

<(Ḡ1Ḡ∗2 )dθr =
1
2

∞

∑
L1=−∞

∞

∑
L2=−∞

·
π∫
−π

(
<
(

ˆ̄G1(L1, m1, n1)
ˆ̄G∗2 (L2, m1, n1)ej(3(L1−L2)(θr+θ0)+3(L1−L2)ω0t)

)

+<
(

ˆ̄G1(L1, m1, n1)
ˆ̄G∗2 (L2, m2, n2)ej((3L1−n1−(3L2−n2))(θr+θ0)+((m1−m2)mf+3(L1−L2))ω0t)

)
+<

(
ˆ̄G1(L1, m2, n2)

ˆ̄G∗2 (L2, m1, n1)ej((3L1−n2−(3L2−n1))(θr+θ0)+((m2−m1)mf+3(L1−L2))ω0t)
)

+<
(

ˆ̄G1(L1, m2, n2)
ˆ̄G∗2 (L2, m2, n2)ej(3(L1−L2)(θr+θ0)+3(L1−L2)ω0t)

))
dθr

= Iar,a
2 + Iar,b

2 + Iar,c
2 + Iar,d

2 . (27)
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Terms Iar,a
2 and Iar,d

2 exist when the following condition is fulfilled

L1 = L2. (28)

This condition implies that the frequency of Iar,a
2 and Iar,d

2 is zero. Therefore, these 2 terms
sum up time independent contributions of individual PWM harmonics, as

Iar,a
2 + Iar,d

2 = π
∞

∑
L=−∞

<
(

ˆ̄G1(L, m1, n1)
ˆ̄G∗2 (L, m1, n1) +

ˆ̄G1(L, m2, n2)
ˆ̄G∗2 (L, m2, n2)

)
. (29)

Iar,b
2 and Iar,c

2 take non-zero values when the following conditions hold, respectively

L1 − L2 =
n1 − n2

3
; L1 − L2 =

n2 − n1

3
. (30)

Expression (30) again illustrates the interaction of same spatial harmonic components
within G1 and G2, caused by different PWM harmonics in stator currents. By inserting the
first equation of (30) into (27) and taking into account (16), the frequency associated to Iar,b

2
can be expressed as

ωIb
2
=
(
(m1 −m2)mf + 3(L1 − L2)

)
ω0 =

(
(m1 −m2)mf + n1 − n2

)
ω0 = ω1 −ω2. (31)

Similarly, by inserting the second equation of (30) into (27), the frequency associated to Iar,c
2

can be expressed as

ωIc
2
=
(
(m2 −m1)mf + 3(L1 − L2)

)
ω0 =

(
(m2 −m1)mf + n2 − n1

)
ω0 = ω2 −ω1. (32)

Now it can be written

Iar,b
2 = π ∑

L1,L2

<
(

ˆ̄G1(L1, m1, n1)
ˆ̄G∗2 (L2, m2, n2)ej(ω1−ω2)t

)
, (33)

where only combinations of L1 and L2 which satisfy the first equation of (30) are allowed.
Similarly to (33), it can be written

Iar,c
2 = π ∑

L1,L2

<
(

ˆ̄G1(L1, m2, n2)
ˆ̄G∗2 (L2, m1, n1)ej(ω2−ω1)t

)
, (34)

where only combinations of L1 and L2 which satisfy the second equation of (30) are allowed.
Both L1 and L2 are defined as integers, and consequently right sides of (30) need always to
give integers. If expressions (4) and (5) are inserted into (30), it can be seen that this will
be the case only if both considered PWM harmonic components give either positive or
negative sequence currents. Therefore, only these combinations of time harmonics in the
stator currents actually contribute to Iar,b

2 and Iar,c
2 .

Finally, by combining (26), (29), (33), and (34), the general form of expression (20) in
the presence of all PWM harmonics can be written as
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Iar =

π∫
−π

G1G2dθr = π
∞

∑
L=−∞

∞

∑
m=0
m>0

∞

∑
n=1

n=−∞

<
(

ˆ̄Gmn
1L

ˆ̄Gmn∗
2L

)
+π ∑

L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Gm1n1
1L1

ˆ̄Gm2n2
2L2

ej(ω1+ω2)t
)

, for L1 + L2 =
n1 + n2

3

+π ∑
L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Gm2n2
1L1

ˆ̄Gm1n1
2L2

ej(ω1+ω2)t
)

, for L1 + L2 =
n1 + n2

3

+π ∑
L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Gm1n1
1L1

ˆ̄Gm2n2∗
2L2

ej(ω1−ω2)t
)

, for L1 − L2 =
n1 − n2

3

+π ∑
L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Gm2n2
1L1

ˆ̄Gm1n1∗
2L2

ej(ω2−ω1)t
)

, for L1 − L2 =
n2 − n1

3
. (35)

Each of last 4 terms in (35) models interactions between all pairs of PWM harmonics which
satisfy conditions specified at the end of the corresponding line. Furthermore, a simplified
notation is used in (35), where ˆ̄G(L, m, n) is written as ˆ̄Gmn

L .
Expression (35) has been derived assuming that the conducting regions on the rotor

move with respect to the stator at the angular speed ω0, which is the same as the funda-
mental angular frequency of stator currents. This is because the original model for the
magnetic field of PWM harmonics, derived in [28], was applied on a PM synchronous
machine. However, the conclusion about frequencies at which components in (35) appear
can be generalized regardless of the mechanical speed of conducting regions. If the rotor
movement occurs at arbitrary angular speed ωmech [rad/s], the angular coordinate of any
point expressed in the fixed (θs) and moving (θc) reference frames can be related through
ωmech and the initial rotor position θ0 (rotor position for t = 0) as [38]

θs = θc + ωmecht + θ0. (36)

The argument of the generic field quantity, relevant for the form of the generic integral Iar,
then becomes [28]

arg(Ḡ) = (3L− n)θs + (m ·mf + n)ω0t

= (3L− n)(θc + θ0) + (3L− n)ωmecht + (m ·mf + n)ω0t. (37)

Different terms in generic integral Iar take non-zero values only when the dependency on θc
(or θr) vanishes, as shown previously. Consequently, if G1 and G2 are expressed using (37),
the dependency on ωmech also vanishes from non-zero terms of Iar. The dependency on θc
and ωmech in (37) is identical, as they are both multiplied by the same term—spatial harmonic
(3L− n). Therefore, previously derived analysis is independent of the mechanical speed of
conducting regions. This makes it applicable for the blocked rotor test, as well as for solid
rotor induction machines. If formulation (37) is used, together with frequencies ω1 and ω2
defined by (16), it can be shown that same results for frequencies of different terms present
in Iar are obtained as with (25), (31), and (32).

Each term in Poynting’s theorem (14) contains integral (35), which is dependent on
time. Therefore, in the case of multiple time harmonics in stator currents (PWM excitation),
all terms are present on the right side of (35), and the instantaneous rotor eddy current
losses cannot be obtained by performing the surface integral on the left side. The main
advantage of using Poynting’s theorem—avoiding the volume integration of the field
solution based on Bessel functions, seems to be lost. However, from the point of view of
the temperature rise in the rotor, only the average value of the rotor eddy current losses is
relevant. The average value is given by the first term in (35), since all other terms, if present,
give sinusoidal variations in time. As already discussed, by considering only the constant
part of (35), the contribution of the first 2 terms on the right side of (14) vanishes. By
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replacing Ḡ1 with the axial component of the induced electric field Ēz, and Ḡ2 with the
circumferential component of the magnetic field strength H̄θ in (35), average rotor eddy
current losses caused by multiple time harmonics due to PWM currents can be obtained,
by performing the surface integral on the left side of (14), as

Par,av
eddy = πlsrS

∞

∑
L=−∞

∞

∑
m=0
m>0

∞

∑
n=1

n=−∞

<
(

ˆ̄Ez(r = rS, L, m, n) ˆ̄H∗θ (r = rS, L, m, n)
)

, (38)

where ls [m] is the active length of the machine. Similarly, by replacing Ḡ1 with the radial
component of the magnetic flux density B̄r, and Ḡ2 with the circumferential component
of the magnetic field strength H̄θ in (35), instantaneous torque caused by multiple time
harmonics due to PWM currents can be obtained, by evaluating (15) as

Tar(t) = πlsr2
S

(
∞

∑
L=−∞

∞

∑
m=0
m>0

∞

∑
n=1

n=−∞

<
(

ˆ̄Bmn
rL

ˆ̄Hmn∗
θL

)
+ ∑

L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Bm1n1
rL1

ˆ̄Hm2n2
θL2

ej(ω1+ω2)t
)

, for L1 + L2 =
n1 + n2

3

+ ∑
L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Bm2n2
rL1

ˆ̄Hm1n1
θL2

ej(ω1+ω2)t
)

, for L1 + L2 =
n1 + n2

3

+ ∑
L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Bm1n1
rL1

ˆ̄Hm2n2∗
θL2

ej(ω1−ω2)t
)

, for L1 − L2 =
n1 − n2

3

+ ∑
L1,L2

∑
m1,m2

∑
n1,n2

<
(

ˆ̄Bm2n2
rL1

ˆ̄Hm1n1∗
θL2

ej(ω2−ω1)t
)

, for L1 − L2 =
n2 − n1

3

)
. (39)

The torque given by (39) is the total torque in the case of a solid rotor or copper-coated
solid rotor high-speed induction machines. In the case of PM machines, to obtain the total
torque, the result of (39) has to be added to the no-load torque (the result of the interaction
between the rotor magnet and stator slots) and the torque resulting from the interaction
between the rotor magnet and stator PWM currents, as will be shown later.

4. FEM Validation of High-Speed Machine Performance Due to PWM Currents

To verify models derived in Section 3, a finite element model of the benchmark
machine is created in Flux2D 12.2 software. To illustrate only the effects of PWM currents,
the remanent flux density of the magnet is set to zero. The current waveform shown in
Figure 3 is used. It corresponds to the switching frequency of 40 kHz, therefore to the
frequency modulation ratio mf = 10.

i P
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Figure 3. PWM current waveform used for the verification of the model.
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Harmonic components present in the waveform shown in Figure 3 are listed in Table 3.

Table 3. Peak values of harmonic components of the current waveform shown in Figure 3.

Frequency Frequency [kHz] m n Peak Value Îmn [A] Sequence

f0 4 0 1 17 Positive
f1 32 1 −2 1.27 Positive
f2 48 1 2 1.1 Negative
f3 76 2 −1 0.59 Negative
f4 84 2 1 0.35 Positive

Instantaneous rotor eddy current losses of the benchmark machine shown in Figure 1
are displayed in Figure 4.

P
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]
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30
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50
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Figure 4. Instantaneous rotor eddy current losses caused by the current waveform shown in Figure 3,
obtained by FEM, for the benchmark high-speed machine shown in Figure 1.

These results are obtained by FEM, and time axis in Figure 4 covers 1 fundamental
period. By using frequencies and the rotational sequence (positive/negative) given in
Table 3, frequencies of harmonic components present in (35) can be determined. They are
listed in Table 4. Harmonic components of the waveform shown in Figure 4 are expected
to appear at same frequencies.

Table 4. Expected frequencies of rotor eddy current loss components caused by the current harmonic
components listed in Table 3.

Frequency Frequency [kHz] Frequency Frequency [kHz]

f01 = f1 − f0 28 f04 = f4 − f0 80
f23 = f3 − f2 28 f14 = f1 + f4 80
f02 = f0 + f2 52 f13 = f1 + f3 108
f14 = f4 − f1 52 f24 = f2 + f4 132
f03 = f0 + f3 80 f34 = f3 + f4 160

After applying fast Fourier transform (FFT) in MATLAB software on the waveform
shown in Figure 4, the frequency spectrum shown in Figure 5 is obtained. The actual
waveform used for FFT stretches through 5 fundamental periods in order to get accurate
spectral analysis.
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Figure 5. Frequency spectrum of rotor eddy current loss waveform shown in Figure 4.

It can be seen that harmonic components appear exactly at frequencies listed in Table 4,
which confirms the validity of the suggested approach. The average value of the waveform
shown in Figure 4 is calculated and compared against the result obtained by expression (38).
The comparison is shown in Table 5. A good agreement is achieved, with the discrepancy
between the HM and FEM of 0.51%.

Table 5. Average value of rotor eddy current losses shown in Figure 4 compared against the result
obtained by the HM.

HM FEM

Par,av
eddy [W] 19.9 19.8

The torque of the benchmark machine, which results from the interaction of the PWM
current waveform shown in Figure 3 and corresponding rotor eddy currents, is shown
in Figure 6. Time scale covers 1 fundamental period, and the result obtained by (39) is
shown together with the result obtained by FEM. A good agreement is achieved, with the
discrepancy between RMS values obtained by the HM and FEM of 0.84%. PWM harmonics
contained in the applied current waveform create rotating waves that move both in the
direction of the rotor and in the opposite direction, depending on their spatial order. Field
components that rotate in the same direction as the rotor (but at a different speed) pull the
rotor forward, creating a positive torque. Components rotating in the opposite direction
pull the rotor backward, creating negative torque. Rotating field components of the same
spatial order, originating from different PWM harmonics, rotate at different speeds and in
both directions. This results in the torque waveform which depends on the instantaneous
mutual position of corresponding rotating waves, continuously changing its value between
positive and negative.
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Figure 6. Torque generated by the current waveform shown in Figure 3 and corresponding rotor
eddy currents, for the benchmark machine shown in Figure 1.

The torque shown in Figure 6 does not represent the main torque production mecha-
nism in high-speed PM machines and its average value is very small. On the other hand,
in high-speed induction machines which have the same geometrical structure as the bench-
mark machine shown in Figure 1, this is the only torque producing mechanism. In these
machines the solid cylinder in the rotor is made of iron, having much higher magnetic
permeability than the magnet shown in Figure 1. Furthermore, instead of a retaining sleeve
of high-speed PM machines with modest conductivity, the rotors of high-speed induction
machines are covered with highly conductive copper coating. Finally, in contrast to PM
machines, the traveling wave of the magnetic field created by the fundamental spatial
harmonic and the fundamental time harmonic of stator currents moves with respect to the
rotor, creating the main component of rotor current. Therefore, in high-speed induction
machines the torque shown in Figure 6 is much more significant, and can be accurately and
effectively calculated using (39).

According to the author’s experience, to achieve satisfactory accuracy by using tran-
sient FEM, there should be at least 100 simulation steps per period of each PWM harmonic.
This approach is applied for FEM simulations with harmonics listed in Table 3. As the
highest considered PWM frequency is 84 kHz, it is required to have at least 2100 simula-
tion steps per fundamental period. To be sure that results are reliable and that transient
calculations converged, results from some initial steps have to be discarded. In the work
presented here, the complete first fundamental period is omitted for the analysis of the
results presented in Figures 4 and 6. As mentioned previously, to get an accurate spectral
analysis of the instantaneous rotor loss waveform, the waveform corresponding to 5 fun-
damental periods is used. The same waveform is used to extract the torque waveform
shown in Figure 6. Together with the initial discarded fundamental period, 6 fundamental
periods in total have over 12,500 steps, and it takes approximately 2 days to perform this
simulation. If only the average rotor losses and the torque waveform are of interest, and not
the spectrum of instantaneous rotor losses, reliable FEM results could probably be obtained
with 2 or 3 fundamental periods. Therefore, results could be obtained within 1 day. On the
other hand, the analytical method is implemented in MATLAB 2019a software, and the
computation time is around 2 seconds. The computation time of FEM, of course, depends
on the power of used hardware. In this specific case, processor Intel Core i7-3770 CPU
(3.40 GHz) is used. FEM computation time also depends on the size of mesh elements.
By optimizing the mesh and considering a bigger simulation step to find the compromise
between the accuracy and computation time, as well as by using more powerful hardware,
FEM computation time might be reduced. However, the difference between the 2 methods
is immense, and the finite element model cannot, under any conditions, compete with
the presented analytical model in terms of computation time. Furthermore, with a higher
switching frequency, the difference between the 2 methods would be even bigger. Namely,
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higher frequencies of PWM current harmonics would require both smaller step size and
smaller mesh elements in FEM, as the skin depth decreases with the increase of frequency.
On the other hand, the value of switching frequency is irrelevant for the computation time
of the analytical model.

5. PWM Caused Rotor Eddy Current Losses under Variations of Drive Parameters

As the previously derived analytical method has very low computation time, it can be
effectively used for rapid parameter variation studies. To demonstrate the possibilities of
the presented method, the influence of switching frequency and retaining sleeve material
on rotor eddy current losses is analyzed in this section.

The analysis in terms of the inverter switching frequency is significant for the design
of the complete electric drive. If no additional measures (such as soft switching) are applied,
the increase of switching frequency increases commutation losses in the inverter, which can
significantly influence the overall drive efficiency [23]. Therefore, for high-speed drives,
where the fundamental frequency is relatively high, it can be difficult to achieve sufficiently
high switching frequency [39]. Consequently, it can be hard to reach values of the frequency
modulation ratio mf used in conventional low-speed drives. In this section, the analysis is
done for the range of mf between 9 and 15 (switching frequency is varied between 36 kHz
and 60 kHz).

Properties of the retaining sleeve used until this point correspond to Inconel 718, the
material available in the benchmark machine on the available laboratory setup. It is widely
used for high-speed PM rotors [40,41]. Likewise, stainless steel and titanium are often used
for retaining sleeves of small size high-speed PM machines [42,43]. Therefore, values of
the electric conductivity that correspond to these 3 materials are used in this analysis. As
losses in the magnet are much smaller than losses in the sleeve, only the influence of the
sleeve conductivity on rotor losses is analyzed, while the conductivity of the magnet is
kept at the same value as in Table 1.

As a first step, rotor eddy current losses are evaluated under the assumption that only
the fundamental current of 12 A RMS flows in stator windings. These losses, indicated
as Par,fun

eddy , and values of the electric conductivity corresponding to 3 considered sleeve
materials, are listed in Table 6.

Table 6. Rotor eddy current losses due to the fundamental component of stator current given in
Table 3, for the benchmark high-speed PM machine shown in Figure 1, with different retaining sleeve
materials, obtained by the HM.

Inconel 718 Stainless Steel Titanium

Par,fun
eddy [W] 1.22 2.09 3.34

σ [S/m] 8.33× 105 14.5× 105 23.8× 105

It can be seen that losses increase with the increase of conductivity. As a second step,
average rotor eddy current losses are evaluated for current waveforms containing the
fundamental component and multiple PWM harmonics. This is done for different values
of mf. Amplitudes of PWM current harmonics are obtained by using values of voltage
harmonics given by expression (2) and machine impedance. The impedance is measured
by an impedance analyzer at 51 different frequencies between 4 and 165 kHz. Based on
these results, analytical expression for the impedance as a function of frequency is obtained
by applying the curve fitting procedure. The impedance, of course, increases with the
frequency. The rotor (with the relative permeability very close to 1) is removed during the
measurement, since otherwise the measured impedance would reflect values corresponding
to the blocked rotor test. Amplitudes of PWM current harmonics are obtained by dividing
values of voltage harmonics given by (2) with impedance values for target frequencies.
Results of average rotor eddy current losses for all 3 considered retaining sleeve materials,
for different values of the frequency modulation ratio are shown in Figure 7.
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Figure 7. Average rotor eddy current losses for the benchmark high-speed PM machine shown in
Figure 1, for different values of mf and different retaining sleeve materials, obtained by the HM.

By looking at Table 6 and Figure 7, it can be seen that electric conductivity of the
retaining sleeve has opposite effects on rotor eddy current losses calculated for these
2 situations. This is explained by different mechanisms which dominate eddy current loss
behavior for these 2 cases. The fundamental component of stator currents is at relatively
low frequency, and eddy currents in the rotor caused by it behave according to so-called
resistance limited condition [44], where losses increase with conductivity. More detailed
derivation can be found in the first half of Appendix B, where the relation between losses
and conductivity is given by expression (A20). On the other hand, PWM harmonics at high
frequencies create eddy currents that behave according to so-called inductance limited
condition [44], where losses are inversely proportional to the square root of conductivity,
as derived in the second part of Appendix B and shown by (A27). As for the benchmark
machine, losses caused by PWM harmonics have much higher values than losses caused by
the fundamental current, they determine the behavior of overall rotor eddy current losses
shown in Figure 7, causing their decrease with the increase of conductivity.

From results presented in Figure 7, it is clear that the increase of switching frequency
decreases rotor eddy current losses. Namely, the increase of mf decreases the amplitude
of each PWM current harmonic, consequently decreasing the flux density caused by
it. However, the increase in mf simultaneously increases the frequency of each current
harmonic component. Since higher-order PWM harmonics cause eddy currents in the
inductance limited region, losses are proportional to the square of the flux density and
the square root of the frequency, as shown by (A27). Therefore, the flux density is a more
dominant factor in determining the behavior of eddy current losses, causing them to
decrease with the increase of mf.

As a final remark, one could note that losses corresponding to Inconel 718 and mf = 10
in Figure 7 are higher than results shown in Table 5, which correspond to the same value
of mf. This is due to the fact that more PWM harmonics than those listed in Table 3 are
used to get results shown in Figure 7. As the HM does not suffer from limitations of FEM
in terms of computation time, more PWM harmonics can be added without significant
additional calculation efforts.

6. Performance Analysis of High-Speed PM Machines at No-Load Conditions

To be able to fully analyze the performance of high-speed PM machines, their behavior
at no-load conditions, where there are no stator currents, has to be assessed as well.
Similarly to the procedure previously described for the field of stator PWM currents, for
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high-speed PM machines with diametrical magnetization, real generic quantities G1 and
G2 can be defined, with the form equivalent to (6), as

G1(r, θr, t) =
∞

∑
kp1=−∞

ˆ̄G1(kp1)e
j(kp1θr+lp1(kp1)θ0+lp1(kp1)ω0t), (40)

and

G2(r, θr, t) =
∞

∑
kp2=−∞

ˆ̄G2(kp2)ej(kp2θr+lp2(kp2)θ0+lp2(kp2)ω0t). (41)

By using (40) and (41), the integral equivalent to (20) can be formed as

Inl =

π∫
−π

G1G2dθr =
∞

∑
kp1=−∞

∞

∑
kp2=−∞

ˆ̄G1(kp1)
ˆ̄G2(kp2)

·
π∫
−π

ej((kp1+kp2)θr+(lp1(kp1)+lp2(kp2))θ0+(lp1(kp1)+lp2(kp2))ω0t)dθr. (42)

Integral (42) has a non-zero value only when the following condition is fulfilled

kp2 = −kp1. (43)

When condition (43) is met, as can be seen in Table 2, also the following holds

lp2(kp2) = −lp1(kp1), (44)

meaning that (42) is always independent of time and simplifies to

Inl = 2π
∞

∑
kp=−∞

ˆ̄G1(kp) ˆ̄G2(−kp). (45)

Quantities G1 and G2 for the PM field are real numbers. As they are defined by double
sided symmetrical summations, for complex harmonic peak values holds

ˆ̄G1(−kp) = ˆ̄G∗1 (kp) ; ˆ̄G2(−kp) = ˆ̄G∗2 (kp). (46)

Therefore, (45) can be rewritten as

Inl = 2π
∞

∑
kp=−∞

ˆ̄G1(kp) ˆ̄G∗2 (kp). (47)

By utilizing (46), the following can be written

ˆ̄G1(kp) ˆ̄G∗2 (kp) + ˆ̄G1(−kp) ˆ̄G∗2 (−kp) = ˆ̄G1(kp) ˆ̄G∗2 (kp) +
(

ˆ̄G1(kp) ˆ̄G∗2 (kp)
)∗

= 2<
(

ˆ̄G1(kp) ˆ̄G∗2 (kp)
)

, (48)

allowing to rewrite (47) using a single sided summation as

Inl = 4π
∞

∑
kp=1
<
(

ˆ̄G1(kp) ˆ̄G∗2 (kp)
)

. (49)



Energies 2021, 14, 2606 19 of 35

As (49) is time independent, when analyzing only the PM field, the first 2 terms on the
right side of (14) vanish. Therefore, no-load rotor eddy current losses (due to interactions
between diametrically magnetized rotor magnet and stator slots) can be obtained as

Pnl
eddy = 4πlsrS

∞

∑
kp=Υ

<
(

ˆ̄Ez(r = rS, kp) ˆ̄H∗θ (r = rS, kp)
)

. (50)

Similarly, the no-load torque of high-speed slotted PM machines with diametrical magneti-
zation can be obtained as

Tnl = 4πlsr2
S

∞

∑
kp=1
<
(

ˆ̄Br(r = rS, kp) ˆ̄H∗θ (r = rS, kp)
)

. (51)

All spatial harmonics contribute to the no-load torque given by (51), which is reflected in
the fact that lower summation limit is 1. Conversely, the lower summation limit Υ in (50) is
the lowest value of kpm from (7) higher than 1. As seen by values of lp given in Table 2, the
fundamental harmonic component of the vector potential is constant in the rotor reference
frame. Consequently, the corresponding component of the induced electric field is zero,
and fundamental component does not contribute to rotor losses.

Rotor eddy current losses at no-load, caused by stator slotting, are evaluated using (50)
for the benchmark machine shown in Figure 1, at the rotational speed of 240,000 RPM
(corresponding to the fundamental frequency of 4 kHz). Results are compared against
those obtained by FEM and shown in Table 7 for the retaining sleeve made of Inconel 718.

Table 7. Rotor eddy current losses at no-load for the benchmark high-speed PM machine shown in
Figure 1, with the retaining sleeve made of Inconel 718.

HM FEM

Pnl
eddy [W] 0.136 0.137

A good agreement between the harmonic model and the finite element model is
achieved, with a discrepancy of about 0.73%. Since at the no-load condition stator currents
are zero, there is no power transfer from the stator to the rotor. Instead, the power of rotor
losses is transferred to the rotor from the mechanical mover. Losses shown in Table 7 are
relatively low, but in combination with rotor eddy current losses caused by stator currents,
the loss density in the rotor of relatively small volume with limited cooling possibilities
can lead to overheating of the magnet. As in Section 5, no-load rotor eddy current losses
are also calculated for different retaining sleeve materials. Results are shown in Table 8.

Table 8. Rotor eddy current losses at no-load condition for the benchmark machine shown in Figure 1,
with different retaining sleeve materials, obtained by the HM.

Stainless Steel Titanium

Pnl
eddy [W] (HM) 0.235 0.378

As these losses increase with the increase of conductivity, and they occur at relatively
low frequencies, it is evident that rotor eddy currents due to slotting are in the resistance
limited region.

Since expression (51) is not dependent on time (and consequently on the position), it
can be concluded that high-speed PM machines having rotors with diametrical magnetiza-
tion do not generate cogging torque. The only torque component at no-load conditions
is the breaking torque corresponding to eddy currents in the rotor. The absence of cog-
ging torque can be explained by analyzing the field solution given by (6). As already
discussed, each spatial harmonic of the PM field is described by a single traveling wave.



Energies 2021, 14, 2606 20 of 35

Since the electromagnetic torque can be generated only as a result of the interaction be-
tween traveling waves of the same spatial harmonic order, it follows that no-load torque
cannot be time-dependent, as there are no multiple traveling waves of the same spatial
harmonic order which move one with respect to another and cause variations in the torque.
In addition to (51), the no-load torque, corresponding to rotor eddy current losses, can be
calculated using the angular speed of the rotor ω0 as

Tnl = −
Pnl

eddy

ω0
, (52)

where the torque caused by eddy currents, being a breaking torque, has to be negative.
Expression (52) gives the same result as (51).
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Figure 8. No-load torque for benchmark high-speed PM machine shown in Figure 1.

Figure 8 shows the comparison between the no-load torque obtained by (51) and by
finite element model for the benchmark machine shown in Figure 1, within 1 fundamental
period. It can be seen that the torque obtained by FEM experiences periodicity at a
frequency twice higher than the fundamental frequency of the machine. According to the
model derived in this study, which has previously been verified by FEM using flux density
and eddy current density waveforms in [29], this should not be the case. Furthermore,
it is known that the fundamental frequency of cogging torque for PM machines without
skewing is the product of the mechanical frequency (corresponding to the mechanical
angular speed) and the least common multiple of the number of slots and the number
of poles [45–47]. Therefore, for a machine with 2 poles and an even number of slots,
the fundamental frequency of cogging torque is Ns times bigger than the fundamental
frequency of stator currents, where Ns is the number of slots. Consequently, the torque
waveform obtained by FEM that is shown in Figure 8 does not represent cogging torque.
Having in mind very low values of the no-load torque, which is in the range of µNm, it is
most likely that the result obtained by FEM is a consequence of the finite computational
precision of the software.

7. Performance Analysis of High-Speed PM Machines at Full Load with PWM
Stator Currents

For high-speed PM machines, the electromagnetic field created by both PWM stator
currents and rotor magnet determines machine performance. Therefore, to model a high-
speed PM machine with diametrical magnetization, models developed from (1) and (6)
have to be combined. If both the PM field Gnl and the field of PWM currents Gar are
present, any generic field quantity Gul can be represented as a combination of individual
contributions of these 2 fields

Gul(r, θr, t) = Gnl(r, θr, t) + Gar(r, θr, t). (53)
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If the field of stator currents is expressed by its complex representative, as shown in (19),
and 2 different field quantities G1 and G2 are considered, it can be written

Gul
1 = Gnl

1 +
1
2
(Ḡar

1 + Ḡar∗
1 ) ; Gul

2 = Gnl
2 +

1
2
(Ḡar

2 + Ḡar∗
2 ). (54)

If the integral equivalent to (20) and (42) is formed using (54), it can be written

Iul =

π∫
−π

Gul
1 Gul

2 dθr =

π∫
−π

Gnl
1 Gnl

2 dθr +
1
4

π∫
−π

(Ḡar
1 + Ḡar∗

1 )(Ḡar
2 + Ḡar∗

2 )dθr

+
1
2

π∫
−π

Gnl
1 (Ḡar

2 + Ḡar∗
2 )dθr +

1
2

π∫
−π

Gnl
2 (Ḡar

1 + Ḡar∗
1 )dθr = Iul

1 + Iul
2 + Iul

3 + Iul
4 . (55)

Integral Iul
1 from (55) is actually the no-load integral Inl given by (42), which results in

expression (49). Integral Iul
2 corresponds to the integral Iar given by (20) and eventually

results in (35). Integrals Iul
3 and Iul

4 in (55) model the interaction between the PM field and
the field of stator PWM currents and they are analyzed further on.

As any quantity derived from the no-load field is a real number, corresponding terms
for the same absolute value of kp are conjugated with respect to one another. This allows to
express generic no-load quantity Gnl using a single-sided summation, as

Gnl(r, θr, t) =
∞

∑
kp=1

(
ˆ̄Gnl(r, kp)ej(kpθr+lp(kp)θ0+lp(kp)ω0t)

+ ˆ̄Gnl∗(r, kp)e−j(kpθr+lp(kp)θ0+lp(kp)ω0t)

)
= Ḡnl(r, θr, t) + Ḡnl∗(r, θr, t), (56)

where ˆ̄Gnl is the complex harmonic peak value of the complex generic no-load field quantity
Ḡnl. If (56) is inserted into integrals Iul

3 and Iul
4 given in (55), it can be written

Iul
3 + Iul

4 =
1
2

π∫
−π

(
Ḡnl

1 + Ḡnl∗
1

)
(Ḡar

2 + Ḡar∗
2 )dθr +

1
2

π∫
−π

(
Ḡnl

2 + Ḡnl∗
2

)
(Ḡar

1 + Ḡar∗
1 )dθr. (57)

Both integrals in (57) have the same form as the integral in (21). Therefore, (57) can be
rewritten as

Iul
3 + Iul

4 =

π∫
−π

<
(

Ḡnl
1 Ḡar

2

)
dθr +

π∫
−π

<
(

Ḡnl
1 Ḡar∗

2

)
dθr

+

π∫
−π

<
(

Ḡnl
2 Ḡar

1

)
dθr +

π∫
−π

<
(

Ḡnl
2 Ḡar∗

1

)
dθr = Iul,a

3 + Iul,b
3 + Iul,a

4 + Iul,b
4 . (58)

Both Ḡnl
1 and Ḡnl

2 have the form of the first term in (56), while Ḡar
1 and Ḡar

2 have the form
given by (1). Therefore, if a single PWM harmonic is considered, it can be written

Iul,a
3 + Iul,a

4 =
∞

∑
kp=1

∞

∑
L=−∞

π∫
−π

<
((

ˆ̄Gnl
1 (kp) ˆ̄Gar

2 (L, m, n) + ˆ̄Gnl
2 (kp) ˆ̄Gar

1 (L, m, n)
)

·ej((kp+3L−n)θr+(lp(kp)+3L−n)θ0+(lp(kp)+m·mf+3L)ω0t)

)
dθr. (59)
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The previous expression has a non-zero value only when the following holds

3L− n = −kp, (60)

transforming the term which is multiplied by θ0 in the exponent into

lp(kp) + 3L− n = lp(kp)− kp = ±1, (61)

and allowing to express the angular frequency from (59) as(
lp(kp) + m ·mf + 3L

)
ω0 =

(
m ·mf + n + lp(kp)− kp

)
ω0 = (m ·mf + n± 1)ω0. (62)

Last steps in (61) and (62) result from the relation between lp and kp shown in Table 2. By
expressing L using (60) and accounting for (61) and (62), (59) can be rewritten as

Iul,a
3 + Iul,a

4 = 2π
∞

∑
kp=1
<
((

ˆ̄Gnl
1 (kp) ˆ̄Gar

2

(
L =

n− kp

3
, m, n

)

+ ˆ̄Gnl
2 (kp) ˆ̄Gar

1

(
L =

n− kp

3
, m, n

))
ej(±θ0+(m·mf+n±1)ω0t)

)
. (63)

As kp in (63) takes only positive values, by observing Table 2 it can be concluded that (61)
takes value 1 for the PM field spatial harmonics of following orders

kp = pNs − 1, p ∈ N. (64)

On the other hand, (61) takes value −1 for the fundamental spatial harmonic of the PM
field and spatial harmonics of following orders

kp = pNs + 1, p ∈ N. (65)

By inserting (64) and (65) into (63), if kp is expressed through p, it can be written

Iul,a
3 + Iul,a

4 = 2π
∞

∑
p=1
<
((

ˆ̄Gnl
1 (kp = pNs − 1) ˆ̄Gar

2

(
L =

n− pNs + 1
3

, m, n
)

+ ˆ̄Gnl
2 (kp = pNs − 1) ˆ̄Gar

1

(
L =

n− pNs + 1
3

, m, n
))

ej((mmf+n+1)ω0t+θ0)

)

+2π
∞

∑
p=0
<
((

ˆ̄Gnl
1 (kp = pNs + 1) ˆ̄Gar

2

(
L =

n− pNs − 1
3

, m, n
)

+ ˆ̄Gnl
2 (kp = pNs + 1) ˆ̄Gar

1

(
L =

n− pNs − 1
3

, m, n
))

ej((mmf+n−1)ω0t−θ0)

)
. (66)

As L is an integer, and the number of slots Ns for a 3-phase machine is divisible by 3, the
first 2 terms in (66) exist only for harmonics of negative sequence, for n given by (5), while
the last 2 terms exist only for harmonics of positive sequence, for n given by (4).

Similarly to (59), for the second part of (58) it can be written

Iul,b
3 + Iul,b

4 =
∞

∑
kp=1

∞

∑
L=−∞

π∫
−π

<
((

ˆ̄Gnl
1 (kp) ˆ̄Gar∗

2 (L, m, n) + ˆ̄Gnl
2 (kp) ˆ̄Gar∗

1 (L, m, n)
)

·ej((kp−3L+n)θr+(lp(kp)−3L+n)θ0+(lp(kp)−m·mf−3L)ω0t)

)
dθr. (67)
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The previous expression has a non-zero value only when the following holds

3L− n = kp, (68)

transforming the term which is multiplied by θ0 into

lp(kp)− 3L + n = lp(kp)− kp = ±1, (69)

and allowing to express the angular frequency from (67) as(
lp(kp)−m ·mf − 3L

)
ω0 =

(
lp(kp)− kp −m ·mf − n

)
ω0 = (±1− (m ·mf + n))ω0. (70)

By expressing L using (68) and taking into account (69) and (70), (67) can be rewritten as

Iul,b
3 + Iul,b

4 = 2π
∞

∑
kp=1
<
((

ˆ̄Gnl
1 (kp) ˆ̄Gar∗

2

(
L =

n + kp

3
, m, n

)

+ ˆ̄Gnl
2 (kp) ˆ̄Gar∗

1

(
L =

n + kp

3
, m, n

))
· ej(±θ0+(±1−(m·mf+n))ω0t)

)
. (71)

By taking into account the relation between lp and kp given in Table 2, for positive values
of kp, and by inserting (64) and (65) into (71), it can be written

Iul,b
3 + Iul,b

4 = 2π
∞

∑
p=1
<
((

ˆ̄Gnl
1 (kp = pNs − 1) ˆ̄Gar∗

2

(
L =

n + pNs − 1
3

, m, n
)

+ ˆ̄Gnl
2 (kp = pNs − 1) ˆ̄Gar∗

1

(
L =

n + pNs − 1
3

, m, n
))

ej((1−m·mf−n)ω0t+θ0)

)

+2π
∞

∑
p=0
<
((

ˆ̄Gnl
1 (kp = pNs + 1) ˆ̄Gar∗

2

(
L =

n + pNs + 1
3

, m, n
)

+ ˆ̄Gnl
2 (kp = pNs + 1) ˆ̄Gar∗

1

(
L =

n + pNs + 1
3

, m, n
))

e−j((m·mf+n+1)ω0t+θ0)

)
. (72)

Again, by having in mind that L is an integer and Ns is divisible by 3, the first 2 terms
in (72) exist only for the PWM harmonics of positive sequence, for n given by (4), while the
last 2 terms exist only for PWM harmonics of negative sequence, for n given by (5).

By inserting (66) and (72) into (58), the final form of the generic integral for the
calculation of the electromagnetic torque and rotor eddy current losses due to the interaction
between the permanent magnet field and stator field are obtained. By looking at terms
containing the frequency in these expressions it can be concluded that the average torque
and the average rotor eddy current losses are created only by the armature currents at the
fundamental frequency, for which holds

m ·mf + n = ±1. (73)

Higher-order PWM harmonics of stator currents cause sinusoidal variations of the torque
and rotor eddy current losses when interacting with the PM field. Namely, they create
rotating field harmonic components that experience a relative movement with respect to
the harmonic components of the same spatial order created by the PM field. Since the
interaction of the corresponding PM and stator field components is dependent on their
mutual position, time dependency appears in the result of this interaction.

By substituting G1 with Br and G2 with Hθ in (66) and (72), for both the PM (super-
script “nl”) and stator (superscript “ar”) fields, if all PWM harmonics are included, the
torque which is the result of the interaction between the PM and stator field can be ex-
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pressed as the combination of torques generated by all positive sequence PWM harmonics
(Tnl,ar

n+ ) and all negative sequence PWM harmonics (Tnl,ar
n− ), as

Tnl,ar(t) = lsr2
S

∞

∑
m=0
m>0

∞

∑
n=1

n=−∞

(
Iul,a
3 + Iul,a

4 + Iul,b
3 + Iul,b

4

)
= Tnl,ar

n+ (t) + Tnl,ar
n− (t)

= 2πlsr2
S

∞

∑
p=0

∞

∑
m=0

∑
np

<
((

ˆ̄Bnl
rg(r = rS, kp = pNs + 1)

· ˆ̄Har
θg

(
r = rS, L =

np − pNs − 1
3

, m, np

)
+ ˆ̄Hnl

θg(r = rS, kp = pNs + 1) ˆ̄Bar
rg

(
r = rS, L =

np − pNs − 1
3

, m, np

))
·ej((m·mf+np−1)ω0t−θ0)

)

+2πlsr2
S

∞

∑
p=1

∞

∑
m=0

∑
np

<
((

ˆ̄Bnl
rg(r = rS, kp = pNs − 1)

· ˆ̄Har∗
θg

(
r = rS, L =

np + pNs − 1
3

, m, np

)
+ ˆ̄Hnl

θg(r = rS, kp = pNs − 1) ˆ̄Bar∗
rg

(
r = rS, L =

np + pNs − 1
3

, m, np

))
·ej((1−m·mf−np)ω0t+θ0)

)

+2πlsr2
S

∞

∑
p=1

∞

∑
m=0

∑
nn

<
((

ˆ̄Bnl
rg(r = rS, kp = pNs − 1)

· ˆ̄Har
θg

(
r = rS, L =

nn − pNs + 1
3

, m, nn

)
+ ˆ̄Hnl

θg(r = rS, kp = pNs − 1) ˆ̄Bar
rg

(
r = rS, L =

nn − pNs + 1
3

, m, nn

))
·ej((m·mf+nn+1)ω0t+θ0)

)

+2πlsr2
S

∞

∑
p=0

∞

∑
m=0

∑
nn

<
((

ˆ̄Bnl
rg(r = rS, kp = pNs + 1)

· ˆ̄Har∗
θg

(
r = rS, L =

nn + pNs + 1
3

, m, nn

)
+ ˆ̄Hnl

θg(r = rS, kp = pNs + 1) ˆ̄Bar∗
rg

(
r = rS, L =

nn + pNs + 1
3

, m, nn

))
·e−j((m·mf+nn+1)ω0t+θ0)

)
, (74)

where np and nn represent values of n giving positive and negative sequence currents,
respectively. The total torque of a high-speed PM machine fed by PWM currents is obtained
by adding up the no-load torque given by (51), the torque created by the interaction between
stator currents and rotor eddy currents caused by them—expression (39), and the torque
created by the interaction between the PM field and the field of stator currents given by (74)

T(t) = Tnl + Tar(t) + Tnl,ar(t). (75)
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The instantaneous torque obtained by (75) of the benchmark machine is shown in Figure 9,
for the PWM current waveform shown in Figure 3. The initial rotor positions is chosen to
correspond to the generator mode with id = 0 control, providing the maximum torque for
a given current.
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Figure 9. Instantaneous torque of the benchmark machine shown in Figure 1, for the PWM current
waveform shown in Figure 3.

The torque waveform is compared against the result obtained by the finite element
model. A good agreement is achieved between torque values obtained by the HM and
FEM, with the RMS discrepancy of 0.25%.

Mathematically, the condition under which PWM current harmonic contributes to the
average rotor eddy current losses in a high-speed PM machine with diametrical magnetiza-
tion is given by (73). Physically, in the reference frame of the rotor, each spatial harmonic
created by this current harmonic rotates in the same direction and at the same speed as
the corresponding spatial harmonic generated due to interactions between the permanent
magnet and stator slots. For higher-order PWM harmonics that do not satisfy (73), the re-
sultant eddy current density in the rotor changes with time, causing sinusoidal variations
of eddy current losses. This is displayed in Figure 10, where a hypothetical fifth spatial
harmonic is used for the illustration, and all waveforms are shown in the reference frame
fixed to the current density waveform created by the PM field (Jnl

z ). If the current density
waveform caused by the armature field (Jar

z ) moves with respect to Jnl
z , the peak value of

the resultant current density changes with time.
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Figure 10. Superposition of eddy current density in the rotor caused by the PM field (Jnl
z ) and stator

field of a higher order PWM harmonic (Jar
z ), for 2 different instants of time t1 and t2.
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PWM harmonics which satisfy (73) could theoretically be created by sideband harmon-
ics for which holds m > 0. However, with realistic values of frequency modulation ratio mf
this would mean that negative n with high absolute value corresponds to these harmonics.
Since amplitudes of voltage harmonics are determined by Bessel functions of the first kind
of order n, as shown in (2), peak values of these voltage harmonics would be very low.
Consequently, their effects can be neglected and in practice only the combination m = 0
and n = 1 result in zero values of (62) and (70). Therefore, only the last 2 terms in (66)
and first 2 terms in (72) are considered, as they represent positive sequence of PWM stator
currents. By substituting m = 0 and n = 1 in these expressions, the generic integral (58)
simplifies to

Iul
3 + Iul

4 = 2π
∞

∑
p=0
<
(

ˆ̄Gnl
1 (kp = pNs + 1) ˆ̄Gar,fun

2

(
L = − pNs

3

)
e−jθ0

+ ˆ̄Gnl
2 (kp = pNs + 1) ˆ̄Gar,fun

1

(
L = − pNs

3

)
e−jθ0

)

+2π
∞

∑
p=1
<
(

ˆ̄Gnl
1 (kp = pNs − 1) ˆ̄Gar,fun∗

2

(
L =

pNs

3

)
ejθ0

+ ˆ̄Gnl
2 (kp = pNs − 1) ˆ̄Gar,fun∗

1

(
L =

pNs

3

)
ejθ0

)
, (76)

where “fun” in superscripts of stator field quantities indicates the fundamental component
of stator currents. Since the surface integral in the Poynting’s theorem contains the product
EzHθ , for the calculation of average rotor eddy current losses, generic field quantities G1
and G2 are replaced by Ez and Hθ , respectively. The fundamental spatial harmonics of both
the PM field and of the field of the fundamental component of stator currents move at the
same speed as the rotor. Consequently, the fundamental spatial component of the induced
electric field in the rotor reference frame is zero for both field components and first 2 terms
in (76) are zero for p = 0. Therefore, the contribution to the average rotor eddy current
losses due to the interaction between the PM and the stator field can be expressed, by using
a single summation, as

Pnl,ar,av
eddy = 2πlsrS

∞

∑
p=1
<
(

ˆ̄Enl
z (r = rS, kp = pNs + 1) ˆ̄Har,fun

θ

(
r = rS, L = − pNs

3

)
e−jθ0

+ ˆ̄Hnl
θ (r = rS, kp = pNs + 1) ˆ̄Ear,fun

z

(
r = rS, L = − pNs

3

)
e−jθ0

+ ˆ̄Enl
z (r = rS, kp = pNs − 1) ˆ̄Har,fun∗

θ

(
r = rS, L =

pNs

3

)
ejθ0

+ ˆ̄Hnl
θ (r = rS, kp = pNs − 1) ˆ̄Ear,fun∗

z

(
r = rS, L =

pNs

3

)
ejθ0

)
. (77)

Total average rotor eddy current losses of a high-speed PM machine under PWM supply
(Pnl,ar,av

eddy ) are obtained by adding contributions of the PM field—expression (50), of the
armature field—expression (38), and by their combination—expression (77).

Pav
eddy = Pnl

eddy + Par,av
eddy + Pnl,ar,av

eddy . (78)

Since Pnl,ar,av
eddy exists only when both the PM field and the stator field are present in the

machine, the result of (77) has to be validated together with other 2 terms present in (78).
To verify losses obtained by (77), a finite element model of the benchmark machine is
used, where the retaining sleeve is made of Inconel 718. Stator windings are supplied only
with the fundamental component of PWM currents given in Table 3. Results are shown in
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Figure 11 for different values of the initial rotor position θ0, together with results obtained
by (78) for the retaining sleeve made of titanium and stainless steel. A good agreement is
achieved between the HM and FEM, with the discrepancy between RMS values obtained
by the HM and FEM of 2.5 %. Since both the PM field and the fundamental component
of stator currents cause eddy current losses in the resistance limited region, total losses
increase with the increase of conductivity.
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Figure 11. Rotor eddy current losses for the benchmark machine shown in Figure 1, caused by the
PM and the fundamental component of the stator current waveform given in Table 3, for different
retaining sleeve materials, as a function of the rotor initial position.

The initial rotor positions of 0 and 180 degrees in Figure 11 correspond to the motor
and generator mode with id = 0 control, respectively. This control strategy is often used in
high-performance high-speed drives [48]. Since the PM and the stator field are orthogonal
in this case, there is no contribution of (77) and rotor eddy current losses can be obtained
solely by adding up individual contributions of the PM field and the armature field. For
id 6= 0, the contribution of (77) has to be included to get total losses. Positions where θ0
takes values of 90 and 270 degrees in Figure 11 correspond to the full alignment of the
PM field and the stator field and their full opposition, respectively. When 2 fields are fully
aligned, the resultant magnetic field is of the highest intensity, giving the maximum value
of the rotor eddy current losses. Contrary to this, when 2 fields are opposing one another,
the resultant field is of the lowest intensity, giving minimal rotor eddy current losses.
However, these 2 initial positions have no practical relevance in the machine operation, as
they result in zero average electromagnetic torque.

8. On the Experimental Verification of Electromagnetic Torque and Rotor Eddy
Current Losses in High-Speed Machines Supplied by PWM Inverters

Measurement of electromagnetic torque and rotor eddy current losses presents a
significant challenge for high-speed machines supplied by PWM inverters. In contrast to
conventional low-speed machines, a torque sensor can not be easily used on the rotating
shaft of a high-speed machine, as it can influence rotor dynamics and cause serious me-
chanical issues [49]. Therefore, torque is usually measured without mechanical connection
to the rotating rotor, or with the locked rotor. The former could be done by using eddy-
current brake [49], or by measuring the reaction torque of the stator [50]. To capture torque
waveforms caused by PWM, the torque sensor would need to have very high bandwidth,
since the instantaneous torque contains components at high frequencies, as shown in this
study. This also holds for the torque under locked rotor conditions. Consequently, torque
measurement would require a specially designed high-performance setup which is not
available to the author. Therefore, it is not possible to support the electromagnetic torque
calculation presented in this paper with experimental data.
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Eddy current losses can be experimentally obtained through the thermometric method,
by measuring the change in the rotor temperature [51,52]. As this requires the installation of
temperature sensors on the rotor, it is practically impossible to perform it with the rotating
high-speed rotor. Consequently, rotor eddy current losses caused by the PM field cannot
be measured in this way, as they appear only when the rotor magnet moves with respect
to stator slots. Alternatively, these losses could be extracted from total losses measured
in a given test, as they always exist together with other loss components. However, rotor
losses are often relatively small in comparison to other losses which appear simultaneously,
such as mechanical, iron, or copper losses. Therefore, a high measurement error appears
while applying the loss segregation method, as a small relative error in the estimation
of total losses (or other loss components) represents a large error for rotor losses [53].
Having in mind low values of PM-caused rotor eddy current losses calculated in this study,
and significantly higher values of other loss components in the setup available to the author,
it is not realistic to expect that measurement of PM-caused rotor eddy current losses by the
loss segregation method would give any reliable result.

Finally, rotor losses caused by stator currents can be measured, and this was done
previously by the author and presented in [31]. The measurement was performed without
the rotation, with the goal to reduce the number of involved loss components and to
minimize measurement error. Stator windings were powered with identical currents in
2 tests: with the locked rotor and with the rotor removed from the stator bore. In this way,
only the electrical power at stator terminals is measured, and rotor losses are obtained as
a difference between the values measured in 2 tests. This measurement, however, could
not be done with a real PWM waveform, as it was not possible to keep the same values
of PWM current harmonics in both tests. Namely, the inverter imposes PWM voltage
harmonics. High-frequency rotor eddy currents strongly affect the field in the machine
when the rotor is present, which influences the inductance and for the same voltage
harmonics results in different PWM currents in comparison to the test without the rotor,
as shown in [31]. Therefore, the test was done by supplying the machine with sinusoidal
currents at different frequencies, where the current at each frequency was maintained
at the same value in both tests. These sinusoidal currents resemble individual PWM
harmonics. Rotor losses obtained with each individual harmonic were added up, and in
this way losses calculated by (38) were indirectly measured. To be able to mimic PWM
current harmonics with reasonable amplitudes corresponding to mf between 9 and 16, the
emulated PWM harmonics corresponded to a somewhat lower fundamental frequency
of 1.5 kHz. The measurement was simultaneously performed on 2 identical benchmark
machines with the topology shown in Figure 1. Results obtained in [31] are displayed in
Figure 12, and they confirm the validity of the suggested analytical approach.
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Figure 12. Measured and predicted rotor eddy current losses of the benchmark machine shown in
Figure 1. Adapted with permission from ref. [31]. Copyright 2015 IEEE.



Energies 2021, 14, 2606 29 of 35

9. Conclusions

The work presented in this study has demonstrated a thorough procedure for the
analytical modeling of high-speed permanent magnet and induction machines supplied
by pulse-width modulated inverters. The focus of the presented analysis has been put
on the effective calculation of rotor eddy current losses and electromagnetic torque, as
main performance indicators for these machines. The analysis has been split into several
parts, where the effects of the permanent magnet and PWM currents are first assessed
individually, and eventually, their combined effects have been studied.

Based on the results of the work presented in this paper, it is possible to get a clear
insight into the performance of high-speed machines. Harmonic components in the fre-
quency spectrum of instantaneous rotor eddy current losses have been identified and
related to the rotational sequence of different harmonics in stator currents. Furthermore,
it has been mathematically shown that high-speed permanent magnet machines with
diametrical magnetization do not generate cogging torque due to the specific magnetic
field distribution in the air gap, determined by the magnetization pattern on the rotor.

All the findings presented in this study have been verified with a finite element model,
which confirmed the validity of the used approach. Furthermore, it has been demonstrated
that the presented approach is superior in comparison to the finite element method in terms
of computation time when considering pulse width modulated supply. As high-speed
electrical machines are inherently driven by power electronics converters, the method
presented in this work offers a very useful and reliable alternative to FEM for the analysis
of high-speed drives.

By utilizing models developed in this study, it is possible to accurately and quickly
perform design optimization of high-speed electric machines. As the presented approach
uses an analytical and mesh-free method, fast parameter variations can be done during
the machine design stage. Geometrical parameters, material properties, and different
inverter parameters (such as switching frequency) can be varied, as has been demonstrated.
Consequently, their effect on losses, total electromagnetic torque, and torque ripple can be
evaluated, without occupying significant computational resources.
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Appendix A. Poynting’s Theorem

In a system with eddy current density~Jeddy and externally imposed current density~Ji,
the total current density can be defined using the electric conductivity σ and the induced
electric field ~E as

~J = ~Jeddy +~Ji = σ~E +~Ji. (A1)

If (A1) is inserted into Ampère’s law, it can be written

∇× ~H = σ~E +~Ji. (A2)

If (A2) is combined with Faraday’s law

∇× ~E = −∂~B
∂t

, (A3)

by performing the dot product of (A2) with ~E and the dot product of (A3) with ~H, it can
be written

~E ·
(
∇× ~H

)
= σ|~E|2 + ~E ·~Ji ; ~H ·

(
∇× ~E

)
= −~H · ∂~B

∂t
, (A4)

where |~E| is the intensity of the electric field vector ~E. By applying the following vector
calculus identity [34]

∇ ·
(
~E× ~H

)
= ~H ·

(
∇× ~E

)
− ~E ·

(
∇× ~H

)
, (A5)

expressions given by (A4) can be merged into

∇ ·
(
~E× ~H

)
= −~H · ∂~B

∂t
− σ|~E|2 − ~E ·~Ji. (A6)

By exploiting the constitutive equation of a permanent magnet with the remanent flux
density ~Brem

~B = µ0µr~H + ~Brem, (A7)

expression (A6) can be rewritten as

∇ ·
(
~E× ~H

)
= −µ0µr~H ·

∂~H
∂t
− ~H · ∂~Brem

∂t
− σ|~E|2 − ~E ·~Ji. (A8)

The first term on the right side of (A8) can be transformed in the following way

~H · ∂~H
∂t

=
1
2

(
∂~H
∂t
· ~H + ~H · ∂~H

∂t

)
=

1
2

∂

∂t

(
~H · ~H

)
=

1
2

∂

∂t
|~H|2, (A9)

where |~H| is the intensity of the magnetic field strength vector ~H. After inserting (A9)
into (A8), it can be written

−∇ ·
(
~E× ~H

)
=

µ0µr

2
∂

∂t
|~H|2 + ~H · ∂~Brem

∂t
+ σ|~E|2 + ~E ·~Ji. (A10)
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By applying a volume integral on both sides of (A10) and assuming that the volume V
does not change with time, it can be written

−
∫
V

∇ ·
(
~E× ~H

)
dV =

µ0

2
∂

∂t

∫
V

µr|~H|2dV +
∫
V

~H · ∂~Brem

∂t
dV

+
∫
V

σ|~E|2dV +
∫
V

~E ·~JidV. (A11)

If the divergence theorem [34] is applied to the left side of (A11), it transforms into a surface
integral, giving the final form of Poynting’s theorem

−
∮
S

(
~E× ~H

)
·~ndS =

µ0

2
∂

∂t

∫
V

µr|~H|2dV +
∫
V

~H · ∂~Brem

∂t
dV

+
∫
V

σ|~E|2dV +
∫
V

~E ·~JidV, (A12)

where S is a closed surface surrounding volume V and ~n is the outward normal on
surface S.

Appendix B. Resistance and Inductance Limited Eddy Current Losses

The power of eddy current losses Peddy, as of any other Joule losses described in terms
of the circuit theory, can be expressed as

Peddy = Reddy I2
eddy, (A13)

where Reddy is the resistance of the path where eddy currents flow, and Ieddy is the RMS
value of the eddy current intensity. Relation (A13) can be expressed by the RMS value of the
electromotive force which causes eddy currents Eeddy, eddy currents’ angular frequency
ωeddy, and the inductance of the path in which eddy currents flow Leddy

Peddy = Reddy
E2

eddy

R2
eddy + ω2

eddyL2
eddy

. (A14)

The electromotive force is the result of time variations of the magnetic flux density Beddy
which in the reference frame of the conducting material varies at the angular frequency
ωeddy. If constant ke, specific to the individual machine, is introduced, the RMS value of
the induced electromotive force can be represented as

Eeddy = kelsωeddyBeddy, (A15)

where ls is the active length of the machine. Then, (A14) can be rewritten as

Peddy = Reddy
k2

e l2
s ω2

eddyB2
eddy

R2
eddy + ω2

eddyL2
eddy

. (A16)

When eddy currents are governed by the resistance limited condition, at relatively low
values of frequency ωeddy, the following relation holds

Reddy >> ωeddyLeddy. (A17)



Energies 2021, 14, 2606 32 of 35

The second term in the denominator of (A16) can be omitted, simplifying it to

PR
eddy =

k2
e l2

s ω2
eddyB2

eddy

RR
eddy

, (A18)

where RR
eddy stands for the resistance of the path in which eddy currents flow under

resistance limited conditions. Resistance limited eddy currents create the magnetic field
orthogonal to the magnetic field that causes them. Therefore, the current density does not
redistribute throughout the depth of the conducting material, since there is no interaction
between the original magnetic field and the reaction field of eddy currents. Consequently,
the cross sectional area over which eddy currents flow remains unaffected. Then RR

eddy can
be expressed, using constant kρ, as

RR
eddy =

kρls
σ

, (A19)

where σ is the electric conductivity. By inserting (A19) into (A18), the power of eddy
current losses under resistance limited conditions can be expressed as

PR
eddy =

k2
e

kρ
lsB2

eddyσω2
eddy = kRlsB2

eddyσω2
eddy, (A20)

where kR is the constant determined by the construction of the machine. As can be
seen, eddy current losses under resistance limited conditions are linearly dependent on
conductivity of the considered region and proportional to the square of the frequency.

When eddy currents are governed by the inductance limited condition, at high values
of frequency ωeddy, the following relation holds

Reddy << ωeddyLeddy. (A21)

The first term in the denominator of (A16) can be omitted, simplifying (A16) to

PL
eddy =

RL
eddy

L2
eddy

k2
e l2

s B2
eddy, (A22)

where RL
eddy is the resistance of the path in which eddy currents flow under inductance

limited conditions.
Inductance limited eddy currents create the magnetic field which is in counter phase

with the magnetic field that causes them. Due to this, the resultant magnetic field does not
fully penetrate the conducting material. Consequently, the cross sectional area in which
eddy currents flow is proportional to the skin depth, making RL

eddy inversely proportional
to it. By taking into account the definition of the skin depth δ

δ =

√
2

ωeddyµσ
, (A23)

where µ is the permeability of the conducting region, RL
eddy can be expressed as

RL
eddy =

krls
σδ

= kδls

√
ωeddy

σ
, (A24)

where kr and kδ are constants. If (A24) is inserted into (A22), it can be written

PL
eddy =

k2
e kδl3

s

L2
eddy

B2
eddy

√
ωeddy

σ
. (A25)
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If inductance Leddy is expressed using the inductance per the unit of length leddy

Leddy = leddy · ls, (A26)

Equation (A25) can be rewritten as

PL
eddy =

k2
e kδ

l2
eddy

lsB2
eddy

√
ωeddy

σ
= kLlsB2

eddy

√
ωeddy

σ
, (A27)

where kL is the constant determined by the design of the machine. As can be seen, eddy
current losses under inductance limited conditions are inversely proportional to the square
root of the electric conductivity of the considered region, and directly proportional to the
square root of the frequency.
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