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Abstract: In the field of air navigation, there is a constant pursuit for new navigation solutions
for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to
present the results of research on the development of a new method for improving the performance
of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS
(Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method
is based on a linear combination of individual position solutions from the GPS and GLONASS
systems. The paper shows a computational scheme based on the linear combination for geocentric
XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean
method to determine the resultant aircraft position. The research method was tested on GPS and
GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T
aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed
on-board the plane, which made it possible to record GNSS observations, which were then used
to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates
from the CSRS-PPP software were then used in the weighted mean model’s developed optimization
algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites
and the inverse of the mean error square. The obtained coordinates of aircraft from the research
model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s
accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of
the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research
method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function
of the inverse of the square of mean error. The developed method demonstrates high efficiency for
improving the performance of GPS and GLONASS solutions for the PPP measurement technology in
air navigation.

Keywords: GNSS; GPS; GLONASS; PPP method; accuracy; RTK-OTF

1. Introduction

To date, the trend of using GNSS (Global Navigation Satellite System) satellite tech-
nology in aviation has been exclusively based on single-frequency receivers, recording the
publicly available L1-C/A code measurement. Consequently, ICAO (International Civil
Aviation Organization) technical standards in the aspect of quality of GNSS positioning
in aviation are referred to the L1 frequency [1]. Thus, for many years, only GNSS L1-C/A
code observations were used in flight tests to determine the accuracy, reliability, continuity
and availability of the aircraft navigation solution. However, the development of GNSS
satellite receiver technology and the growth of the GNSS space segment made it possible
to use observations on the other carrier frequencies as well. In practice, the use of GNSS
dual-frequency observations in navigation calculations adds value to the aircraft position
determination process.
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For GNSS satellite observations, we distinguish both absolute and differential (rela-
tive) positioning methods in navigation calculations [2]. Among the absolute positioning
methods, one of the precise measurement techniques is the dual-frequency PPP (Precise
Point Positioning) method [3]. The PPP measurement technique uses code observations
(P1 and P2) and phase observations (L1 and L2) from a dual-frequency GNSS satellite
receiver on-board the aircraft [3]. Thus, during the flight operation, the aircraft crew should
be equipped only with a dual-frequency GNSS receiver for precise computation of the
aircraft flight path using the PPP method. A completely different situation occurs in the
case of differential positioning, where the differential RTK (Real-Time Kinematic) technique
with an OTF (On The Fly) solution for GNSS phase measurements is used as a precise
measurement technique [4]. The differential RTK technique uses a GNSS satellite receiver
on-board the aircraft and a GNSS satellite receiver installed at the reference station (base
station) [5]. The differential RTK technique requires the use of a minimum of two GNSS
satellite receivers, which, in turn, translates into increased costs and the need to purchase
technical infrastructure. In order to reduce the financial costs and the number of personnel
to operate the GNSS reference station infrastructure, the PPP measurement technique is
increasingly used in flight tests.

The common feature of the absolute PPP method and the differential RTK technique
is their use to determine an aircraft’s reference position in flight tests. Consequently, both
measurement methods are significant for the problem of determining the true trajectory of
an aircraft determined from dual-frequency GNSS observations. Knowing the aircraft’s true
position is essential for both pilots and air traffic ground personnel, including controllers
and navigators.

2. Related Papers

The problem of determining an aircraft’s actual position using the PPP method has
been presented and described in many research papers worldwide. Most research papers
on PPP positioning in air navigation had described and presented position solutions using
GPS (Global Positioning System) or GLONASS (Globalnaja Nawigacionnaja Sputnikovaya
Sistema) navigation systems. That is, of course, related to the fact that only GPS and
GLONASS systems are certified by ICAO for GNSS satellite navigation in aviation [1]. It
can be concluded that GPS and GLONASS, as global GNSS navigation systems, provide
continuous satellite positioning in aviation.

The literature review provides a multi-faceted approach to the application of the PPP
measurement technique in air navigation. Reference [6] propose using a PPP solution to
determine the position of an aircraft with respect to the differential solution from the AUS-
POS program. The aircraft’s position was determined in the CSRS-PPP (Canadian Spatial
Reference System–Precise Point Positioning) program using the least-squares method for
GPS observations. The maximum coordinate difference between the GAPS (GPS Analysis
and Positioning Software) and AUSPOS (online GPS processing service) solution was up
to ±0.5 m for the horizontal coordinates and ±1 m for the vertical coordinate. In turn, the
paper [7] proposed the use of a PPP solution to determine the position of a helicopter with
respect to a DD (Double Difference) differential solution in postprocessing. The helicopter
position was determined in the P3 (software developed by the University of Calgary)
software package using Kalman filtering for GPS observations. The maximum coordinate
difference between the PPP solution and the differential DD solution reached ±0.5 m for all
ENU (East-North-Up) components. A similar solution was proposed in work [8], in which
helicopter positioning accuracy was determined using the P3 (software developed by the
University of Calgary) software package with the PPP method. The initial positioning
accuracy of the helicopter was about 2.7 m, while, in the final phase of the flight, it was
higher than 0.1 m for BLh (B: Latitude, L: Longitude and h: ellipsoidal height) coordinates.
In paper [9], P3 software was used to determine the positioning accuracy of an aircraft
flying at high speed. The values of positioning errors of the aircraft between the PPP
solution and the differential DD solution were up to ±0.2 m for the horizontal coordinates
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and ±1.1 m for the vertical coordinate. However, paper [10] used the PPP method to
determine a helicopter’s position with respect to the KGPS (Kinematic GPS) solution in
the PNAV program. The helicopter position was determined using Kalman filtering for
GPS observations. The maximum coordinate difference between the PPP solution and the
KGPS PNAV solution was up to ±1 m for all ENU components. Furthermore, in work [11],
the PPP method was used to determine the UAV (Unmanned Aerial Vehicle) position in
GIPSY and RTKLIB software. The UAV reference position was determined using the DGPS
(Differential GPS) technique for GPS phase observations. The paper presents different
scenarios for UAV position determination for the PPP method: iterative method, filtering of
GPS observations and the smoothing of code observations by GPS phase observations. The
maximum coordinate difference between the PPP and DGPS solutions reached ±1 m for all
ENU components. In paper [12], the PPP method’s accuracy in PP-RTX software was inves-
tigated in more than 100 flight tests. The PP-RTX solution’s typical accuracy with respect
to the ASB (Applanix Smartbase) differential solution was up to ±0.2 m for all ENU com-
ponents. In turn, the paper [13] proposed to test the PPP method in TriP, IT and GrafNav
software in a flight experiment. This paper presented the results of the comparison of the
aircraft coordinate determination between the TriP, IT, GrafNav software and the GPSurvey
baseline solution. The typical positioning accuracy of the aircraft from the PPP method
was up to ±0.7 m for all ENU components. On the other hand, the paper [14] presented
the results of the positioning accuracy of the aircraft from the CSRS-PPP and GrafNav
solutions concerning the DD differential solution. The average positioning accuracy from
the PPP method was ±0.2 ÷ 0.4 m; however, numerous anomalies can be observed from
the GrafNav solution when the accuracy decreases to the level of ±1.5 m. Interesting
solutions for applying the PPP method for single-frequency GPS receivers were presented
in papers [15,16]. The papers described the application of the method of smoothing code
measurements with GPS phase measurements using IGS (International GNSS Service)
products in air navigation. The typical GPS positioning accuracy for the PPP method in
works [15,16] was about ±1 m for all ENU and BLh frame components. Another very
interesting solution for the needs of aerial photogrammetry was the application of the PPP
method in the process of digital aerotriangulation in the works [17,18]. The PPP method
was used to determine the UAV position during the photogrammetric flight. The obtained
PPP positioning accuracy was higher than ±0.3 m in [17] and higher than ±1.2 m in [19]
in the ENU coordinate frame. The use of the PPP method in air navigation allowed for
combining navigation solutions using different sensors, e.g., a GNSS receiver and an INS
(Inertial Navigation System) system. The works [19–22] presented a combined solution
of aircraft positioning using the PPP/INS method in relation to the differential GPS RTK
solution. The obtained PPP/INS positioning accuracy was: higher than ±0.2 m in [19],
higher than ±0.4 m in work [20] and higher than ±0.1 m in [21,22]. In paper [23], the IGS
and CNES (Centre National d’Etudes Spatiales) Analysis Center products were applied in
aerial triangulation and, also, to determine the coordinates of an airplane.

During in-flight tests in Poland, the PPP measurement technique has not been widely
used as an aircraft flight reference position so far. An example of testing the vertical
plane’s actual flight trajectory was described in the paper [24]. In the previous flight
experiments in Poland, the differential RTK technique in the OTF mode was used as the
aircraft reference position. Such a solution was proposed, and in-flight tests described,
among others, in research papers [25–27]. Therefore, in Polish scientific research, there is a
lack of confirmation and verification of the PPP measurement method as an alternative
measurement technique to determine the aircraft’s real trajectory. The use of the PPP
method in flight tests in Poland has been limited only to testing the precision of determining
aircraft coordinates [3,28,29]. Moreover, in works [30,31], the PPP method was used
to determine the aircraft’s precise trajectory to test the accuracy of SPP (Single-Point
Positioning) code positioning in air navigation in Polish aviation. It is worth mentioning
that the PPP method was used in air navigation in Poland for positioning using the
GLONASS navigation system. Thus, paper [32] presented a model for determining the



Energies 2021, 14, 2525 4 of 22

position of a Cessna-172 aircraft using GLONASS observations in the CSRS-PPP program.
In turn, paper [33] presented the results of GLONASS positioning in the PPP method
in relation to the joint GPS/GLONASS solution in the RTKLIB program. Furthermore,
paper [34] presented the results of PPP positioning in GLONASS from RTKLIB and CSRS-
PPP solution.

The research problem of using the PPP method in air navigation, discussed in this
paper, concerns both real-time positioning and post-processing mode. The presented
publications [6–33] presented research works both in real-time and post-processing mode.
Therefore, the PPP positioning problem in air navigation is dual, i.e., it concerns real-
time applications and the post-processing mode. The use of both is crucial and has its
properties. In real-time, this is a navigation domain and allows the user to read real-time
positions using the PPP method. The pilot must have confidence and credibility in the
computer software that performs the calculations, and above all, the software must be
tested and validated for air navigation. On the other hand, post-processing for the PPP
method is primarily a post-factum analysis of the determined plane coordinates, reduction
of systematic errors, detection of outliers, etc. All this is reflected in the objective flight
control laboratory. Therefore, in the case of the PPP method, application tools must be
designed for real-time and post-processing calculations.

Based on the accumulated literature on PPP positioning in air navigation, it can
be observed that research studies have used a solution from a single GNSS navigation
system such as GPS or GLONASS. This raises the research problem of what optimal
computational strategy to use to improve a single GPS or GLONASS PPP solution relative
to a RTK GNSS solution. Thus, an optimization algorithm should be used to improve
the performance of PPP positioning in GPS or GLONASS in air navigation. One way to
solve this problem is to create a linear combination of the determined coordinates from
the PPP GPS and PPP GLONASS methods. This solution will determine the relationship
between individual PPP GPS and PPP GLONASS solutions in relation to the RTK GNSS
solution. Moreover, this approach shows how to choose the optimal weighting strategy
to integrate GPS/GLONASS solutions in the PPP method. The weighted model gives an
additional one degree of freedom to solve the plane’s accidental position for independent
GPS and GLONASS data. Moreover, in such an approach, measurement scales may be
selected further to increase the air navigation PPP method’s positioning accuracy. The
weighted average model is characterized by high efficiency and effectiveness in improving
coordinates’ performance with appropriate selection of measuring weights [35].

The presented paper aims to show a new computational strategy for PPP positioning in
air navigation for a single GPS and GLONASS solution. For this purpose, the development
of a new boundary condition combining single GPS and GLONASS solutions in the PPP
method is proposed. This condition is based on the weighted mean model. The proposed
algorithm was tested on GPS and GLONASS kinematic data from an airborne experiment
carried out with a Seneca Piper PA34-200T aircraft at a civil airport in Mielec, Poland. The
presented numerical solution was performed in Scilab based on the aircraft position results
obtained from CSRS-PPP. The presented results are unique for the application of the PPP
method in Polish aviation.

3. Research Method

This section shows the PPP positioning algorithm for a single GPS and GLONASS
solution. Additionally, a new PPP positioning algorithm improving the GPS and GLONASS
single solution is presented.
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3.1. Positioning Model of the PPP Method for GPS and GLONASS Solutions

The basic observation equation of the PPP measurement technique can be written as
follows [33,34,36]:

- for GPS or GLONASS:{
P3 = d + c·(dtr− dts) + Trop + Rel + MP3
L3 = d + c·(dtr− dts) + Trop + B3 + Rel + δw + ML3

(1)

where:
P3 and L3—observation equations of the GPS or GLONASS linear Ionosphere-Free

combination;
P3 = α·P1 + β·P2;
L3 = α·L1 + β·L2;
(P1, P2)—GPS or GLONASS code observations;
(L1, L2)—GPS or GLONASS phase observations;
α = +f1

2/(f1
2 − f2

2), GPS or GLONASS linear coefficient;
β = −f2

2/(f1
2 − f2

2), GPS or GLONASS linear coefficient;
(f1, f2)—frequencies of the GPS or GLONASS signals;
d—geometric satellite-receiver distance in GPS or GLONASS system; takes into ac-

count the phase centre characteristics of the satellite antenna and the receiver [37],

d =

√
(Xr − Xs)2 + (Yr −Ys)2 + (Zr − Zs)2 (2)

(Xr,Yr,Zr)—XYZ geocentric coordinates of the aircraft;
(Xs,Ys,Zs)—orbital coordinates of the GPS or GLONASS satellite;
c—the speed of light;
dtr—correction of the receiver’s clock in the GPS or GLONASS system;
dts—correction of the satellite’s clock in the GPS or GLONASS system;
Trop—Tropospheric delay in GPS or GLONASS measurements;
Trop = SWD + SHD;
SHD—slant path tropospheric delay for the hydrostatic component;
SWD—slant path tropospheric delay for the wet component;
SHD = mfH·ZHD;
SWD = mfW·ZWD;
(mfH, mfW)—mapping functions for the hydrostatic and wet paths of the tropo-

spheric delay;
ZHD—hydrostatic component of tropospheric delay;
ZWD—wet component of tropospheric delay;
Rel—relativistic effects in GPS or GLONASS measurements;
B3—float value of phase ambiguity in GPS or GLONASS measurements;
δw—phase wind-up in GPS or GLONASS system;
MP3—multipath effect of GPS or GLONASS code observations;
ML3—multipath effect of GPS or GLONASS phase observations.

The unknown parameters in the PPP measurement technique in the GPS and GLONASS
solutions are, respectively [38], residuals to the approximate coordinates of the receiver
[δX, δY, δZ], the receiver’s clock correction dtr, phase ambiguities B3 (determined for each
visible GPS and GLONASS satellite) and the wet component of the tropospheric delay
ZWD. The above-mentioned unknown parameters are determined by the least-squares
method in a sequential stochastic process in GPS and GLONASS systems, respectively, as
follows [39]:

Sx =
(

AT · P · A + C−1
x

)−1
AT · P · l (3)

where:
Sx—vector of the unknown parameters,
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A—design matrix,

A =



Xr
i−1−Xs

di−1

Yr
i−1−Ys

di−1

Zr
i−1−Zs

di−1
1 0 0 . . . . . . . . . m fW

. . . . . . . . . 1 1 0 . . . . . . . . . . . .

. . . . . . . . . 1 0 0 . . . . . . . . . . . .

. . . . . . . . . 1 0 1 . . . . . . . . . . . .

. . . . . . . . . 1 0 0 . . . 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . 1 0 . . .

. . . . . . . . . . . . . . . . . . . . . 0 0 . . .

. . . . . . . . . 1 0 0 . . . 0 1 m fW


(4)

(Xr
i−1, Yr

i−1, Zr
i−1, )—geocentric XYZ coordinates of the aircraft per observation time

epoch (i− 1),
(i− 1)—previous observation time epoch,
di−1—approximately the geometric satellite-receiver distance in GPS or GLONASS system;
P—matrix of weights,
Cx—variance-covariance matrix,
Cx =

(
AT · P · A + C−1

x
)−1

+ Cn,
Cn—the process disturbance noise matrix,
l—vector of difference between observations and modelled parameters.

The final aircraft coordinates from the PPP method from the GPS or GLONASS
solutions are determined as recorded below [40]:

Xr
i = Xr

i−1 + δX
Yr

i = Yr
i−1 + δY

Zr
i = Zr

i−1 + δZ
(5)

where:
(Xr

i , Yr
i , Zr

i )—geocentric XYZ coordinates of the aircraft per observation time epoch
(i), and (i)—the current observation time epoch.

3.2. New Mathematical Scheme for Improving the GPS and GLONASS Solution in the PPP Method

The new concept of PPP positioning from the GPS and GLONASS solution was based
on the resultant linear combination model in which weighting factors (a, b, c, d, e, f ) were
used. In the new approach, the aircraft’s resultant position is determined in geocentric XYZ
coordinates based on a single PPP GPS and PPP GLONASS solution. The new algorithm’s
goal is to determine the best match between the PPP GPS and PPP GLONASS solution
relative to the flight reference position calculated from the differential RTK technique.
Moreover, the proposed algorithm determines the most optimal solution of the resultant
position of the aircraft, i.e., it will be checked which measuring scales improve the perfor-
mance of determining the resultant aircraft coordinates. The proposed calculation scheme
of the resultant position of the aircraft is described below:

Xk =
a·Xg+b·Xr

a+b

Yk =
c·Yg+d·Y

c+d

Zk =
e·Zg+ f ·Zr

e+ f

(6)

where:
Xg = Xr

i (see Equation (3)), position of aircraft from GPS solution along X axis,
Yg = Yr

i (see Equation (3)), position of aircraft from GPS solution along Y axis,
Zg = Zr

i (see Equation (3)), position of aircraft from GPS solution along Z axis,
Xr = Xr

i (see Equation (3)), position of aircraft from GLONASS solution along X axis,
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Yr = Yr
i (see Equation (3)), position of aircraft from GLONASS solution along Y axis,

Zr = Zr
i (see Equation (3)), position of aircraft from GLONASS solution along Z axis,

(a, b, c, d, e, f )—determined linear coefficients, dimensionless values,
(Xk, Yk, Zk)—resultant position of aircraft.

Equation (4) combines 2 independent GPS and GLONASS determinations of the
aircraft position using the PPP method. In this way, the aircraft’s resultant position is
determined every given measurement epoch, typically in the time interval of 1 s. It should
be noted that the critical parameters in Equation (4) are the values of linear coefficients.
In the analyzed example, a weighting scheme based on the following weighting factors
was proposed: {

a = c = e = 1
nsg
∨ a = c = e = 1

Cl2
g

b = d = f = 1
nsr
∨ b = d = f = 1

Cl2
r

(7)

where:
nsg—number of GPS satellites,
nsr—number of GLONASS satellites,
Clg—mean error of the determined coordinates from the PPP GPS solution,
Clr—mean error of the determined coordinates from the PPP GLONASS solution.

The calculation process of determining the resultant position of the aircraft accord-
ing to Equation (4) uses weighting factors (a, b, c, d, e, f ). In the analyzed model, two
approaches for determining the weighting factors (a, b, c, d, e, f ) were proposed. The first
approach is based on a weighing scale as a function of the reciprocal of the number of
GPS or GLONASS satellites. On the other hand, the second approach is based on the
measurement weight as a function of the inverse of the square of the mean coordinate
errors of the aircraft from the PPP GPS and PPP GLONASS solutions. On this basis, it is
possible to optimize the calculation process of the aircraft’s resultant position. It means that
based on Equation(4), the resultant plane position for the PPP method will be calculated,
and by the way, it will be shown which measurement weight is the best for this type of
mathematical model, as in Equation (4). That is important, because we are looking for
mathematical models in air navigation to improve the aircraft’s position. All the more,
determining the appropriate measurement weight here is crucial to improving the accuracy
of PPP positioning in aeronautical navigation.

The algorithm for determining the values in the Clg and Clr parameters is described
below [41]: 

1
Cl2

g
= 1

mx2
g+my2

g+mz2
g

1
Cl2

r
= 1

mx2
r+my2

r+mz2
r

(8)

where:
(mxg, myg, mzg)—mean coordinate errors determined from the GPS variance–covariance

matrix Cx (see Equation (2)),
mxg = Cx(1, 1)
myg = Cx(2, 2)
mzg = Cx(3, 3)

f rom PPP GPS solution (see Equation (2)),

(mxr, myr, mzr)—mean coordinate errors determined from the GLONASS variance–
covariance matrix Cx (see Equation (2)),

mxr = Cx(1, 1)
myr = Cx(2, 2)
mzr = Cx(3, 3)

f rom PPP GLONASS solution (see Equation (2)).

In the next step, additional parameters for the resultant position of the aircraft were
determined, i.e.,

- determination of the average measurement error,
- determining the corrections,
- determination of the mean error of the arithmetic mean.
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The scheme of the procedure for this stage was written in Equation (7):

Vg =


Vg,x = Xg − Xk

Vg,y = Yg −Yk

Vg,z = Zg − Zk

Vr =


Vr,x = Xr − Xk

Vr,y = Yr −Yk

Vr,z = Zr − Zk

σx =

√
[VT

g,x ·Pg ·Vg,x+VT
r,x ·Pr ·Vr,x]

n−1

σy =

√
[VT

g,y ·Pg ·Vg,y+VT
r,y ·Pr ·Vr,y]

n−1

σz =

√
[VT

g,z ·Pg ·Vg,z+VT
r,z ·Pr ·Vr,z]

n−1

Mx = σx√
n

My =
σy√

n

Mz =
σz√

n

(9)

where:
Pg—matrix of weights for PPP GPS solution, Pg = 1

nsg
∨ Pg = 1

Cl2
g

(see Equation (5)),

Pr—matrix of weights for PPP GLONASS solution, Pr =
1

nsr
∨ Pr =

1
Cl2

r
(see Equation (5)),

Vg—all residuals between PPP GPS solution and resultant aircraft position,
Vg,x—residuals between PPP GPS solution and resultant aircraft position along X axis,
Vg,y—residuals between PPP GPS solution and resultant aircraft position along Y axis,
Vg,z—residuals between PPP GPS solution and resultant aircraft position along Z axis,
Vr—all residuals between PPP GLONASS solution and resultant aircraft position,
Vr,x—residuals between PPP GLONASS solution and resultant aircraft position along

X axis,
Vr,y—residuals between PPP GLONASS solution and resultant aircraft position along

Y axis,
Vr,z—residuals between PPP GLONASS solution and resultant aircraft position along

Z axis,
n—number of solutions, n = 2,
(σx, σy, σz)—mean errors of measurement along XYZ axis,
(Mx, My, Mz)—mean error of the arithmetic mean along XYZ axis.

Then, the calculations are verified in the form of the global chi-square test, in accor-
dance with the algorithm [41]:

σ2
x · (n− 1) = VT

g,x · Pg ·Vg,x + VT
r,x · Pr ·Vr,x ≤ χ2

f ,1−α

σ2
y · (n− 1) = VT

g,y · Pg ·Vg,y + VT
r,y · Pr ·Vr,y ≤ χ2

f ,1−α

σ2
z · (n− 1) = VT

g,z · Pg ·Vg,z + VT
r,z · Pr ·Vr,z ≤ χ2

f ,1−α

(10)

where:
χ2

f ,1−α—the table value of the chi-square test,
f = n− 1—number of degrees of freedom,
1− α = 0.95—confidence level.

The chi-square test is performed independently for the designated coordinates along
each XYZ axis. The calculations’ verification is determined with a confidence level of 0.95
for degrees of freedom equal to a number f = n− 1. The chi-square test determines the
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internal reliability of the presented research method. The values χ2
f ,1−α are taken from the

mathematical table of the chi-square test. For the chi-square test to be fulfilled, numerical
values of parameters: σ2

x · (n− 1), σ2
y · (n− 1) and σ2

z · (n− 1) must be equal or less than
the tabular value of χ2

f ,1−α. If it did not happen, then the test of internal reliability of
calculations is not fulfilled, and the algorithm with the confidence level of 0.95 does not
meet the requirements.

The last element of the calculations of the presented research method is the external
control of the proposed algorithm, i.e., determining the accuracy of the presented algorithm,
as shown below [35]: 

DX = Xk − XRTK
DY = Yk −YRTK
DZ = Zk − ZRTK

(11)

where:
(DX, DY, DZ)—position errors, and
(XRTK, YRTK, ZRTK)—reference trajectory of aircraft based on RTK-OTF solution [35].

Position errors are determined independently along the XYZ coordinate axes for
the entire flight path for each measurement epoch. Accuracy determination will confirm
whether the proposed weighing scheme is optimal for improving the PPP GPS and PPP
GLONASS positioning performances. Furthermore, the accuracy analysis will also show
which weighting scheme is better, whether using weighting in the function of the number of
satellites or using the inverse square of the error of the mean of the determined coordinates.

Considering the entire algorithm of the research methodology, it can include elements
of calculations carried out in real time and post-processing mode. Starting from the begin-
ning of the algorithm, the classic PPP method, i.e., Equations (1)–(3), can be implemented
both in real time and post-processing. The boundary condition is, of course, the use of
a dual-frequency dual-system GPS/GLONASS receiver. Next, the new proposed algo-
rithm, i.e., Equations (4)–(8), can also be performed in real time and post-processing mode.
However, it should be noted that, in Equation (4), there are measurement weights from
Equations (5) and (6). In this case, parallel programming must be performed for both
weighting processes. Of course, this weighting condition should first be tested in post-
processing to determine the best measurement weight-fitting model for GPS + GLONASS
data integration. Equation (9), in turn, determines the aircraft positioning accuracy for
the PPP measurement technique. The algorithm allows for numerical analysis in post-
processing mode. However, it is possible to perform it in real time, but it involves sending
RTK corrections from the reference station to the GNSS on-board receiver, which requires
an appropriate internet connection, transmission technique and data transmission power.
Therefore, it is a difficult task in real time, when the aircraft’s position changes dynamically
every 1 s.

4. Research Test

To analyze the application of the presented research method in aviation, GPS/GLONASS
satellite data were used from a flight test performed with a Seneca Piper PA34-200T aircraft
at the civil airport EPML (European Poland Mielec) in Mielec, Poland. The test flight took
place in the morning and lasted from 12:47:50 to 14:02:24, according to GPST time. The
horizontal trajectory of the test flight is shown in Figure 1.
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Figure 1. The aircraft trajectory in-flight experiment in Mielec airport [own material].

A Topcon HiperPro dual-frequency dual-system geodetic receiver was deployed
on-board the Seneca Piper PA34-200T aircraft to record GPS/GLONASS code-phase obser-
vations on the L1/L2 frequency. The Topcon HiperPro receiver was located in the cockpit.
The Topcon HiperPro receiver recorded GPS/GLONASS code-phase observations with
an interval of 1 s. The flight test was performed in real time. The receiver was collecting
real-time GPS/GLONASS data for the numerical analysis.

The stage of the first scientific research for this paper was carried out in geodetic
software CSRS-PPP v.3 [42]. CSRS-PPP software used the PPP absolute positioning method
to determine the coordinates of the aircraft. The position of the Seneca Piper PA34-200T
aircraft was determined from the GPS and GLONASS solutions and expressed in geocentric
coordinates, according to Equations (1)–(3). The IGS products, such as precision ephemeris,
precision satellite clocks and satellite and receiver antenna phase center characteristics,
were used in the calculations. In addition, the P1/P2 codes and L1/L2 phase observations
in GPS and GLONASS from the Topcon HiperPro on-board receiver were used in the
calculations. The calculations assumed a pseudo-range measurement error of 0.3 m in GPS
and 0.6 m in GLONASS and a phase measurement error of 0.003 m in GPS and 0.006 m in
GLONASS. The elevation mask was 10 degrees for the GPS and GLONASS observation
cut-off. For the stochastic modeling of the determined parameters, the following settings
were assumed [38,39]:

- the coordinates of the aircraft are modeled from white noise,
- the receiver clock offset is modeled from white noise,
- the phase ambiguity for each satellite is modeled as a constant value;
- the ZWD is modeled as a random walk parameter.

Other model parameters, such as the multipath effect, tidal and geodynamic correc-
tions and phase slip, were used in the calculations.

The second part of the research was carried out in Scilab v.6.0.0 [43] for Equations (4)–(9).
In the Scilab program, the Seneca Piper PA34-200T aircraft’s position coordinates were
imported from the GPS and GLONASS solutions, and then, the alignment model was set up
according to Equation (4). The final calculations in Scilab were performed for mathematical
Equations (4)–(9). Calculations in Scilab were performed for all readings of the aircraft
position from the GPS and GLONASS solutions. The reference position of the aircraft was
calculated using the RTK-OTF solution in Trimble Total Control v.2.700 software.
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Numerical calculations in the CSRS-PPP software, Scilab software and Trimble Total
Control program were performed post-factum after a flight test of a Seneca Piper PA34-
200T aircraft.

For the purposes of scientific research in aviation, the state of the ionosphere was
determined by the VTEC (Vertical TEC) parameter. The VTEC value was determined
based on the GIM (Global Ionosphere Maps) ionosphere model from the CODE (Center for
Orbit Determination in Europe) Analysis Center in Switzerland [44]. The VTEC parameter
fluctuated during the flight tests from 16.8 TECU to 17.3 TECU.

5. Results

The presentation of the research results began with determining the mean reference
position errors from the RTK-OTF solution. Figure 2 shows the results of the mean reference
flight position errors. The mean errors were resolved as in Equation (6), and these values
are the resultant mean errors for the XYZ coordinates. The RTK-OTF solution used precise
GPS and GLONASS phase observations at the L1/L2 frequencies. Analyzing the obtained
results, the resultant aeroplane position’s mean errors were from 0.005 m to 0.063 m. Over
52% of the mean error results were less than 0.02 m. In turn, over 84% of the results of the
mean error were less than 0.03 m.
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Figure 2. Mean errors of aircraft position from the RTK-OTF solution.

In the next step, the measurement weights, i.e., the values of the coefficients
(a, b, c, d, e, f ) used in Equation (4), are shown. The weighting factors’ values were calcu-
lated based on Equation(5). In Figure 3, the values of the coefficients (a, b, c, d, e, f ) for
measuring the weights (a = c = e = 1

nsg
= Pg; b = d = f = 1

nsr
= Pr) are shown. For the

solution of the PPP GPS position, the measurement weight was from 0.111 to 0.200. On the
other hand, for the PPP GLONASS position solution, the measuring balance results were
from 0.143 to 0.200. You can see that the measurement weights were not the same as the
numbers of the GPS and GLONASS satellites, which also varied during the experiment.

Moreover, Figure 4 shows the results of the coefficient values (a, b, c, d, e, f ) for mea-
suring weights (a = c = e = 1

Cl2
g
= Pg; b = d = f = 1

Cl2
r
= Pr). In this case, the coefficient

values (a = c = e) for the GPS PPP solution ranged from 0.012 to 0.037. For the PPP
GLONASS solution, the values of the coefficients varied from 0.008 to 0.014.
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Cl2

g
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Cl2
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= Pr) for the adjust-

ment scheme.

The next test results concerned the distribution of corrections (Vg,x, Vg,y, Vg,z, Vr,x, Vr,y, Vr,z)
for the XYZ components. Figures 5–7 show the correction values as a function of the
experiment’s duration. The dispersion along the X-axis is from −0.903 m to +0.675 m.
When analyzing the dispersion of corrections in the function of measuring weights, it can be
noticed that the corrections Vg,x range from +0.204 m to +0.675 m. In turn, respectively, the
distribution of corrections Vr,x from the minimum and maximum values is from−0.903 m to
−0.362 m. For the Y component, the spread of corrections is from −2.162 m to +1.644 m.
In the case of corrections Vg,y, their values are from +1.007 m to +1.644 m. For corrections
Vr,y, their values are from −2.162 m. to −0.856 m. The distribution of corrections along the
Z-axis is very interesting. When we compare the results of corrections between Figures 5–7,
we can see at once that the distributions in Figure 7 are an order of magnitude smaller than
in Figures 5 and 6. That causes the scatter of the Z coordinate obtained results as the smallest
around the expected value. Especially when we look at the distribution of corrections in
Figure 7, it can be concluded that their dispersion is from −0.284 m to +0.201 m. It can
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be seen that we deal with the results that best correspond to the expected values of the
Z components. The Vg,z corrections distribution is from +0.097 m to +0.201 m and Vr,z
corrections from −0.284 m to +0.026 m, respectively.
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Then, in Figures 8–10, the results of the calculated mean errors (σx, σy, σz) are presented
separately for the resultant XYZ coordinates of the aircraft position. It should be added that
the parameter values (σx, σy, σz) are shown for two weight models, i.e., Pg = 1

nsg
∨ Pg = 1

Cl2
g

and Pr =
1

nsr
∨ Pr =

1
Cl2

r
. When observing Figures 8–10, it can be seen that, when we

use the weight in the inverse of the mean error function, we get better results than when we
weight in the joint function of the number of tracked GPS or GLONASS satellites. Therefore,
the values σx are from 0.246 m to 0.323 m when using measuring weights Pg = 1

nsg
and

Pr = 1
nsr

. On the other hand, when we use measuring weights Pg = 1
Cl2

g
and Pr = 1

Cl2
r
,

then the σx values are from 0.071 m to 0.110 m. The σx values were reduced by over 66%
when we used weights (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) compared to weights (Pg = 1

nsg
; Pr =

1
nsr

) in

the calculations. The mean errors σy were from 0.571 m to 0.769 m when using weights
Pg = 1

nsg
and Pr =

1
nsr

. On the other hand, when we used measuring weights Pg = 1
Cl2

g
and

Pr = 1
Cl2

r
, then the σy values were from 0.183 m to 0.267 m. The σy values were reduced
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by about 65% when we used weights (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
) compared to the application of

(Pg = 1
nsg

; Pr = 1
nsr

) in the calculations. The mean errors σz had values from 0.001 m to

0.089 m when using weights Pg = 1
nsg

and Pr = 1
nsr

. When we used measuring weights

Pg = 1
Cl2

g
and Pr = 1

Cl2
r
, then the σz parameters ranged from 0.001 m to 0.029 m. In this

case, it can also be said that the use of measuring weights (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
) reduced the

mean errors σz by over 65% compared to the solution using (Pg = 1
nsg

; Pr =
1

nsr
).
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The test results in Figures 11 and 12 show the (Mx, My, Mz) parameter values for
the solution using measuring weights (Pg = 1

nsg
; Pr = 1

nsr
) and (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
).

The (Mx, My, Mz) values for weights (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
) are up to 0.544 m. In turn,

the (Mx, My, Mz) values for weights (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
) are up to 0.189 m. It can

be concluded that the (Mx, My, Mz) parameters for solving a position using (Pg = 1
Cl2

g
;

Pg = 1
Cl2

r
) improved by about 65% to 66% compared to the corresponding results for these

quantities when weights (Pg = 1
nsg

; Pr =
1

nsr
) were used.
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Table 1 shows the results of the σ2
0 · (n− 1) chi-square test’s parameters and table

values χ2
f ,1−α at the 1− α = 0.95 confidence level and for f = n− 1 degrees of freedom.

The parameter results σ2
0 · (n− 1) were smaller than the tabulated χ2

f ,1−α values, so the
global chi-square statistical test, which determines the internal reliability of the performed
alignment, was fulfilled and implemented. In the analyzed case, the tabular value of the chi-
square test was 3.841. Value σ0 denotes parameters (σx, σy, σz), respectively. Moreover, the
number of degrees of freedom f = n− 1 is equal to 1. The chi-square test in the analyzed
example was carried out and checked for each measurement epoch. The chi-square test
was fulfilled for all measurement epochs, making the obtained test results more reliable in
the experiment.

Table 1. The results of the global chi-square test.

Coordinate Measurement Weight Maximum Values of σ2
0 ·(n−1),

Where: σ0=(σx,σy,σz)
Statistical Value of χ2

f,1−α

X (Pg = 1
nsg

; Pr =
1

nsr
) 0.323 3.841

Y (Pg = 1
nsg

; Pr =
1

nsr
) 0.769 3.841

Z (Pg = 1
nsg

; Pr =
1

nsr
) 0.089 3.841

X (Pg = 1
Cl2g

; Pg = 1
Cl2r

) 0.110 3.841

Y (Pg = 1
Cl2g

; Pg = 1
Cl2r

) 0.267 3.841

Z (Pg = 1
Cl2g

; Pg = 1
Cl2r

) 0.029 3.841

The last stage of the research concerned determining the accuracy of the presented
research method. In this, Equation (9) from the research methodology was used. The
position errors DX were from +0.032 m to +0.527 m for weights (Pg = 1

nsg
; Pr = 1

nsr
).

On the other hand, for weights (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
), the position errors DX were from

−0.244 m to +0.206 m. It could be observed that the positioning accuracy along the X-axis
improved by about 87% in the case of using weights (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) in relation to the

results of DX determined for the (Pg = 1
nsg

; Pr =
1

nsr
) weighing process. The DY position

errors were from −1.051 m to −0.492 m for (Pg = 1
nsg

; Pr =
1

nsr
) weighing. On the other

hand, for (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
), the DY position errors were −0.433 m to +0.173 m. It

can be concluded that the positioning accuracy along the Y-axis improved by over 85%
in the case of using (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) in relation to the DY results determined for
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the (Pg = 1
nsg

; Pr = 1
nsr

). The DZ position errors were from −0.451 m to +0.183 m for

weights (Pg = 1
nsg

; Pr =
1

nsr
). In turn, for (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
), the DZ position errors were

−0.396 m to +0.228 m. It is worth noting that the positioning accuracy along the Z-axis
improved by more than 11% when weights (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) were used in relation to

the results determined for weights (Pg = 1
nsg

; Pr =
1

nsr
) (Please see Figures 13–15).
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6. Discussion

In the discussion of the results, the attention is mainly focused on determining the
proposed test method’s external reliability. For this purpose, the proposed algorithm
was verified in terms of determining positioning accuracy. In the discussion, the aircraft
position’s obtained results using the PPP method from the RTKLIB program [45,46] for
the weighted average model used were analyzed. Such a check is crucial, because we
obtain independent confirmation of the proposed mathematical algorithm’s correctness
(4–9). In particular, in the proposed research method’s external control, the key factor is
Equation (9), thanks to which, the position errors can be determined [47]. Therefore, the
weighted average model results will be compared to the reference coordinates determined
by RTK-OTF. Figures 16–18 show the positioning accuracy between the weighted average
model and the RTK technique as a function of the measurements used. The DX position
errors were from +0.157 m to +1.668 m for weights (Pg = 1

nsg
; Pr =

1
nsr

). On the other hand,

for (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
), the DX position errors were from −0.077 m to +0.883 m. It can

be observed that the positioning accuracy along the X-axis improved by about 45% in the
case of using weights (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) in relation to the DX results determined when

weights (Pg = 1
nsg

; Pr =
1

nsr
) were used.
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The DY position errors were from −0.745 m to +0.812 m for (Pg = 1
nsg

; Pr = 1
nsr

)

weighing. In turn, for (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
), the DY position errors were from −0.081 m to

+0.754 m. It can be observed that the positioning accuracy along the Y-axis improved by
about 82% in the case of using (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) in relation to the DY results determined

for weights (Pg = 1
nsg

; Pr =
1

nsr
).

The DZ position errors ranged from −2.021 m to −0.228 m for (Pg = 1
nsg

; Pr =
1

nsr
).

On the other hand, for (Pg = 1
Cl2

g
; Pg = 1

Cl2
r
) weighing, the position errors were −1.604 m to

+0.295 m. It is worth noting that the positioning accuracy along the Z-axis improved by
over 59% when (Pg = 1

Cl2
g
; Pg = 1

Cl2
r
) weighting was used in relation to the DZ results

determined for the (Pg = 1
nsg

; Pr =
1

nsr
) weighing process.

The aircraft positioning results obtained during the research using the PPP method
for the GPS and GLONASS solutions showed the high quality and accuracy of the moving
object’s determined coordinates. The presented research method significantly improved
the accuracy of PPP GPS and PPP GLONASS positioning in relation to the RTK solution.
The obtained research results showed that the applied computational scheme of the math-
ematical model fits well in the modern trend of scientific research on the application of
the PPP method in air navigation, as in other works [6–34]. That is important, because the
developed computational algorithm improved the performance of position determination
and, at the same time, the accuracy of PPP positioning, as in works [6–34]. It should be
mentioned that the research problem of improving the performance of the PPP method
in air navigation is a current and extremely interesting topic; hence, there have been a
large number of research papers [6–34] undertaken by scientists worldwide. The topic
should be constantly developed in the aviation industry, especially in Poland, which needs
modern solutions in implementing GNSS systems in aviation. The use of PPP measurement
technology in the positioning of aircrafts can accelerate research on the determination of
the quality of GNSS satellite positioning in aviation, especially the positioning accuracy
parameter. The submitted research work shows that modern navigation solutions in Polish
aviation are needed and require implementation.

7. Conclusions

The paper presented the results of research on the application of a new research
method for improving the performance of computing aircraft coordinates from GPS and
GLONASS solutions for the PPP measurement technique. The paper addressed the problem
of improving GPS and GLONASS positioning accuracy in the PPP method by developing a
new computational algorithm based on a linear combination of individual GNSS solutions,
i.e., GPS and GLONASS. The algorithm used a weighted mean model between the XYZ
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geocentric coordinates from the GPS and GLONASS. The mathematical relationship was
based on the determination of six linear coefficients (a, b, c, d, e, f ), which linked the XYZ
position coordinate readings together. The whole computational scheme was solved
by the weighted mean model, taking into account different measurement weights. The
measurement weights were a function of the number of GPS and GLONASS satellites and,
also, as the inverse of the square of the mean error. Moreover, the whole algorithm was
tested on GPS and GLONASS kinematic data from an airborne experiment carried out
with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system
GPS/GLONASS receiver was placed on-board the aircraft, which made it possible to record
the GNSS observations, which were then used to calculate the aircraft’s position in CSRS-
PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were
used in the developed optimization algorithm and implemented in the Scilab programming
language. The accuracy of the presented research method was checked and verified with the
results obtained from the RTK-OTF solution. Moreover, the proposed solution’s accuracy
was better by 11–87% for the model with the weighting scheme as a function of the inverse
of the square of the mean error. The performance of the algorithm was also tested for results
from another navigation software, i.e., RTKLIB. In this case, the algorithm’s accuracy for the
improvement of PPP positioning was better by 45–82% for the model with the weighting
scheme as a function of the inverse of the square of the mean error. The presented method’s
effectiveness was relatively high and could be used to improve the performance of GPS
and GLONASS in PPP positioning method for air navigation.
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