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Abstract: The need for deploying fast-charging stations for electric vehicles (EVs) is becoming
essential in recent years. This need is justified by the increasing charging demand and supported by
new charging technologies making EV chargers more efficient. In this paper, we provide a survey
on EV fast-charging models and introduce a data-driven approach with an optimization model for
deploying EV fast-chargers for both electric vehicles and heavy trucks traveling through a network
of suburban highways. This deployment aims at satisfying EV charging demands while respecting
the limits imposed by the electric grid. We also consider the availability of local photovoltaic (PV)
farm and integrate its produced power to the proposed charging network. Finally, through a case
study on Paris-Saclay area, we provide locations for EV charging stations and analyze the benefits
of integrating PV power at different prices, production costs and charging capacities. The obtained
results also suggest potential enhancements to the charging network in order to accommodate the
increasing charging demand for EVs in the future.

Keywords: electric vehicles; charging; optimization; mobility; electric grid; territory; PV energy

1. Introduction

Electric vehicles (EVs) have witnessed a quickening development in recent years
[1]. By improving their battery capacities and recharging technologies, EVs can circulate
for long distances and be recharged in short periods of time (e.g., a Tesla Roadster can
travel up to 340 km while recharging its battery takes no more than 20 min using fast-
charging technology [2]). This development is also accompanied by some challenges,
since it can reshape the future of electric mobility and affect people’s lives on both social
and economic levels [3]. These challenges include: the efficient distribution of charging
facilities; the need for new legislative proposals to accelerate EVs integration to mobility
systems; the development of efficient frameworks for modeling and calculating EV energy
consumption and measuring their potential impacts on existing electric grids [4]; and the
availability of optimized operational plans that can guarantee the quality of provided
services and comply to people’s needs [5].

With the increasing interest in using EVs in future transportation systems, the need
for deploying fast-charging infrastructures, especially on highways and high-speed roads,
becomes essential. To fulfill this need and determine its required investments, it is im-
portant to anticipate EV future charging demands and requirements and optimize their
facility location taking into account the different mobility flows (i.e., small vehicles, heavy
trucks, etc.) and the existing electric grid [6]. In addition, integrating new sources of
renewable energy (e.g., photovoltaic power) into power systems represents one promising
opportunity to fulfill the increasing demand for energy related to EV charging. Together,
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vehicle electrification and renewable energy generation can help in providing a sustainable
transportation service while reducing emissions of the road transportation sector [7].

In this paper, we start by providing a comprehensive classification of the related
literature and its different models and solution approaches. Then, we develop a data-
driven modeling approach along with an optimization model to solve the problem of
positioning fast charging stations for EVs on a highway network. The proposed model
takes into account EV charging demands based on the different mobility flows, including
those for small vehicles and heavy trucks, as well as the constraints imposed by the available
electric grid. In addition, the model considers the availability of a local photovoltaic farm
and integrates its generated power to the grid to supply EV charging. More precisely,
the deployment of EV charging stations and the number of fast-chargers is based on the
charging demand in the first place. Then, this deployment must respect the restrictions of
the electric grid as well as the availability of parking places at charging stations. For this
purpose, we provide a mathematical formulation for the problem aiming at maximizing
the covered charging demand (i.e., for both small electric vehicles and heavy trucks) while
respecting investment budget limits and the available capacities provided by the electric
grid. The underlying optimization problem corresponds to the well-known facility location
problem where our facilities are the charging stations [8]. Through a case study on Paris-
Saclay area, we provide locations for deploying EV charging stations as well as the number
of fast chargers to be installed at each charging station. We also analyze the benefits of PV
power integration and its productions costs and different charging capacities.

The paper is organized as follows. In Section 2, we provide a thorough classification of
related literature. In Section 3, we describe the considered problem. The proposed modeling
approach is then presented in Section 4. In Section 5, we present the computational study
we have conducted. Finally, in Section 6, the key findings are highlighted and research
perspectives are suggested.

2. Literature Review

Research on locating EV charging stations can be classified into three main cate-
gories: transportation-based, electric-based and hybrid approaches [9]. Transportation-based
approaches focus on the transportation perspective when designing EV charging networks
(i.e., mobility flows and passengers demand), while ignoring power system constraints [10].
Their main drawback is that they need to be readjusted according to the existing power
system conditions. On the other hand, electric-based approaches aim to locate EV charging
stations in power systems such that their capacity and security requirements are satisfied
and the investment costs needed to upgrade them are minimized [11] (i.e., transportation
constraints are ignored). These approaches also need to be readjusted according to the exist-
ing mobility conditions. Since both transportation and electric perspectives are important
in our case, we develop a hybrid approach in this paper, where both types of constraints
are considered [12]. We thus propose to deploy EV charging stations while taking into
account both the actual transportation and power system conditions in the studied area.

From a transportation perspective, according to Zhang [13], there are three main
planning methodologies for locating EV charging stations: nodal demand-based, simulation-
based and traffic flow-based planning. In nodal demand-based planning, charging stations
are located to satisfy EV charging demands that appear at some geographical locations.
The main drawback is that some transportation network issues (e.g., traffic congestion)
are ignored in this methodology. On the other hand, simulation-based and traffic flow-
based planning estimate EV charging demands based on real-life transportation surveys
and origin-destination traffic flow (OD matrices), respectively. However, simulating EV
charging demands is computationally expensive, while EV driving-range limit is not often
considered when planning traffic flow-based methods. Relatively, EV charging demands
can be represented in different ways [9]. In point-based representations, EV charging
demands are concentrated at certain points. In addition, polygon-based representations
consider dividing the studied area into smaller sub-areas (e.g., polygons) where each
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charging demand is represented by the centroid of the sub-area where it is located. The
spatial attributes of the demand are thus ignored. Unlike the first two cases, network-
based representations do not only consider the spatial attributes of the demand; they also
reflect the existing highway network as well as the different travel patterns of travelers
in the studied area (commute, transit, etc.). In this latter case, charging demands can
appear during long-distance or short-distance trips (referred to as inter-city and intra-city,
respectively). As such, we use a traffic flow-based methodology in order to estimate EV
charging demands where a network-based approach is used to represent them. This choice
is made as it complies with our problem description and takes into account the availability
of traffic flow data for the studied area.

From an electric perspective, different types of chargers have been considered in the
literature: Level 1 chargers (referred to as slow-charging, 110V/15A), Level 2 chargers (220V/15-
30A) and Level 3 chargers (referred to as fast-charging, 400-500V/50A) (Table 1). These chargers
have different features and requirements, such as power capacities, charging times, cabling
and outlets, etc. Some studies considered only one type of chargers, while other studies
integrated different types of chargers into their models. For example, in [9], the distribution
of Level 2 charging stations among territory segments is considered, based on the potential
use of EVs and the different parking behaviors. In [12], the focus is on selecting locations
for fast-charging stations (Level 3) through a highway network for long-distance trips in
the US. On the other hand, in [6], the deployment of both Level 2 and Level 3 chargers is
considered to fulfil EV charging requirements while respecting the specifications of the
electric grid. In this paper, we consider the deployment of Level 3 chargers as the aim is to
satisfy charging demands on a highway network where EVs need to be recharged at short
charging times.

Table 1. Charging levels for EVs.

Chrg. Level Input V/A Max. Power Chrg. Time
Level 1 120VAC-20A (16A usable) 1.92 kW (1-phase) 10–13 h
Level 2 400VAC-80A (64A usable) 25.6 kW (3-phase) 1–3 h
Level 3 600VAC-200A (160A usable) 96 kW (3-phase) 0.2–0.58 h

Many decision models have been proposed in the literature for modeling the problem
of deploying EV charging stations. These models represent the mathematical formulation
used to model the underlying operational problem. For example, some studies suggested
to use a Facility Location Model (FLM) [9] or a set-covering model [14], while others in-
troduced a Flow Refueling Location Model (FRLM) or one of its variants (e.g., Multi-period
FRLM, Capacitated FRLM, etc.) as they provide a better coverage of mobility flows [10].
These different formulations share many features and constraints but can also vary depend-
ing on the problem setting and its application context. Different objectives can be assigned
to these models, such as minimizing investment costs [15], maximizing covered mobility
flows or the number recharged EVs [6] and minimizing CO2 emissions [16]. The choice of
which objective to use depends on the optimization problem itself and its overall aim.

Regarding modeling approaches, some studies assumed charging demands to be
aggregated at certain nodes and aim to cover these demands by locating charging stations
within a feasible distance or travel time of these nodes (node-based modeling) (e.g., EV
charging demand in residential areas) [17]. Some other studies located charging demands
through arcs linking different nodes (arc-based modeling) (e.g., charging demand through
a highway linking two residential areas) [10]. Furthermore, more researchers are recently
interested in modeling charging demands using sequences of nodes and arcs (path-based
modeling) [18]. This combined approach has the advantage of modeling traffic flows where
the aim is to locate charging stations so that the captured flow is maximized. In this paper,
we consider a facility location model (FLM) where a path-based modeling approach is used in
order to maximize the charging demand covered by the proposed network of fast-charging
stations. Once the decision model is built, most studies suggested solving it using a mathe-
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matical solver (e.g., Cplex, Gurobi or other solvers) so that the optimal deployment of EV
charging stations can be found. However, due to the potential complexity of the underlying
optimization problem, some studies developed more sophisticated methods for solving
these models, such as Branch-and-Bound (B&B) [13], Dynamic Programming (DA) [15]
and Genetic Algorithms (GA) [14]. In this paper, we provide a data-driven framework
in which we solve the proposed model using Cplex mathematical solver and analyze the
obtained results. This is due to the limited number of variables in our model which allows
finding solutions in feasible computational times (Section 4). Solving such models requires
input data regarding different mobility and electric aspects. These datasets can either be
based on real-life case studies (real datasets, as in our case) or on datasets that are gen-
erated randomly or using a simulation approach (simulated datasets). A comprehensive
summary of the reviewed literature is presented in Table 2.

Finally, many recent studies focus on using green energy sources for supplying EV
charging networks. In [19], a review of photovoltaic energy systems along with their
sizing strategies, optimization techniques and cost evaluation methodologies is provided.
In addition, the main indices for analyzing energy costs and pricing schemes is presented.
A relevant application of these indices can be found in [20], where the investment of a
photovoltaic energy system was evaluated through a case study in three different cities
in Turkey. To model production uncertainty in photovoltaic energy systems, a scenario-
based approach to evaluate the potential use of photovoltaic energy for charging EVs was
introduced by Good [21]. The results of testing the proposed approach on two Scandinavian
cities demonstrate that PV energy yield can cover EV demands in most of the considered
scenarios. The necessity of stochastic approaches to deal with uncertainty in PV production
was also confirmed by Thomas [22]. This was done by evaluating a set of case studies using
a linear programming framework that takes into account PV uncertainty and stochastic
EV driving schedules. In this paper, we consider the availability of local photovoltaic (PV)
power station, study the use of its produced energy for supplying EV chargers and analyze
their potential benefits as well as its different prices and production costs.
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Table 2. Literature classification.

Reference Discipline Modeling Appr. Planning Appr. Model Pattern Demand Repr. Objective EV Charger Solution Appr. Data

Acha [17] hybrid node-based demand TCOPF intra-city point min. cost L2 CPLEX simulated

Xi [23] hybrid node-based flow FLM inter-city polygon max. EV charged L1 and L2 CPLEX simulated

Capar [10] transport arc-based flow FRLM both polygon max. flow covered NA CPLEX simulated

MirHassani [18] hybrid path-based flow FRLM intra-city network min. cost NA CPLEX simulated

Chung [24] hybrid path-based flow M-FRLM inter-city network max. flow covered L3 B&B CPLEX real

Riemann [25] hybrid node-based flow FRLM intra-city point max. flow covered L2 CPLEX simulated

Huang [26] hybrid node-based demand FC-GS both polygon min. cost L2 and L3 CPLEX real

Guo [11] hybrid node-based flow MOPEC intra-city network max. benefit L3 Gurobi simulated

Efthymiou [27] transport node-based demand NA intra-city point min. No. of chargers NA GA real

Yi [15] hybrid path-based demand FLM intra-city point min. cost L2 and L3 DA CPLEX real

Sun [6] hybrid path-based flow FLM intra-city point max. flow covered L2 and L3 CPLEX real

He [28] hybrid path-based flow FRLM intra-city network max. flow covered L2 and L3 CPLEX simulated

Zhang [13] hybrid node-based simulation CFRLM inter-city point min. cost L3 B&B CPLEX simulated

Liu [16] hybrid node-based demand FLM intra-city network min. emissions L2 PSOL real

He [12] hybrid path-based flow FRLM inter-city network max. EV charged L3 MATLAB real

Csiszar [9] hybrid node-based simulation FLM inter-city polygon max. flow covered L2 Bi-level CSL real

Chen [29] transport node-based demand FLM inter-city point min. cost L2 Bi-level CSL simulated

Vazifeh [14] transport node-based demand set-covering intra-city polygon min. No. of stations L2 Genetic algo. real

Our paper hybrid path-based flow FLP both network max. flow covered L3 CPLEX real
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3. Problem Description

We introduce the considered operational problem and the modeling approach used
to solve it using Paris-Saclay area as our case study. Paris-Saclay is an agglomeration
community located at the south of Paris. As it is geographically close to the capital and
to main economical activities, Paris-Saclay is traversed by many major mobility axes
(e.g., A6, A10 and N20 in Figure 1). These axes are used by personal vehicles and heavy
trucks for short-distance trips (e.g., commuting) as well as international transit flows. In
addition, a large photovoltaic (PV) farm is to be installed at Marcoussis district (next to
the intersection of “A10” and “N104” highways, Figure 1) with 76,500 PV panels and up
to 24 GWh annual power production. The PV power will be raised to the voltage of the
electric grid so that it can be injected into the distribution network. Thus, this farm has the
potential of increasing charging power at nearby EV charging stations while reducing their
reliance on the existing distribution network.

Figure 1. Paris-Saclay—major axes.

Based on these specifications, we provide a formal definition for the problem of
locating EV fast-charging stations at Paris-Saclay area. First, we consider two types of fast
chargers, one for charging small electric vehicles and the other for charging heavy electric
trucks. In addition, We consider a set of potential charging locations S = I ∪ V , where
I includes locations that are powered by the distribution network and V includes those
that are powered by a local PV station. Every charging location s ∈ S is defined by a cost
(cs) indicating required investment to use this location as a charging station, and it has a
maximum electric capacity and a max/min number of fast chargers that can be installed
for small vehicles as well as heavy trucks (maxa

s , mina
s , maxb

s and minb
s , respectively). The

investment cost (cs) includes land cost (i.e., the cost required for purchasing the land where
charging stations are to be installed) and cabling expenses (i.e., the extra expenses required
to establish charging stations and connect them to the grid). For charging locations that are
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powered by the distribution network, the maximum electric capacity is fixed and depends
on the distribution network itself. We refer to this fixed capacity as qs (∀ s ∈ I). On the
other hand, this capacity cannot be fixed for charging locations that are powered by PV
energy as it highly depends on PV energy production which is stochastic (i.e., it depends
on cloudiness index, season and solar irradiation). We thus refer to this varying electric
capacity as λs (∀ s ∈ V). To build mobility paths, we consider a set of coupling nodes N
representing different highway intersections. As such, we consider a set of paths P that link
sequences of coupling nodes. Every path p ∈ P is defined by its charging demands da

p and
db

p, representing the number of electric vehicles and trucks, respectively, to be recharged
per day. The set of charging locations that are associated with each path p is denoted as Sp.
The numbers of electric vehicles and trucks that can be recharged using a fast charger per
day are defined as βa and βb respectively. Similarly, the amounts of electric power needed
to recharge an electric vehicle or an electric truck using a fast charger are defined as qa and
qb respectively. Moreover, installing a fast charger for electric vehicles or trucks implies
extra costs (i.e., charger costs). These costs are defined as ca and cb, respectively. For the
sake of simplicity, we assume all electric vehicles to be homogeneous, and, thus, their
recharging time and energy are the same. We consider the same assumption for electric
trucks (notations and variables are summarized in Table 3).

Table 3. Notations and variables.

Indices:
S Set of potential charging locations.
I Set of charging locations powered by distribution network.
V Set of charging locations powered by local PV station.
N Set of coupling nodes.
P Set of mobility paths.
Sp Set of charging locations associated with path p.

Parameters:
βa, βb Number of vehicles and trucks that can be recharged by a charger per day respec-

tively.
qa, qb Electric power needed to recharge a vehicle and a truck respectively.
ca, cb Cost of installing a charger for vehicles and trucks respectively.

For every charging location s ∈ S :
cs Investment required to use location s as a charging station.

qs, λs Maximum electric capacity at location s ∈ I and V respectively.
mina

s , maxa
s Min. and max. number of vehicle chargers that can be installed at location s.

minb
s , maxb

s Min. and max. number of truck chargers that can be installed at location s.
For every path p ∈ P :

da
p Charging demand for vehicles at path p.

db
p Charging demand for trucks at path p.

Decision variables:

xs =

{
1 if a charging station is deployed at location s
0 otherwise

yp Demand coverage rate at path p, yp ∈ [0, 1].
zs

a Number of vehicle chargers to be installed at location s.
zs

b Number of truck chargers to be installed at location s.

Hence, the choice of deploying a charging station at location s ∈ S and the number of
fast chargers to be installed is based on the recharging demand through the path where s is
located. However, the number of chargers to be installed is limited by the available electric
capacity and the availability of places and parking slots at location s. As such, we build a
model to optimize this deployment by maximizing the satisfied demand while respecting
the different constraints.
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4. Modeling Framework

We introduce our data-driven modeling framework using Paris-Saclay area as a case
study. This framework consists of three stages: (i) modeling EV charging demand and net-
work (Section 4.1); (ii) modeling PV power production and analyzing its different scenarios
(Section 4.2); and (iii) providing an optimization model to find the final distribution of EV
fast-chargers (Section 4.3).

4.1. Modeling Demand and Charging Network

To build the charging network and its associated demand, we start by defining a set
of coupling nodes. For this purpose, we consider the intersections of major axes to be the
set of coupling nodes (Figure 2). This is because mobility flows usually change after an
intersection where new vehicles can join or leave the different flows. We thus define 17
coupling nodes n1, n2, . . . , n17 covering the highway network at Paris-Saclay (Figure 2a).

(a) Coupling nodes (b) Mobility axes
Figure 2. Modeling mobility paths.

Mobility paths are then constructed using sequences of these nodes. For example, a
potential path “N20” is defined by the sequence of nodes (n1, n15, n17 and n14) (Figure 2b).
However, we need to consider the actual mobility flows (i.e., the actual number of vehicles
traveling at each potential path) in order to define paths more precisely. We therefor
consider the flow records provided by DiRIF (Road Direction in Ile-de-France region).
Based on traffic counters located at different points in Paris-Saclay area, these records
indicate the number of vehicles and heavy trucks traversing each road segment on hourly
and daily basis. These records are thus used to define paths with homogeneous EV flows.
If we take the “N20” example, we observe that its mobility flow changes after crossing
coupling node n15. This is due to other, relatively smaller, departmental roads that intersect
with it at this point. Another example can be found at the road segment linking nodes
n2 and n3 where both “A10” and “N118” highways overlap (Figure 2b). Traffic flow is
combined at this segment and thus need to be considered separately of the rest of the flow
on both highways. Following the same reasoning, we define nine different paths based on
the actual mobility flows at Paris-Saclay area (Table 4). Each path is associated with vehicle
and truck flows and their charging demands.

In addition, we consider the actual EV charging stations proposed by the Paris-
Saclay Agglomeration Community (CPS). Some of these stations are currently operational
and some are projected over the next few years (Figure 3). The choice of considering
these stations can be justified by the fact that their locations are already considered to
be suitable by the local authorities. However, not all these locations are suitable for our
case. This is because many of them require long detours by EVs traveling on highways
in order to be accessed. Another reason is that not all these stations are intended for
domestic or commercial charging (i.e., Level 2 and Level 3 chargers), and, thus, not designed
to accommodate EV fast-charger (e.g., electric and spacing restrictions). As such, we filter
this initial set of potential charging locations and we select those that are located at feasible
distances from major axes (e.g., ≤10 km) where the installation of Level 3 chargers is
possible for both vehicles and trucks.

http://www.dir.ile-de-france.developpement-durable.gouv.fr/donnees-routieres-r467.html
https://opendata.paris-saclay.com/explore/dataset/bornes-de-recharge-electrique/table/
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Table 4. Defined mobility paths.

Path Axes n Nodes s Nodes

p1 A10 n3, n5 s0, s11, s91
p2 A10, A126 n5, n13, n6, n7 s58, s18, s51, s93, s87, s95
p3 A6 n9, n8, n7 s23, s48
p4 N118, A10 n2, n3, n12 s81
p5 N118 n12, n4, n10 s94, s88, s62, s13, s28, s84
p6 A126 n11, n4, n5, n8 s35, s79, s3, s77, s33
p7 N20 n1, n15 s25, s89, s90, s86
p8 N20 n15, n17, n14 s83, s92
p9 N104 n1, n2 s96, s97

Figure 3. EV charging network-CPS charging points.

We also consider the actual service stations that are located on highways in order
to enhance the charging network. This is because service stations can be among the first
to adapt fast-charging facilities as soon as EV charging demand increases. The final set
of potential charging locations is then selected based on the initial set of CPS charging
locations and the set of highway service stations at Paris-Saclay (Figure 4). These potential
locations are powered by the distribution network. Costs, electric grid specifications and
the maximum number of fast chargers that can be installed at each location are fixed based
on their real data (data of charging stations, land costs and electric network specifications
are provided by Paris-Saclay Agglomeration Community (CPS)). Charging locations are
then associated to paths so that the model can decide which locations to use and how many
chargers to install at each location (see Figure 5 for an overview of considered paths and
their potential charging locations).

https://opendata.paris-saclay.com/explore/dataset/bornes-de-recharge-electrique/table/
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Figure 4. EV charging network: Selected charging points.

Figure 5. Paris-Saclay: Mobility paths and charging points.

4.2. Modeling PV Power Production

As introduced above, we consider the availability of a photovoltaic farm that can be
integrated to the charging network (Figure 5). Unlike power provided by the distribution
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grid, PV power production is stochastic as it depends on varying factors. According to
Diop [30], the generated power of a PV farm at instant t can be calculated as follows:

P(t) = (1− µ(t))× I(t)× δ× η (1)

where µ(t) is the cloudiness index at instant t (%), I(t) is the irradiation at instant t (W/m2),
δ is the surface of PV panels (m2) and η is the efficiency that corresponds to the electric
quantity produced as a percentage of the received PV power. We assume that this power is
used for charging EVs. This generated power highly depends on irradiation and cloudiness
index as they differ during seasons and day hours. For example, PV production is maximal
in a sunny day during Summer at noon. The actual values of irradiation at different
seasons and day hours are fixed, and thus known in advance (we use data provided
by the Photovoltaic Geographical Information System (PVGIS) to build the irradiation
matrix for Paris-Saclay area). Based on real irradiation values, we estimate the amount
of PV energy that can be produced by the considered PV farm during a sunny day at
each month of the year (Figure 6). We observe that up to 90 MWh/day can be generated
during summer months when irradiation is at its highest, while this production drops
to approximately 30 MW/day during winter. However, these values can be seen as the
maximal daily production (i.e., calculated in fully-sunny days), and thus will be reduced
due to cloudiness effects.

Figure 6. Maximal daily PV production per month.

Unlike the irradiation, the cloudiness index (µ(t)) cannot be fixed in advance as
it depends on weather conditions (i.e., µ(t) is stochastic). We thus need to model this
uncertainty using a set of scenarios and calculate their probability distribution. We consider
four different day profiles:

• Fully-Sunny (where µ(t) is between 0% and 25%)
• Partially-Cloudy (where µ(t) is between 25% and 50%)
• Mostly-Cloudy (where µ(t) is between 50% and 75%)
• Fully-Cloudy (where µ(t) is between 75% and 100%)

In addition, we divide the day into eight time periods (i.e., (12AM,3AM), (3AM,6AM),
.. , (9PM,12AM)). These day periods help in capturing different mobility patterns (e.g.,
period (6AM-9AM) is a peak period when people commute, etc.). We also consider the
four seasons (e.g., the probability of having a fully-sunny day is higher in summer than in
winter, Table 5). As a result, we build our set of scenarios, where every scenario is defined
by a day-profile, a day-period and a season (i.e., 128 different scenarios in total). To calculate

https://ec.europa.eu/jrc/en/pvgis?fbclid=IwAR2cUNLKgc7jUqz_dEvxPUK0uW9c_3JktWnM-U3tdBuRp8MeTY7Sa4OeIpk
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their probabilities, we use weather measurements of the last 10 years and we cluster them
according to day profiles, periods and seasons using K-Means approach [22] (weather
data for Paris-Orly airport, including cloudiness index, are provided by Météo France).
We chose K-Means clustering as it classifies weather measurements into clusters with the
nearest mean. An initial set of four cluster centres was selected. The four clusters for each
time step (day-period abd season) represent four possible scenarios for the cloudiness
index µ(t) (i.e., fully-sunny, partially-cloudy, mostly-cloudy and fully-cloudy). Weather
measurements for each time step are thus assigned to one of the four clusters with the
closest centroid. Centroid values are then updated by calculating the average of the objects
population in each cluster. The discrete probability for each scenario is then calculated
based on the population of objects allocated to each cluster (i.e., centroid) for every time
step resulting in a probability matrix. The resulting probability matrix is then used by our
optimization model to anticipate the amount of power that can be generated by the PV
farm at the different scenarios.

Table 5. Cloudiness index-Paris Orly (2010–2020).

Winter Spring Summer Autumn

Fully-Sunny 16.9% 27.2% 35.6% 22.9%
Partially-Cloudy 6.7% 9.1% 15.6% 9.1%
Mostly-Cloudy 11.4% 17.6% 21.5% 11.6%
Fully-Cloudy 65.1% 46.1% 27.3% 56.2%

4.3. Mathematical Modeling

To formulate the optimization model, we introduce a binary variable xs, which is
equal to 1 if a charging station is deployed at location s ∈ S and 0 otherwise. In addition,
we introduce a continuous variable yp ∈ [0, 1] representing the demand coverage rate
on path p and two integer variables, za

s and zb
s , representing the number of fast chargers

to be installed at charging location s ∈ S for electric vehicles and trucks, respectively.
The optimization model is thus formulated as follows:

Max Z = ∑
p∈P

(da
p + db

p) yp (2)

s.t.

∑
s∈S

csxs + caza
s + cbzb

s ≤ C (3)

∑
p∈P

(da
p + db

p) yp ≥ Q (4)

∑
s∈Sp

βaza
s ≥ da

p ∀ p ∈ P (5)

∑
s∈Sp

βbzb
s ≥ db

p ∀ p ∈ P (6)

mina
s ≤ za

s ≤ maxa
s ∀ s ∈ S (7)

minb
s ≤ zb

s ≤ maxb
s ∀ s ∈ S (8)

https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32
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qaza
s + qbzb

s ≤ qs ∀ s ∈ I (9)

qaza
s + qbzb

s ≤ λs ∀ s ∈ V (10)

i f yp = 0 =⇒ za
s + zb

s = 0 ∀ s ∈ Sp, ∀ p ∈ P (11)

i f za
s + zb

s > 0 =⇒ xs = 1 ∀ s ∈ S (12)

xs ∈ {0, 1}, yp ∈ [0, 1] ∀ s ∈ S , ∀ p ∈ P (13)

za
s , zb

s , qs, λs, ∈ N ∀ s ∈ S (14)

da
p, db

p, βa, βb, qa, qb ∈ N ∀ p ∈ P (15)

mina
s , maxa

s , minb
s , maxb

s ∈ N ∀ s ∈ S (16)

cs, ca, cb ∈ R ∀ s ∈ S (17)

The objective function (2) aims at maximizing the total covered demand for charging
both vehicles and trucks. Regarding model constraints, constraint (3) ensures that the
sum of location costs and chargers installation costs does not exceed total budget limit
of the project. Constraint (4) states that a minimum coverage of the overall charging
demand must be ensured (e.g., at least 30% of the overall demand must be covered).
Constraints (5) and (6) ensure that charging demands, for vehicles and trucks respectively,
are covered by the proposed charging stations at each mobility path. Constraints (7) and
(8) state that the number of fast chargers to be installed must respect the specified limits at
each charging location. These limits are defined using space constraints at each location
(i.e., number of possible parking slots). Constraint (9) ensures that the electric power
required to operate the installed chargers at a specific charging location does not exceed the
available electric capacity provided by the distribution network at that location. Similarly,
constraint (10) ensures that the electric power needed at charging locations, where a PV
station is located nearby, must not exceed the actual PV energy production provided by
that station. Constraints (11) and (12) are used to link the different variables of the model
and ensure the coherence of their values. Finally, constraints (13)–(17) define domains for
the introduced variables and parameters.

Note that constraints (11) and (12) are formulated as implications, and thus need to be
linearized. Using standard linearization techniques, we express them by one or two linear
inequalities as follows:

za
s + zb

s + Myp ≤ M ∀ s ∈ Sp, ∀ p ∈ P (18)

za
s + zb

s −Myp ≤ −M ∀ s ∈ Sp, ∀ p ∈ P (19)

xs −M(za
s + zb

s ) > −M ∀ s ∈ S (20)

where (18) and (19) are the linearizations of constraint (11), (20) is the linearization of
constraints (12) and M is a big integer number.
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5. Results and Discussion

In this section, we present the results of our case study including the proposed deploy-
ment of fast-chargers with different levels of EV charging demand (Section 5.1). We then
analyze the benefits of PV power integration in different scenarios and varying charging
capacities (Section 5.2). Finally, we study the different energy prices and production costs
and we analyze their impact on the profitability of the project (Section 5.3).

5.1. Deploying EV Fast-Chargers

We tested the proposed model using Paris-Saclay data in order to obtain the complete
deployment of EV charging stations in the area. The different elements of the model were
implemented in Python 2.7.8. CPLEX 12.6.3 solver was used for solving the optimization
model. Instances of Paris-Saclay were tested on a core i7-8650U machine with 16 GB of
RAM. Regarding test parameters, we assume that a fast charger requires 50 kW (≈20 min)
for recharging an electric vehicle and 250 kW (≈30 min) for recharging an electric truck.
This means that a fast charger can recharge up to 36 vehicles or 24 trucks per day. The
costs of installing a fast charger for vehicles and trucks are estimated at 12 k€ and 15 k€,
respectively (charger materials and installation costs are estimated based on their actual
prices in the French market and adapted according to their equivalents in the international
market KELWATT). The actual charging demand (i.e., the number of EVs to be recharged)
was then calculated by considering 5% of the overall daily flow on each of the defined
paths. This percentage is fixed based on EV sales share of the French automobile market in
2020 [31]. The model was also tested with higher rates as presented below in this section.
Test parameters are summarized in Table 6.

Table 6. Test parameters.

Parameter Value Parameter Value

ca 12 k€ cb 15 k€
βa 36 vehicles βb 24 trucks
qa 50 kW qb 250 kW

The obtained results indicate the number of chargers to be installed at each selected
location (za

s and zb
s in Figure 7). It can be observed that the number of vehicle chargers

is relatively higher than that for trucks at all selected locations. This can be explained
by the higher number of vehicles to be recharged at different paths. Another important
observation is that the proposed deployment can cover up to 33.1% of the overall EV
charging demand. More precisely, some paths are fully-covered (e.g., “A126” with 100%),
some are partially-covered (e.g., “A10” and “N118” with 38% and 64%, respectively)
and some others are poorly-covered (e.g., “A6” and “N104” with only 3.8% and 8.3%,
respectively). Low coverage rates at some paths are due to the small number of charging
locations and the limited electric capacity at these locations. It is also due to the relatively-
high charging demand at these paths. To overcome this issue, new charging stations need
to be installed and charging power and the grid capacity need to be increased at these
poorly-covered paths.

https://www.kelwatt.fr/guide/conso/voiture-electrique/borne
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Figure 7. Number of chargers per station.

As mentioned above, we consider a charging demand that represents 5% of the overall
flow which is partially-covered in proposed solution (33.1%). It is also considered that the
number of chargers that can be installed is limited by the capacity of the electric grid and
the availability of parking places at each location (constraints 7, 8, 9 and 10 in Section 4.3).
We relax these constraints in the following in order to obtain a deployment that can fully
satisfy higher rates of charging demand (i.e., 100% coverage rate). We thus increase the
percentage of vehicles and trucks that need to be recharged and we observe the number
of fast chargers needed to cover this increasing demand. In Table 7, the different rates
of charging demand are given in the first column. The overall demand represented by
the number of vehicles and trucks to be recharged is then given (“Demand per hour“). The
number of fast chargers to be installed with their associated coverage rates and installation
costs are indicated in columns “No. of Chargers”, “Covered“ and “Cost (€)”, respectively.
Compared to the original case (given in the first row in bold), we observe that satisfying
full charging demands requires relatively increasing the number of chargers installed even
when demand rate is conserved (i.e., 5%). With more EVs expected to circulate in the near
future, satisfying higher rates of charging demand can become difficult as the number
of chargers required along with their installation costs might not be affordable due to
economic and logistics reasons (10% and 20% rates in Table 7). These observations also
justify the need to enhance the capacity of the electric grid (e.g., PV power integration)
to accommodate this increase. In addition, new advances in fast-charging technology
can help in reducing EV charging times, thus requiring fewer chargers in the network.
Although all EVs might not need to be partially or fully charged in the considered area,
these observations can help in anticipating the future needs of EV charging which include
improving the existing charging facilities, installing new ones or suggesting improvements
to the electric grid. As such, this analysis can be further enhanced by taking into account
the variable charging EV demands during day hours. Analyzing this variability can be
essential in determining the required enhancements to both the charging network and the
electric grid. However, this requires extending the proposed approach by developing a
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simulation framework in order to anticipate this variable demand at different mobility
patterns and day hours (commuting, morning and evening flows, weekend flows, etc.).

Table 7. Cost and demand coverage with different EV rates .

Rate Demand per Hour No. of Chargers Covered Cost (€) Extra (€)
No. of Vehicles No. of Trucks Vehicle Truck

5% 1985 218 255 72 31.1% 4032K -
5% 1985 218 683 111 100% 9753 K 5721 K
10% 3970 436 1456 218 100% 19,914 K 15,882 K
20% 7940 872 2650 436 100% 38,380 K 34,348 K

5.2. Analyzing PV Power Integration

The considered PV farm is located at the intersection of “A10” and “N104” which are
poorly-covered paths (Figure 7). Thus, integrating its produced energy has the potential of
enhancing the coverage rates at these paths as more chargers can be installed. To analyze
this potential benefit, we quantify the amount of energy that can be produced at different
scenarios and we calculate the demand coverage rate at each case. We then compare the
obtained rates to the case where no PV production is considered (Table 8). By averaging
10 different runs of the model, we observe that coverage rates can increase from 3.8% and
8.3% to 47.1% and 74.2%m respectively during summer where PV production is maximal.
This positive impact can also be witnessed on the overall coverage rate with approximately
7–11% increase in spring and summer scenarios. As a result, locally-produced PV energy
can help in enhancing the quality of EV charging service especially along paths where
the demand is high and electric grid capacity is limited. The proposed approach can thus
be extended in order to accommodate other PV farms that can be installed at the area.
This potential can be higher if these farms are to be installed at paths where EV charging
demands are high (e.g., next to A6 highway).

Table 8. Demand coverage with PV production per season.

No PV PV-Wint. PV-Spr. PV-Sum. PV-Aut.

Overall 33.1% 37.3% 40.9% 44.4% 39.1%
A10 3.8% 19.9% 33.5% 47.1% 27.1%

N104 8.3% 29.9% 53.3% 74.2% 39.8%

Furthermore, we tested the proposed model with different charging powers. We thus
increased the charging power of chargers by up to 1.5, 2 and 4 times and analyzed its
impact on covered charging demand. Increasing charging power of chargers can be
similar to increasing the number of chargers from energy consumption and charging time
perspectives. However, using two chargers requires higher installation and land cost as we
need two parking places, where we only need one parking place in the case of using one,
more powerful, charger. We observe that, as chargers become more powerful, the demand
coverage percentage increases (up to 40.9%, 52.5% and 71.1%, respectively, Figure 8). This
also highlights the importance of increasing the capacity of these chargers and integrating
new PV farms to accommodate this increase. However, it is important to mention that
PV farms rely on their annual energy production more than power peaks and profiles
throughout a day or a season. A high power consumption (charging) combined with a high
PV energy production can thus create flow fluctuations to the grid unless they are well
synchronized. In addition, connecting PV farms to the electric grid means that charging
EVs can heavily rely on the grid in winter months when PV power production is not
sufficient [32]. This issue opens the door for using other renewable sources, such as wind
turbines and geothermal power plants, in order to decrease the reliance on the electric
grid during winter. Although injecting multiple renewable energy sources to the electric
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grid can provide many benefits, it can also lead to increased financial expenses. As such,
more research is being directed towards developing new hybrid systems where different
renewable sources of energy are integrated to the grid. Such systems aim at providing
well-optimized solutions in terms of both energy and expenses so that customer demands
are satisfied at feasible production costs.

Figure 8. Demand coverage with different charging powers.

5.3. Analyzing Energy Prices and Production Costs

We studied three different investment indices to evaluate the profitability of integrat-
ing PV energy. First, Levelized Cost of Energy (LCOE) represents the average net cost of
electricity generation for the planned PV farm over its lifetime [19]. It can be calculated as
the ratio between lifetime costs and energy production, as follows:

LCOE =
∑n

t=1
It + Mt + Ft

(1 + r)t

∑n
t=1

Et

(1 + r)t

(21)

where It, Mt and Ft are the investment, maintenance and fuel costs in year t, Et is the
electricity generation in year t and r is the discount rate. Second, Return on Investment (ROI)
is used to evaluate the efficiency of an investment by measuring its amount of return [20].
It is calculated by dividing project net income to its total cost, as follows:

ROI =
Project return (income− cost)

Project cost
× 100 (22)

Third, Payback Period (PP) represents the amount of time needed to recover the cost
of an investment. It can be calculated by dividing overall project investment to its annual
profit, as follows:

PP =
Investment amount

Annual pro f it
(23)

The project of installing the PV farm at Paris-Saclay area requires an investment of
20 M€. The investment costs (It) appear only in the first year as they represent the cost
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of installing PV panels and EV fast-chargers (estimated at 870 K€ based on the number
of chargers proposed by the model, ca and cb in Table 6). Maintenance costs (Mt) of a PV
farm appear every three years and are estimated at 10% of the annual profit (National
Center of Photovoltaic Resources (CRPV)). Fuel costs (Ft) are ignored in this case and the
annual electricity generation (Et) is estimated at 24 GWh (i.e., we assume that all generated
PV power is used for charging EVs). Discount rate (r) is fixed at 5%. In addition, project
income is the difference between PV production cost (i.e., the calculated LCOE) and the
price of selling this energy for charging EVs. In France, the price of charging an EV using
a Tesla super-charger is 0.2 €/kWh. This price includes the cost of installing Tesla fast
chargers as well. Thus, the cost of generating a kilowatt at the PV farm (including the cost
of installing EV chargers) must be less than 0.2 € in order to have a positive income.

PV farms are often evaluated over a 20-year lifetime [20]. However, we calculated the
introduced indices on 10-, 15- and 20-year lifetimes (Table 9). The results show that net
cost of the generated PV energy (LCOE) is estimated at 0.11, 0.08 and 0.07 €/kWh over
different lifetime intervals. These values can be seen as the minimum cost required for
selling electricity at break-even prices so that project expenses can be recovered during
its lifetime. Relatively, the planned investment brings a positive return of 260% over a
20-year lifetime. This means that every 100 € of investment in the considered PV farm will
be returned as 260 € at the end of its lifetime. These positive ROI values justify the benefits
of using the locally-produced PV energy for supplying EV chargers. Regarding the refund
time of investment (PP), the results indicate the considered investment will be able to pay
itself back in approximately seven years, which is less than half of the project lifetime.

Table 9. PV energy-Cost analysis.

10 Years 15 Years 20 Years

Levelized Cost of Energy (LCOE) 0.11 0.08 0.07
Return on Investment (ROI) 148% 224% 260%

Payback Period (PP) 9.66 7.39 6.65

6. Conclusions

In this paper, a data-driven approach and an optimization model for the deployment of
EV charging stations through a network of highways is introduced. The model was tested
using a Cplex solver and a case study on Paris-Saclay area was performed. After selecting
optimal locations for charging stations, the results highlight the benefits of integrating
PV energy production on improving demand coverage rates. In addition, the economical
benefits of this integration were quantified (ROI = 260% over 20 years lifetime).

The main perspectives of this research can be summarized in two levels. On the
methodological level, the proposed approach can be extended to consider multiple renew-
able energy sources and integrate their power to the electric grid. Another interesting
research direction is to consider EV battery states and the possibility of storing energy ex-
cess at charging stations during low-demand periods, so that it can be used later to charge
EV at high-demand periods. This can lead to more realistic scenarios as both EV charging
demand and PV production vary in different seasons and hours of the day. In addition,
a stochastic programming approach can be developed for modeling uncertainty in PV
production and better estimating its different scenarios. On the analytical level, besides
analyzing the benefits of using PV energy for charging EVs, it is also important to study
the impacts of this integration on the electric grid in terms of its infrastructure, as well
as its effects on other sources of electric demands (e.g., transport, domestic, commerce,
etc.). Finally, anticipating future charging demands and capacities represents a key passage
for improving the obtained solution and adapting it to the future needs of EV charging
networks. We thus believe that this study helps in better understanding the potential
deployment of EV fast-charging stations in real-life applications and, thus, promoting more
research towards studying this rising trend in the future.

https://www.photovoltaique.info/fr/
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