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Abstract: Hydrogen purification is an important part of hydrogen energy utilization. This study
aimed to perform hydrogen purification of multi-component gas (H2/CO2/CH4/CO/N2 = 0.79/0.17/
0.021/0.012/0.007) by one-column vacuum pressure swing adsorption (VPSA) and pressure swing
adsorption (PSA). AC5-KS was selected as the adsorbent for hydrogen purification due to its greater
adsorption capacity compared to R2030. Furthermore, VPSA and PSA 10-step cycle models were
established to simulate the hydrogen purification process using the Aspen Adsorption platform. The
simulation results showed that the hydrogen purification performance of VPSA is better than that of
PSA on AC5-KS adsorbent. The effects of feeding time and purging time on hydrogen purity and
recovery were also discussed. Results showed that feeding time has a negative effect on hydrogen
purity and a positive effect on hydrogen recovery, while purging time has a positive effect on hy-
drogen purity and a negative effect on hydrogen recovery. By using an artificial neural network
(ANN), the relationship between the inputs (feeding time and purging time) and outputs (hydrogen
purity and recovery) was established. Based on the ANN, the interior point method was applied to
optimize hydrogen purification performance. Considering two optimization cases, the optimized
feeding time and purging time were obtained. The optimization results showed that the maximum
hydrogen recovery reached 88.65% when the feeding time was 223 s and the purging time was 96 s.
The maximum hydrogen purity reached 99.33% when the feeding time was 100 s and the purging
time was 45 s.

Keywords: hydrogen purification; pressure swing adsorption; vacuum; activated carbon; heat and
mass transfer; optimization

1. Introduction

Hydrogen is the secondary energy source with the most potential [1]. Compared with
traditional fossil fuels, hydrogen has the advantages of zero pollution and widely available
sources, and is recognized as the most important energy vector [2,3]. Moreover, hydrogen
energy is expected to account for 90% of energy consumption in 2080 [4]. At present, most
hydrogen is produced by natural gas and steam methane reforming (SMR) [5,6]. However,
the SMR process releases a gas mixture containing H2, CH4, CO2, N2, and CO [7]. There
are many works on the separation of two-component gases; which include H2/CO2 [8],
H2/CH4, and H2/CO [9]. Park et al. used the above three gas mixtures to carry out
breakthrough experiments and adsorption kinetic characteristics analysis [10]. In this study,
the SMR gas mixture was used in a VPSA system for hydrogen purification.

Currently, pressure swing adsorption (PSA) hydrogen purification technology is used
by more than 85% of hydrogen production companies worldwide [11]. PSA is the basis
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of vacuum pressure swing adsorption (VPSA). VPSA has higher efficiency and produc-
tivity than PSA [12]. The VPSA cycle contains many operation variables [13,14] that
need to be used for parametric study and performance optimization. Yang et al. car-
ried out an experimental and theoretical study on the separation of a binary gas mixture
(H2/CO2 = 0.50/0.50) by PSA [13] in which the effects of the P/F ratio, co-current depres-
surization, feed rate and pressure, bed repressurization, and pore diffusivity were explored.
Malek et al. established a six-bed pressure swing adsorption model and found that the
product purity decreases relatively quickly as the cycle time increases and the working
pressure decreases [14]. Ling et al. studied the effects of the valve constant, step time, flow
rate, and bed geometry on hydrogen purification performance. The results showed that
the optimizer maximized hydrogen recovery when the pressure and hydrogen purity met
the requirements [15]. It was found that co-current depressurization was beneficial to CO2
purity and capture rate, and that increasing the number of pressure equalization steps
would increase CO2 purity, but reduce productivity [16]. Qasem et al. found that longer
beds and larger adsorbent particle sizes had better VPSA purification performance [17]. A
multi-component hydrogen mixture (H2/CO2/CO/N2/Ar = 0.88/0.02/0.03/0.06/0.01)
was used for breakthrough and PSA experiments of activated carbon beds or activated
carbon/zeolite LiX layered beds. The experimental results showed that the purification per-
formance of four-bed PSA is better than that of two-bed PSA [18]. Brea et al. used UTSA-16
and BPL activated carbon adsorbent to purify hydrogen from SMR gas mixture [19]. The
performance of HKUST-1, ZIF-8, and UTSA-16 extrudates for separating carbon dioxide
from a binary hydrogen-containing gas mixture were compared. UTSA-16 showed the
best biohydrogen purification performance [20]. Lopes et al. used a single adsorption bed
and a five-step cycle to conduct a rapid vacuum PSA (RVPSA) experiment. According
to the simulation, in the RVPSA experiment, the hydrogen recovery reached 61.8%, and
the purity was greater than 99.99% [21]. The COMSOL platform was used to simulate
the breakthrough curves of the gas mixtures on activated carbon [22] and zeolite 5A [23],
and the effects of adsorption pressure, gas velocity, and gas composition on hydrogen
purification performance were studied. Based on the Aspen Adsorption platform, Cu-BTC
was used for PSA cycle simulation and parametric study [24]. The results showed that the
increase in adsorption pressure, the shortening of the feeding time, and the decrease of the
feed flow rate increased the hydrogen purity, but reduced the recovery and productivity.
The PSA process is accompanied by a thermal effect. The heat released during the gas
adsorption process causes the temperature to rise, which causes the adsorption capacity
of the adsorbent to decrease, thereby affecting the hydrogen purification performance
and reducing the system efficiency. The temperature control device should be used ac-
cording to the characteristics of the PSA system to improve the overall efficiency. The
adsorption bed size also has an impact on the energy consumption of the PSA process, as
the reduction of the bed size increases the energy consumption [25]. Some optimization
methods have been used in PSA, such as sequential quadratic programming and the single
discretization method; however, these methods are complex and require time-consuming
calculations [26,27]. Multiple artificial intelligence models have been applied to predict
the performance of PSA cycles, and research results showed that the deep learning model
has the best predictive effect [28]. Dual- and tri-objective optimizations were applied to a
four-bed, eight-step PSA model to produce hydrogen from an SMR gas mixture [29].

In this study, the hydrogen purification of multi-component gas (H2/CO2/CH4/CO/N2
= 0.79/0.17/0.021/0.012/0.007) is performed by one-column VPSA and PSA. The adsorp-
tion capacity of AC5-KS and R2030 adsorbents are compared [30]. Furthermore, 10-step
cycle VPSA and PSA models are established to simulate the hydrogen purification perfor-
mance using the Aspen Adsorption platform. In addition, parametric studies of the VPSA
hydrogen purification performance are carried out based on the feeding time and purging
time. Finally, the optimal options are proposed to get the highest purity and recovery, and
the optimized feeding time and purging time are obtained.
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Based on our previous work [31], this study was carried out with some novelties.
AC5-KS is selected as the adsorbent for hydrogen purification due to its greater adsorption
capacity compared with that of R2030. VPSA is also compared with PSA for the AC5-KS
adsorbent. A parametric study of purge time is also carried out. Based on an ANN, the
interior point method is applied to optimize the cycle.

2. Heat and Mass Transfer and Adsorption Model

A heat and mass transfer model includes mass, energy, and momentum conservation
equations, and an adsorption model includes adsorption isotherms and an adsorption
kinetic model. The established model contains the following assumptions: (1) this model
is considered as an axially dispersed plug-flow, (2) radial concentration and temperature
gradients are ignored, (3) energy conservation equations include gas and solid phase
conservations, and (4) the gas mixture follows the ideal gas equation of state [32].

The multi-component gas follows mass conservation when it is adsorbed in the
adsorption bed. When the gas molar concentration is used to express the mass conservation
of each gas component in the adsorbent bed, it can be expressed as follows:

εb
∂ci
∂t

+
∂
(
vgci

)
∂z

= DLεb
∂2ci
∂z2 − ρp(1 − εb)

∂ni
∂t

, i = 1, . . . , N (1)

Momentum conservation is followed when multi-component gas is adsorbed in an
adsorption bed. The fluid flow in porous media can be expressed by the Ergun equation:
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Dual energy equations of the adsorption bed are adopted for gas and solid phase:
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The energy balance for the wall of the adsorption bed is expressed as follows:
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)
R2
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in

(5)

The Langmuir model is the simplest and most commonly used adsorption isotherm
model for predicting the adsorption equilibrium of gas or liquid [33]. It is based on the
adsorption kinetic principle and assumes that the gas adsorption rate on the surface of the
adsorbent is equal to the desorption rate. In this work, multi-component gas was applied.
Competitive adsorption exists among gases, so the Langmuir model could be corrected to
the extended Langmuir model. The extended Langmuir equation was used to express the
adsorption isotherms of each gas component, and the equation is as follows:

n∗
i =

ns
i bi pi

1 + ∑N
j=1 bj pj

, i = 1, . . . , N (6)

In this expression, pi = yi p, ns
i = k1i + k2iT, and bi = k3iexp(k4i/T). The adsorption

kinetics are expressed by the linear driving force (LDF) model; the formula is as follows:

∂ni
∂t

= wi(n∗
i − ni), i = 1, . . . , N (7)



Energies 2021, 14, 2450 4 of 14

The multi-component gas follows the ideal gas equation of state. The following
parameters can be calculated using the ideal gas equation of state:

ci =
yi p
RT

, i = 1, . . . , N; ρg = ∑N
i=1 Mici; cg =

ρg

M
(8)

Hydrogen purity, recovery, and productivity are usually regarded as performance
indicators for hydrogen purification. According to the characteristics of the 10-step VPSA
cycle, the expressions of hydrogen purity, recovery, and productivity are as follows:

PurH2 = 100
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0 cH2 vz

∣∣∣z=Ldt

∑N
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∫ tfeed
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3. Model Parameters and Validation
3.1. Adsorption Isotherms of AC5-KS and R2030

Table 1 shows the adsorption isotherm parameters and isosteric heats of adsorption on
AC5-KS and R2030. The extended Langmuir model parameters were fitted from experiment
data from [30] through Matlab. Table 2 shows characteristics of the adsorbents AC5-KS
and R2030, and of the adsorption bed [30,34].

Table 1. Adsorption isotherm parameters and isosteric heats of adsorption for AC5-KS and R2030 [30].

Components k1i (mol/kg) k2i × 102 (mol/kg/K) k3i × 105 (1/bar) k4i (K) ∆Hi (kJ/mol)

AC5-KS - - - - -
CO 5.416 −0.4595 5.94 2359 23.23
CO2 13.78 −1.635 4.733 2735 28.02
H2 −7.892 3.259 0.9998 2300 7.26
N2 0.4764 1.085 2.098 2560 18.27

CH4 6.217 −0.4504 1.88 2931 23.18
R2030 - - - - -

CO 6.225 −1.27 35.66 2142 19.100
CO2 13.94 −2.316 35.46 2195 27.870
H2 −6.792 2.551 1.083 2438 3.192
N2 0.000005328 0.9999 1.048 2800 11.834

CH4 6.973 −0.7784 21.86 2132 17.652

The specific surface areas of R2030 and AC5-KS are 700.3 m2/g and 971 m2/g [30].
The operating conditions of adsorption process [35] are listed in Table 3. The adsorption
isotherms are presented in Figure 1, which shows that the extended Langmuir model
exhibits great adaptability to fit adsorption equilibrium data of different gases.
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Figure 1. Adsorption isotherms of H2 (a), CO2 (b), N2 (c), CH4 (d), and CO (e) on R2030 and AC5-KS. Symbols: Experimental
data from [30]. Lines: Fitting with the extended Langmuir model of the AC5-KS (—) and of the R2030 (- - -).
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Table 2. Characteristics of adsorbents and adsorption bed [30,34].

Adsorbents AC5-KS R2030 Adsorption Bed Value

Adsorbent density, ρp (kg/m3) 786 874 Internal bed radius, Rin (m) 0.021
Solid density, ρs (kg/m3) 2110 2162 Bed length, L (m) 0.2456

Particle porosity, εp 0.627 0.60 Bed porosity, εb 0.404
Particle specific heat, cps (J/kg/K) 1046 880 Wall density, ρw (kg/m3) 7870

Particle radius, Rp (m) 0.00145 0.00117 Wall specific heat, cpw (J/kg/K) 142
Gas phase thermal conductivity, KLg (W/m/K) 0.1083 0.1083 Wall thermal conductivity, Kw (W/m/K) 400.9
Solid phase thermal conductivity, KLs (W/m/K) 20.58 20.58 Heat transfer coefficient, hin (W/m2/K) 55

Heat transfer coefficient, hgs (W/m2/K) 130 130 Heat transfer coefficient, hout (W/m2/K) 50

Table 3. Operating conditions used in the adsorption process [35].

Mixture Composition Adsorption
Pressure (bar)

Feed
Temperature (K)

Feed Flow Rate
(298 K, 1 bar) (m3s−1) Initial Gas Ambient

Temperature (K)

N2/CO/CO2/CH4/H2 =
0.007/0.012/0.021/0.23/0.73 5 323 5 × 10−5 He 303

3.2. Breakthrough Curves Validation of AC5-KS and R2030 Adsorption Beds

The molar fraction simulated results of the five-component mixture in AC5-KS and
R2030 are shown in Figure 2, which agree well with experiment results. From Figure 2, it
can be observed that the breakthrough time of each component was different. Hydrogen
was slightly adsorbed and reached the breakthrough point rapidly. Nitrogen was the first
gas to break through the adsorption bed, followed by carbon monoxide, and methane and
carbon dioxide were the last to break through the adsorption bed. The main reason is that
the adsorption performance of different gases is not the same. The adsorption capacity of
AC5-KS and R2030 adsorbents for each gas component is as follows: CO2 > CH4 > CO > N2
> H2. In the adsorption process, the weak adsorbate is desorbed from the adsorption bed
and reintegrated into the gas flow, so an apparent peak appears in the breakthrough curve.
As shown in Figure 2, adsorbate in AC5-KS breakthroughs the adsorption bed slower than
that in R2030, and the breakthrough curve’s peak in AC5-KS is lower than that in R2030.
This means that AC5-KS can adsorb more carbon dioxide, methane, carbon monoxide,
nitrogen, and hydrogen than R2030. Except for H2, CO2 is the most abundant component
in the mixture, and while H2 is slightly adsorbed, CO2 is adsorbed much more. Thus, in
this case, the adsorption amount of CO2 was chosen as an indicator of the adsorbent’s
adsorption capacity. When the adsorption pressure was 5 bar and the temperature was
303–323 K, AC5-KS adsorbed 17.80–25.75% more CO2 than R2030.

When the gas is adsorbed, the temperature of the adsorption bed will increase, and
when the gas is desorbed, its temperature will drop. However, due to the heat transfer
between the adsorption bed and the environment, the temperature of the adsorption bed
will eventually drop to the initial value. The temperature peak in R2030 was lower than
that in AC5-KS, which is mainly because the adsorption heat and amount in R2030 were
smaller than those in AC5-KS.
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3.3. VPSA and PSA Cycle Validation and Comparison in AC5-KS

The 10-step cycle VPSA and PSA models were established for hydrogen purification.
Usually, the PSA process includes feed (FEED), depressurizing equalization (ED), blow
down (BLOW), purge (PURGE), pressurizing equalization (EP), and pressurization (PRESS).
A 10-step cycle means that pressure needs to equalize six times: three times for pressurizing
equalization drop and three times for pressurizing equalization press. Figure 3a is the
VPSA flow diagram. As shown in Figure 3b, the vacuum was applied in the pressure drop
and purge step to reach the low pressure of 0.5 bar. In the feed step, the gas mixture was
fed through VF1, B1, and VP1 to obtain pure hydrogen. In order to realize pressurizing
equalization, valves VF1, VW1, and VP1 were closed, valve VU1 was opened, and the
gas diffused from B1 to B2 or B2 to B1 to balance the pressure. For the depressurization
step, valves VP1, VF1, and VU1 were closed, valve VW1 was opened, and the gas in the
adsorption bed flowed out from the outlet WASTE, resulting in a pressure drop in the
adsorption bed. For the purge step, the gas in B1 flowed into the adsorption bed, valves
VP1, VF1, and VU1 remained closed, and the gas came out from WASTE to recycle the
adsorption bed. For the pressurization step, valves VP1, VU1, and VW1 were closed and
valve VF1 was opened. The gas flowed from FEED through VF1 to the adsorption bed,
which increased the gas pressure in the adsorption bed.
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The operating conditions for the VPSA cycles are presented in Table 4. The PSA had
the same operating conditions as the VPSA, except that the low pressure for the PSA was
1 bar. The VPSA cycle simulation results were in good agreement with the experimental
data. The hydrogen purity was 99.18%, and the hydrogen recovery was 81.12%.

Table 4. Operating conditions used in VPSA cycles.

Cycle A0 A1 A2 A3 A4 B0 B1 B2 B3 B4 C0 C1 C2 C3 C4

tFeed (s) 101 101 101 101 101 151 151 151 151 151 201 201 201 201 201
tPurge (s) 40 70 100 130 160 40 70 100 130 160 40 70 100 130 160

Feed temperature: 303 K, Ambient temperature: 303 K, Flow rate: 5 × 10−5 m3/s (298 K 1 bar)

phigh = 5 bar, plow = 0.5 bar, pinter = 3.875 bar, tED1 = tED2 = tED3 = tEP3 = tEP2 = tEP1 = 16 s, tBlow down = 201 s, tPress = 21 s

In Figure 4, can be seen that the hydrogen molar fraction in the VPSA cycle was higher
than that in the PSA cycle, which means that a higher hydrogen purity was obtained
when VPSA was applied. Therefore, activated carbon AC5-KS, which is found to have
a larger capacity in Section 3.2, and the VPSA data were used for the optimization of
hydrogen purification.
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4. Parametric Study and Optimization of Hydrogen Purification
4.1. Parametric Study of Hydrogen Purification

The effect of feeding time is shown in Figure 5. When feeding time increased from
101 s to 151 s, hydrogen purity decreased by 0.53–1.07% and hydrogen recovery increased
by 8.66–15.30%; when feeding time increased from 151 s to 201 s, hydrogen purity decreased
by 0.82–1.71% and hydrogen recovery increased by 3.77–6.64%. When the VPSA system
reaches the cyclic steady state, extending the feeding time increases the amount of impure
gas at the outlet, which leads to a decrease in hydrogen purity, but because the amount of
hydrogen fed into the adsorption bed increases, the hydrogen recovery increases. When
the purging time is long and the feeding time increases, the hydrogen purity change rate
reduces, and the hydrogen recovery change rate increases.
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The effect of purging time is shown in Figure 5. When purging time increased from
40 s to 70 s, hydrogen purity increased by 0.44–1.35% and hydrogen recovery decreased by
2.61–6.57%; when purging time increased from 70 s to 100 s, hydrogen purity increased
by 0.21–0.76% and hydrogen recovery decreased by 2.91–7.19%. With the increase of the
purging time, the molar fraction of hydrogen in the purge step increases, as more impure
gas is desorbed out of the adsorbent. Thus, as the adsorbent is recycling, the molar fraction
of those impurities decreases, so as purging time increases, hydrogen purity increases.
However, recovery drops down, which can be also explained by Equations (9) and (10).
When the feeding time is short and the purging time increases, the hydrogen purity change
rate reduces, and the hydrogen recovery change rate increases.

4.2. Optimization of Hydrogen Purification Performance Based on Interior Point Method

Studies have shown that ANN models can predict hydrogen purification performance
well [36]. The ANN method uses simple mapping to approximate and implement a certain
function of complex mapping. It has a highly parallel structure and information processing
capability, strong self-learning and information memory, strong fault tolerance, and strong
nonlinearity approximation ability. The feed-forward neural network is typical and widely
used in ANNs. In this paper, a three-layer feed-forward neural network was established to
predict the hydrogen purification performance of the VPSA cycle.

In this work, the input units of the neural network were the feeding time and purging
time, and the output units were hydrogen purity and recovery. The input–output samples
were from Figure 5. For a three-layer BP neural network, if the number of neurons in the
hidden layer is sufficiently large, any continuous function defined on a non-unbounded
region can be approximated [37]. However, if there are too many hidden layer neurons, the
generalization ability of the network is poor; if there are too few hidden layer neurons, it is
difficult for the network to complete the sample learning [38]. To get the reference number
of hidden layer neurons, at first, an empirical formula was used as follows [39]:

Nhid = 2Nin + 1 (12)

where Nin is the number of input layer neurons and Nhid is the number of hidden layer
neurons. Using this trial and error method, we decided to use 5 neurons in hidden layer.

Figure 6 shows the result of regression. The values of R are close to 1; the closer R is to
1, the higher the accuracy is. The result shows that the ANN model is validated and can be
used to predict VPSA cycle performance.
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In this work, two cases were considered for optimization, one for higher purity, and
the other for higher recovery. The objective function could be hydrogen purity PurH2 or
hydrogen recovery RecH2 , which can be calculated by Equations (9) and (10). One was
chosen as the objective function, and the other was assigned a lower bound value. The
lower bound value for hydrogen purity was 0.98, and the lower bound value for hydrogen
recovery was 0.80. There were two design variables: tfeed is feeding time and tpurge is
purging time, which have their ranges. The optimization problems can be described as the
following two cases:

min. − PurH2

s.t. : 101 ≤ tfeed ≤ 201, 40 ≤ tpurge ≤ 100, RecH2 ≥ 80%
(13)

min. − RecH2

s.t. : 101 ≤ tfeed ≤ 201, 40 ≤ tpurge ≤ 100, PurH2 ≥ 98%
(14)

The interior point method in the fmincon function was used to optimize hydrogen
purification performance. Table 5 shows the optimization results based on the ANN model
and Aspen model. Max PurH2 means the maximum value of hydrogen purity, and Max
RecH2 means the maximum value of hydrogen recovery. Table 5 shows that the ANN
prediction results and Aspen conformation results are very close. Thus, the ANN model
trained by Aspen data can predict VPSA cycle performance well. The optimal hydrogen
recovery reached 88.65% when feeding time was set to 223 s and purging time was set to 96
s. In another case, the optimal hydrogen purity reached 99.33% when feeding time was set
to 100 s and purging time was set to 45 s. Compared with our previous work, it was found
that using the interior point method combined with the ANN was better than sequential
quadratic programming when optimizing hydrogen purification performance.
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Table 5. Optimization results with ANN method and Aspen confirmation.

Optimization Target Optimal Parameters
tfeed(s), tpurge(s)

ANN Prediction
PurH2 , RecH2

Aspen Confirmation
PurH2 , RecH2

Max RecH2 223, 96 0.9800, 0.8865 0.9791, 0.8844
Max PurH2 100, 45 0.9933, 0.8000 0.9929, 0.8009

5. Conclusions

Both R2030 and AC5-KS adsorbents, and both atmospheric and vacuum pressure
swing adsorption (VPSA) cycles, were analyzed and compared. The VPSA cycle using
AC5-KS adsorbent was optimized by the interior point method and ANN model. The
following conclusions were obtained.

• AC5-KS had greater adsorption capability than R2030 when purifying hydrogen from
multi-component gas (H2/CO2/CH4/CO/N2 = 0.79/0.17/0.021/0.012/0.007). AC5-
KS could adsorb 17.80–25.75% more CO2 than R2030 when the adsorption pressure
was 5 bar and the temperature was 303–323 K.

• The hydrogen purification performance of VPSA was better than that of PSA. There-
fore, the parameters of the VPSA system for hydrogen purification was further studied
and optimized.

• Results show that feeding time has a negative effect on hydrogen purity and has
a positive effect on hydrogen recovery, while purging time has a positive effect on
hydrogen purity and a negative effect on hydrogen recovery.

• The performance of hydrogen purification in the VPSA process was optimized by the
interior point method combined with an ANN model. The optimal results show that
the maximum hydrogen recovery reached 88.65% when feeding time was set to 223 s
and purging time was set to 96 s, and the maximum hydrogen purity reached 99.33%
when feeding time was set to 100 s and purging time was set to 45 s.

In future work, parametric studies can include more operating conditions and adsor-
bent characteristics. These parameters can be used as the input layer of artificial neural
networks. Multi-objective optimization methods can be used to optimize both hydrogen
purity and recovery.
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Nomenclature

ap specific surface area of adsorbent, m2/m3

bi Langmuir constant, 1/bar
ci molar concentration of component i, mol/m3

cg molar concentration of mixture, mol/m3

Cpai specific heat capacity of adsorbed phase, J/mol/K
Cpg specific gas phase heat capacity at constant pressure, J/mol/K
cps specific heat capacity of adsorbent, J/kg/K
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cpw specific heat capacity of column wall, J/kg/K
DL axial dispersion coefficient, W/m2/K
hgs heat transfer coefficient between gas and solid phase, W/m2/K
hin heat transfer coefficient between gas phase and bed wall, W/m2/K
hout heat transfer coefficient between wall and environment, W/m2/K
∆Hi heat of adsorption of component i, J/mol
k1i parameter of ni

s in Equation (6), mol/kg
k2i parameter of ni

s in Equation (6), mol/kg/K
k3i parameter of bi in Equation (6), 1/bar
k4i parameter of bi in Equation (6), K
KLg axial gas phase thermal conductivity, W/m/K
KLs axial solid phase thermal conductivity, W/m/K
Kw axial thermal conductivity for wall, W/m/K
M molecular weight of mixture, kg/mol
Mi molecular weight of component i, kg/mol
ni

* equilibrium adsorption amount, mol/kg
ni dynamic adsorption amount of ith component, mol/kg
ni

s saturation adsorption amount of ith component, mol/kg
p pressure, bar
R universal gas constant, 8.314 J/mol/K
Rin inner radius of adsorption column, m
Rout outer radius of adsorption column, m
Rp particle radius, m
t time, s
T temperature of adsorption bed, K
Tg gas phase temperature, K
Ts solid phase temperature, K
Tw wall temperature, K
Tf ambient temperature, K
wi mass transfer coefficient of component i, 1/s
yi molar fraction of component i in gas phase
z axial position in adsorbent bed, m
Greek symbols
εb bed porosity
νg superficial velocity, m/s
µ dynamic viscosity, N·s/m2

ρg gas phase density, kg/m3

ρp adsorbent density, kg/m3

ρs solid phase density, kg/m3

ρw wall density, kg/m3
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