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Abstract: The energy consumption problem has become a bottleneck hindering further development
of data centers. However, the heterogeneity of servers, hybrid cooling modes, and extra energy
caused by system state transitions increases the complexity of the energy optimization problem.
To deal with such challenges, in this paper, an Energy Aware Task Scheduling strategy (EATS)
utilizing marginal cost and task classification method is proposed that cooperatively improves the
energy efficiency of servers and cooling systems. An energy consumption model for servers, cooling
systems, and state transition is developed, and the energy optimization problem in data centers is
formulated. The concept of marginal cost is introduced to guide the task scheduling process. The
task classification method is incorporated with the idea of marginal cost to further improve resource
utilization and reduce the total energy consumption of data centers. Experiments are conducted
using real-world traces, and energy reduction results are compared. Results show that EATS achieves
more energy-savings of servers, cooling systems, state transition in comparison to the other two
techniques under a various number of servers, cooling modules and task arrival intensities. It is
validated that EATS is effective at reducing total energy consumption and improving the resource
utilization of data centers.

Keywords: data center; energy-aware; marginal cost; task scheduling; cooling system; task classification

1. Introduction

As crucial infrastructure, data centers have been exponentially developing with the
rapid innovations in cloud computing technology [1]. The data center provides immense
computing and storage resources for cloud users to meet their increasing demands. How-
ever, power-hungry and environmental footprint issues are impeding the further develop-
ment of data centers [2]. Recent statistics indicate that the data center’s power demands
will increase more than 66% over the period 2011–2035 [1]. The electricity consumed by
U.S. data centers was approximately 70 billion kilowatt-hours in 2014, accounting for
approximately 1.8% of the total electricity consumed in the U.S [3]. Besides, according
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to reports, the proportion of worldwide annual carbon emissions generated by data cen-
ters is 0.3% [4]. Rising energy consumption and carbon emissions in data centers are
the prominent problems limiting the further expansion of data centers. The huge energy
consumption and serious environmental problems of data centers have aroused exten-
sive academic research. Therefore, to solve these problems, it is important to develop an
effective energy-efficient strategy.

The energy consumption of data centers mainly comes from two components, infor-
mation technology (IT) systems and cooling systems [5]; the energy consumption of servers
is dominant among the IT devices (e.g., servers, network devices and security devices). Re-
cent studies show that servers occupy about 56% of total data center energy, as idle servers
still consume a vast amount of energy [6]. Thus, optimizing the high energy consumption
of servers is necessary. Apart from server power consumption, cooling systems are another
high energy consumer in data centers, which account for almost 30% of the data center’s
energy use [6]. Therefore, it is vital to reduce the energy consumption of cooling systems
as well.

To solve the huge energy consumption issue of data centers, many works propose
techniques to reduce the energy consumption by the IT systems and cooling systems. For
the energy optimization of servers, optimizing the task scheduling strategy based on an
energy consumption model of servers is an effective means. In addition, to optimize the
energy consumption of cooling systems, it is useful to control the cooling systems dynami-
cally according to the energy consumption model of cooling systems [6]. However, servers
and cooling systems are related in a data center—that is, cooling systems are responsible
for removing the heat generated by servers. Thus, optimizing the energy efficiency of
servers and cooling systems independently easily results in additional energy waste and
leads to a suboptimal solution [7]. Individually optimizing the energy efficiency of servers
may produce local hot spots. Solely considering the energy efficiency optimization of the
cooling system may lead to inadequate cooling in the data center. Therefore, it is necessary
to improve the energy efficiency of servers and cooling systems cooperatively.

There exist four challenges in the joint energy optimization of data centers. First,
to optimize the energy consumption of the IT systems and cooling systems cooperatively, it
is necessary to consider the different energy consumption behaviors of the various kinds of
IT devices and cooling systems, which increases the complexity of the optimization of the
data center’s energy consumption. The servers and cooling systems are treated as different
energy-consuming devices with respect to energy, as they usually have different energy use
behaviors according to task scheduling. Thus, it is difficult to evaluate the energy changes
of IT systems and cooling systems. Second, the workloads in the cloud often vary over time,
and the resource requirements, arrival rates and run times have large variations. This brings
challenges to the energy optimization. Therefore, it is necessary to classify tasks according
to their different characteristics. Third, to improve the resource utilization in data centers,
dynamic power management together with server consolidation can be used to reduce
power consumption. However, server consolidation and frequently switching system states
will cause extra energy costs and time delays. Improving the resource utilization without
leading to rising energy costs is challenging. Fourth, there are multiple cooling modes
accompanied by various cooling capacities and levels of cooling effectiveness. Finding out
how to apply numerous cooling modes collaboratively to maximize the energy efficiency
of cooling systems is another crucial problem.

To deal with the aforementioned challenges, an energy aware task scheduling (EATS)
strategy utilizing marginal cost and task classification is proposed in this paper, which aims
at maximizing the energy efficiency of servers and cooling systems, and reducing the energy
caused by state transitions; it also considers the heterogeneity of servers and workloads.

Herein, first, the joint energy consumption model of a data center, including servers,
cooling systems and the energy caused by system state transitions is developed, by which
hybrid cooling modes, including the outside air cooling mode and chilled water cooling
mode, are jointly applied, and the optimal cooling allocation between the two cooling
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modes is derived. Second, the concept of marginal cost is introduced to guide the task
scheduling. Servers and cooling systems are different energy-consuming devices with
different energy behaviors in the process of task scheduling. By using the concept of
marginal cost, the difficulty of cooperatively optimizing the energy of servers and cooling
systems due to the system heterogeneity can be solved. Third, marginal cost is incorporated
into the task classification method to further improve the resource utilization and reduce
the total energy consumption of data centers. Finally, for solving the data center energy
consumption minimization problem, an energy-aware scheduling strategy based on the
marginal cost and task classification method is provided. Experiments were conducted
utilizing two datasets (Google cluster data [8] and Alibaba cluster data [9]), and the
results indicate the validity of EATS for improving the energy efficiency of data centers in
comparison with other algorithms. With the scheduling strategy, a task will be allocated to
the most energy-efficient server resources and cooling system resources, so that the energy
consumption of data centers is reduced and the resource utilization is improved.

The major contributions of this paper are shown as follows:

(1) Jointly considering the energy optimization of servers and cooling systems, and the
system state transition cost. The total energy consumption model, including the
server model, the state transition energy model and the cooling system model, was
developed.

(2) A cooling model was developed which adopts two different cooling modes, and a
strategy for dynamically adjusting various cooling modes based on real-time workload
characteristics is proposed.

(3) The concept of marginal cost in data centers is introduced to guide the task scheduling
process. The task classification method is combined with marginal cost evaluation to
further improve resource utilization.

(4) An energy-aware task scheduling strategy using the marginal cost evaluation and the
task classification method is proposed to solve the energy minimization problem of
the data center and optimize the energy consumption caused by state switching.

The contents of each section are presented as follows. Section 2 introduces the related
work about the data center energy efficiency optimization techniques. Section 3 shows the
structure of a data center. The power models and energy minimization problem of the data
center are developed in Section 4. Section 5 introduces the task scheduling strategy for
solving the energy optimization problem. The experiment setup and experiment results
are discussed in Section 6. Finally, Section 7 summarizes the main content of the paper and
the future work.

2. Related Work
2.1. The Energy Optimization Techniques for IT Systems

There have been many works focusing on the optimization of IT system energy
efficiency in data centers.

In [10], a scheduling algorithm considering multi-sleep modes of servers was proposed
to minimize the energy consumption of servers while satisfying the QoS requirement. Ref-
erence [1] developed a joint energy consumption optimization scheme, taking into account
servers’ power, network power and workload migration cost; server heterogeneity was
considered. In [11], a two-tier VM placement algorithm, including a queuing structure and
a multi-objective virtual machine (VM) placement algorithm, was developed to improve
the resource utilization and energy efficiency of the IT systems, and various migration
techniques were discussed. A threshold-based dynamic algorithm DCABA was developed
in [12] to optimize the operation cost and the active server number. Both load balance and
server consolidation techniques were utilized to improve the effectiveness of the algorithm.

In [13], a harmony-inspired genetic task scheduling algorithm (HIGA) was proposed
to reduce the total makespan and energy consumption of servers in a data center. In [14],
the authors proposed a novel meta heuristic method to jointly optimize task scheduling
and machine placement in cloud data centers. In [15], Medara et al. proposed a workflow
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task scheduling algorithm with dynamic voltage and frequency scaling (DVFS), which
focuses on optimizing energy efficiency and reliability. In [16], the authors formulated a
mathematical model on the scheduling problem of optimizing energy under makespan
and reliability constraints on heterogeneous multiprocessor systems. In [17], Liu et al. for-
mulated a programming problem for minimizing the energy cost with the time constraint,
which focuses on searching for the optimization to the scheduling problem using the
Q-learning algorithm and reducing the long convergence time caused by a large amount
of training considering heterogeneous and large-scale data centers. In [18], Deng et al.
proposed a novel multi-objective optimization method that can jointly maximize the profit
of the distributed green data centers (DGDCs) provider and minimize the average task loss
possibility of tasks.

2.2. The Energy Optimization Techniques for Cooling Systems

A lot of research has also been done to improve the cooling energy efficiency in
data centers.

In [19], the energy optimization of the air-side economizer in the modular data center
was considered. An energy optimization method was proposed to decide on the optimal
supply air temperature settings for the cooling system. In [20], a deep reinforcement learn-
ing (DRL)-based cooling control algorithm was developed to achieve the cooling energy
savings of the data center. It is based on deep deterministic policy gradient (DDPG), which
includes an evaluation network to predict the energy cost and a policy network trained
to predict optimized control settings. In [21], the authors explain that the settings of free
cooling mode switchover temperature and cooling water approach temperature in free
cooling systems are typically fixed. To further optimize the cooling energy efficiency, a sys-
tematic model-based methodology is proposed to optimize the two kinds of temperature.
JCWM [22] is a joint cooling and workload management algorithm considering the thermal
effects of servers workloads and cooling systems to improve the cooling efficiency. In [23],
the authors focused on reducing the data center energy consumption by resolving the
characteristic of airflow and temperature distributions.

2.3. Joint Energy Optimization Techniques

However, solely optimizing the IT systems or cooling systems is still inefficient for
data center energy reduction. In the worst case, if the IT power is optimized through
excessive workload consolidation, cooling power may even increase due to more hot spots.
Therefore, in order to optimize the overall energy consumption of data centers, there have
been some works optimizing the IT systems and cooling systems together.

PowerTrade-d [24] aims to reduce the total power consumption of data centers by
trading-off the cooling power and idle power of servers. In this scheme, the cooling
environment in a data center is divided into cold zones, warm zones and hot zones;
a centralized workload distribution strategy is utilized in cold zones and a balanced
workload distribution strategy is utilized in warm zones. In [25], a real-time task scheduling
algorithm was proposed, called rTCS, which optimizes the energy efficiency of the data
centers by jointly considering the energy consumption of the servers and cooling systems.
The main difference between rTCS in [25] and the proposed strategy in this paper is the
use of marginal cost and a combination of marginal cost and task classification for further
energy efficiency improvement. In [7], a cross-layer algorithm JOINT was developed to
minimize the entire energy consumption of the data center by collaboratively optimizing
the chip layer, server layer and room layer. Reference [26] presents a deep learning
algorithm that provides a strategy to place the servers in a suitable location considering
the effect of power and temperature. DeepEE was proposed in [27], which introduces DRL
techniques to joint energy optimization of IT systems and cooling systems.

Differently from previous works, we optimize the IT and cooling systems for data
centers from a marginal cost perspective. The problem of optimizing IT and cooling power
consumption and server state transition costs is formalized and solved by our marginal
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energy approach. Moreover, improving the resource utilization is also one of our goals,
for which task classification is used and combined with our marginal energy method. Part
of the work was presented in the 8th International Workshop on Energy-Efficient Data
Centres (E2DC2020) at the Eleventh ACM International Conference on Future Energy
Systems (e-Energy’20), 22–26 June 2020, Virtual Event, Australia [28].

3. The Structure of a Data Center

In this section, the structure of the data center is introduced. The structure of our data
center mainly involves three parts (users, task processing modules, and cooling modules)
to support the users’ request scheduling.

(1) Users: Cloud users submit service requests from anywhere globally to the data center,
and the service requests mainly include web-applications, etc.

(2) Task processing modules: Serves as the interface between the data center infrastructure
and users, which requires the iteration of the following components to support the
energy-aware scheduling.

(a) Task observer: Observes the arriving tasks and conveys the information of tasks
to the recording component, energy monitor and classification controller.

(b) Energy monitor: Observes energy consumption caused by tasks, servers and cool-
ing systems, and provides this information to the real-time scheduler to calculate
the marginal energy of data centers and make energy-efficient task scheduling de-
cisions.

(c) Classification controller: It is responsible for getting a category label according to
the run times and end times of tasks predicted by the prediction controller.

(d) Real-time scheduler: Assigns tasks to servers and determines the server and
cooling resources for the allocated tasks. It also determines when servers are
powered on or powered off to satisfy the demand.

(e) Recording and prediction controller: Recording monitors the actual resource
usage and run times of the submitted tasks. Records the ID, type, run time,
category label and resource usage of historical tasks. Additionally, the historical
data of the resource usage and run time are applied to predict the run times of
other tasks in the future in the prediction controller.

(3) Cooling modules: Each cooling module includes independent servers and sub-
cooling systems.

(a) Servers: the underlying servers provide the hardware infrastructure for support-
ing virtualized resources to meet task demands.

(b) Cooling systems: it provides the heat dissipation function to dissipate the heat
generated by the server, and it operates in a hybrid cooling mode.

The structure of the data center is indicated in Figure 1. We assume that the data
center has N independent modules, called cooling modules [29]. Each cooling module
comprises independent information technology equipment and sub-cooling systems. The
cooling support of servers is provided by the sub-cooling systems of each module alone.

Assume that each module Ci(i ∈ [1, N]) consists of Mi(i ∈ [1, N]) servers. Each server
can be denoted by Sij(i ∈ [1, N], j ∈ [1, Mi]), which represents the jth server in the ith
module. The servers are heterogeneous and have different computing resources and power
efficiencies. The sub-cooling system in each module operates in hybrid-cooled modes,
consisting of the outside air cooling (oac) and chilled water cooling (cwc). The structure of
each cooling module is shown in Figure 2.

The task scheduling process is described as follows: when users submit the task to
the data center, the information of the arriving task will be observed by the task observer
and recorded by the recording part. Through analyzing the stored and new observed
information from the recording part, the run times of the task will be obtained through
the prediction controller that uses a machine learning method to predict the run times or
from the history data. Then with the obtained value of run time, the task will be classified
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and receive a category label based on the classification controller. The marginal energy
value will be calculated based on the energy monitor. Finally, the task is scheduled to a
suitable server and cooling module in real-time with the classified value and marginal
energy evaluation.

Figure 1. The structure of the data center.

Figure 2. The structure of the cooling module.

4. Power Consumption Models in the Data Center

In this section, the power consumption models in a data center are developed. We first
develop the power models consisting of servers, cooling systems and the state transition
model. Then, the energy consumption model of the data center is modeled, and the data
center energy minimization problem is formulated.

4.1. Workload and Server Power Consumption Model

Assume that each task can be denoted by ta(a ∈ 0, 1, 2, 3...). The run times and end
times of a task are represented by rta and eta , respectively. It can be concluded that based on
the historical data collected and analyzed in the recording and prediction controller, or us-
ing the machine learning techniques, the proximate run times of a task can be acquired [30].
Thus, rta can be obtained through the recording and prediction controller. Predictions of the
run time and end time of the task can be conducted in the prediction controller, and that is
not the primary research focus of this paper. Rcpu

ta
represents the CPU resource requirement

of tasks ta. Tasks submitted by cloud users to the data center will be sent to servers that



Energies 2021, 14, 2382 7 of 26

provide the hardware infrastructure and resources. Assume that RTcpu
sij and RAcpu

sij express
the total CPU resource capacity and available CPU resources at the current time of servers.
Thus, when tasks are scheduled to a server, the resource constraint Equation (1) should
be satisfied.

RAcpu
sij − Rcpu

ta
≥ 0, (1)

The power consumption of servers is related to the idle power and the current CPU
utilization of the servers. Based on [31], the power consumption of servers can be denoted
by Equation (2)

Pt
sij

=

0 rt
sij

= 0

Pidle
sij

+ (P f ull
sij − Pidle

sij
)× (2rt

sij
− (rt

sij
)

1.4
) rt

sij
6= 0

(2)

where rt
sij

represents the CPU resource utilization of the server Sij at the time slot t, and

rt
sij

= (1− RAcpu
sij )/RTcpu

sij . The idle power consumption of a server is denoted by Pidle
sij

,

and the peak power is represented by P f ull
sij . Assume that servers only have two operating

states, inactive and active. If the power consumption of a server is 0, the server is in an
inactive state; otherwise, the server is in an active state.

4.2. Power Consumption Models of Cooling Systems

In the data center, there are two common cooling systems: one is the outside air
cooling system; the other is the chilled water cooling system. We first introduce the two
cooling modes, and then develop a final cooling system model.

4.2.1. The Outside Air Cooling System

In this cooling mode, the energy used is mainly consumed by the blowers, which can
be approximated as a cubic function of the blower speed [32]. By referring to the basic
thermal transfer theory and the general fan laws, we can find that the power consumption
consumed by the outside air cooling (oac) system is a convex function of the server power
consumption and shown as follows [25]:

Pci ,oac = k(Psi ,oac)
3, k > 0 (3)

where the parameter k is proportional to the temperature difference between the outside
air temperature and the server exhausting air temperature. Psi ,oac represents the total
power consumption of the servers whose cooling function is supported by the outside air
cooling mode.

4.2.2. The Chilled Water Cooling System

The traditional chilled water cooling system mainly comprises chillers, cooling towers
and pumps. It is responsible for cooling the hot air extracted from the raised floor and
server inlet through the computer room air handler (CRAH) [33].

The power consumption calculation of the chiller water cooling is very complicated.
The typical chilled water cooling is usually described as follows based on a literature search
and example measurements [34]:

Pci ,cwc = Psi ,cwc/COPchiller, (4)

where Psi ,cwc represents the power consumption of all servers in the cooling module Ci
whose heat dissipation is provided by the chilled water cooling system. COPchiller is the
actual chilled water cooling parameter, which is decided by the chillers.
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4.2.3. Computer Room Air Handler

CRAH is responsible for extracting the heat generated by the active server, and sup-
porting the cold air. When the outside air temperature is cold enough, CRAH can provide
the outside cold air to servers from the blowers directly, or when the outside air is not
suitable, the cold air will be generated by the chiller system and cooling tower of the
chilled water cooling system to cool the servers. The power consumption of CRAH mainly
comprises fans and some other components, such as sensors and control systems; the
power consumption of fans is the major concern. Thus, the power model of CRAH can be
denoted by:

Pcrah = pidle
crah + ppeak

crah f 3, (5)

where f represents the fan rate, which is set as a fixed value, pidle
crah denotes the idle power

consumption of the CRAH and ppeak
crah denotes the peak power of the CRAH.

4.2.4. The Final Power Model of a Cooling System

In a data center, operating in different cooling modes will save more cooling en-
ergy [34]. As such, we consider a data center composed of multiple cooling modes
cm1, cm2, ..., cmi, ...; thus, we can get the following cooling system power model:

Pci = u1Pci ,cm1 + u2Pci ,cm2 + ... + uiPci ,cmi + ... (6)

where u1 + u2 + ... + ui + ... = 1, and ui ∈ [0, 1].
In consideration that various cooling modes always have different cooling capacities

and effectivenesses within workload changes [32], we apply two cooling modes (outside air
cooling and chilled water cooling) to improve the energy efficiency of the cooling system.
The cooling modes are adjusted based on different workload changes within various time
slots. Thus, the final cooling system model is derived as:

Pci =

{
u1Pci ,oac + (1− u1)Pci ,cwc + Pcrah

k(u1Psi )
3 + (1− u1)Psi /COPchiller + pidle

crah + ppeak
crah f 3

(7)

where u1 ∈ [0, 1], and the optimal cooling allocation condition is derived as uopt =

min(
√

3kP2
i ∗ COPchiller, 1) [32]. When u1 = uopt, the cooling capacity allocation between

the two cooling modes is the optimal; as a result, the cooling energy efficiency is maximized.
Thus, the final cooling system model can be denoted in the following form:

Pt
ci
=

{
0 Psi = 0

k(uoptPsi )
3 + (1− uopt)Psi /COPchiller + Pcrah Psi ≥ 0

(8)

4.3. A Power Model of State Transitions

There exist delays and extra energy consumption during the server and cooling
systems’ state transitions: when servers and the cooling system transition from an inactive
state to an active state or from an active state to inactive state. Let P

sij
on←o f f and P

sij
o f f←on

denote the server transition power, and Mt
on←o f f , Mt

o f f←on represent the number of servers
that need be turned off or turned on. Thus, the transition power consumption of servers in
time slot t can be calculated as:

Pserver
trans = P

sij
on←o f f ·M

t
on←o f f + P

sij
o f f←on Mt

o f f←on (9)
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Moreover, the transition power consumption of cooling systems in timeslot t can be
calculated as Equation (10), where Nt

on←o f f and Nt
o f f←on represent the numbers of cooling

systems that need be turned off and turned on, respectively.

Pcooler
trans = Pci

on←o f f · N
t
on←o f f + Pci

o f f←onNt
o f f←on (10)

Thus, the energy of transition of servers and cooling systems can be represented by:

Etrans =
∫

t∈τ
(Pserver

trans + Pcooler
trans )dt (11)

4.4. Problem Formulation

In this part, we formulate the energy consumption minimization problem. Our
optimization problem takes as input the arriving task’s resource information at the current
time without knowing all arrival tasks in the future, and attempts to get the optimal task
scheduling scheme for the arrived tasks.

In the data center, the total server energy consumption ES in a period time τ can be
denoted by:

ES = ∑
Nactive

(
∑
Mi

∫
t∈τ

ϑPt
sij

dt

)
, (12)

where Nactive represents the number of active cooling modules, τ is the period of time
and ϑ denotes the server’s state. If a server is active, ϑ = 1; otherwise, ϑ = 0

For the cooling system, the energy consumption of all the cooling systems in every
cooling module is represented as Equation (13), where EC represents the total energy
consumption of cooling systems in the data center.

EC = ∑
Nactive

(∫
t∈τ

(Pt
ci
)dt
)

, (13)

In the formulation, the goal is to minimize the total energy consumption, which
includes three parts: server energy consumption, cooling systems’ energy consumption
and the state transition energy consumption. Thus, the energy consumption minimization
problem of a data center can be formulated as (14):

min EC + ES + Etrans (14)

s.t.RAcpu
sij − Rcpu

ta
≥ 0, (15)

ϑ ∈ 0, 1, (16)

0 ≤ Nactive ≤ N. (17)

where in constraint (17) Nactive represents the number of active cooling modules. Constraint
(15) represents the resource constraint of servers, which means the amount of resources
requested by the tasks cannot exceed the resource capacity of the server. Constraint (16)
indicates the state of a server; if the server is turned on and working, ϑ = 1, and otherwise,
ϑ = 0. Constraint (17) means the number of active cooling modules can not be larger than
the total number of modules.

5. Energy-Aware Scheduling Strategy

In this section, to solve the energy consumption minimization problem (14) in data
centers stated in the previous section, an energy-aware task scheduling strategy utilizing
marginal cost and task classification method is introduced, incorporating a task classifi-
cation method and a scheduling algorithm. The proposed strategy first applies the task
classification method to classify tasks and servers. Within the task classification method,
the arriving task will obtain a label. Additionally, we allocate tasks to the servers with
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the same label. The definitions of marginal energy in homogeneous and heterogeneous
data centers are discussed and provided to manage the task scheduling algorithm. Finally,
consolidated with the task classification method and marginal cost evaluation, the task
scheduling algorithm is proposed, and the time complexity is analyzed. The data used in
the strategy were from real word traces, including Google cluster trace and Alibaba cluster
trace. Parts of the datasets (one day) were selected. We mainly utilized the information
in the file batch_task.csv of Alibaba cluster data, which includes task name, task_type,
start_time, end_time, plan_cpu, plan_mem, etc. For the Google cluster trace, we used the
file task_events_table.csv, which includes a timestamp, machine ID, a resource request for
CPU cores, etc. The task_type, start times, end times and resource requests for CPU cores
were extracted from the two datasets as the inputs of the classification method and the
scheduling algorithm.

5.1. Task Classification Method

We introduce how to classify the servers and tasks utilizing the task classification
method. When tasks arrive, the information of the arriving task is observed and recorded
by the task observer. Based on the stored and newly observed information, the run times
of a task can be acquired through analyzing and using the historical data or predicted by
the machine learning methods [30]. It is assumed that rta denotes the run times, and eta

represents the ending time of the task ta. As the task is scheduled in real-time, the start
times sta can be calculated through sta + rta = eta and sta ≥ 0. Through the recording
and prediction controller part, the historical data are collected and analyzed. Then the
proximate run times are predicted by machine learning methods [30].

As presented in [25], the arriving tasks will be classified and obtain labels according
to the running and ending times of tasks. The method to calculate the classification labels
of tasks C(α, β) is depicted in Equation (18). It is calculated in real-time such that the
time requirements can be fulfilled. Besides, the space requirements are met too. One can
refer to [25] to check the theory features and why the two requirements can be satisfied.
The classification method aims at scheduling tasks to the same classified servers. As a
result, the tasks with relevant run times and ending times will be scheduled to servers with
the same classification labels, which will provide more chances to power off idle servers,
and the utilization of servers is increased.

Finally, the time complexity is analyzed. We need O(1) to calculate the classification
label. The classification label of servers S(α, β) is decided on by the tasks running on
it. If the server is in an active state, the label is the same as the tasks operating in it;
otherwise, we set the label of inactive servers as S(0,−1). After the task is classified with
the method in Equation (18), it is sufficient to improve the utilization of servers, and the
energy consumption through scheduling tasks to the same classification servers is reduced.

α = max{0, dlog2rtae}

β = max{1,
⌊

2eta

2dlog2rta e

⌋
}

(18)

5.2. Marginal Cost in Data Centers

The concept of marginal cost means the influence of incremental increase of newly
produced product on the total cost in economics and finance. This concept indicates
the change in the dependent variable when the independent variable in the functional
relationship changes slightly. In the study of mathematical theory, the marginal cost is
expressed by the partial derivative of total cost TC and quantity Q. Thus, the equation of
marginal cost can be represented as:

MC =
∂TC
∂Q

(19)
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In this paper, we introduce the marginal energy in data centers based on the concept
of marginal cost to minimize the total energy consumption of the data center, namely,
to optimize the value of EDC, where EDC = ES + EC + Etrans. Next, we will discuss the
definition of the marginal energy in two kinds of data center cluster environments based on
marginal cost. The concept of marginal cost can be applied to both the homogeneous and
heterogeneous data center cluster environments. Finally the optimal scheduling condition
with marginal cost of data centers is derived.

5.2.1. The Definition of Marginal Energy Based on Marginal Cost

The definition of marginal energy is developed based on marginal cost. To determine
which server resources and cooling module resources are chosen for the task, we will
calculate the energy changes caused by scheduling the task to different cooling modules
and servers. We calculated the sum of the power changes brought about after all the task
assigned in the chosen module finish instead of only considering the power change value
at the current time slot. The marginal energy based on the concept of marginal cost for
servers and cooling modules is defined as Mserver

spq and Mcooler
cp , respectively. Equation (21)

represents the energy changes from time slot ξ init to time slot ξend after the task scheduled
to the server Spq. Equation (20) calculates the energy changes after the task choose the
cooling module resources Cp. Where ξ init denotes the time when the task is allocated to the
servers and cooling modules. ξ init represents the time all the task in the allocated cooling
modules finish.

Mcooler
cp =

∂(∑i=N
i=1

(
∑

j=M
j=1

∫ t=ξend

t=ξ init Pt
sij

dt
)
+ ∑i=N

i=1

(∫ t=ξend

t=ξ init Pt
ci

dt
)
+
∫ t=ξend

t=ξ init (Pserver
trans + Pcooler

trans )dt)

∂Pcp

(20)

With the Equation (20), the suitable cooling module resources will be determined.

Mserver
spq =

∂(∑i=N
i=1

(
∑

j=M
j=1

∫ t=ξend

t=ξ init Pt
sij

dt
)
+ ∑i=N

i=1

(∫ t=ξend

t=ξ init Pt
ci

dt
)
+
∫ t=ξend

t=ξ init (Pserver
trans + Pcooler

trans )dt)

∂Pspq

(21)

Based on the Equation (21), the suitable server resources will be decided for the task.

5.2.2. Homogeneous Data Center Cluster

In the homogeneous data center cluster, the hardware configurations of all servers are
the same, and the peak power, idle power, and energy efficiency of each server running
different workloads are the same. When scheduling tasks, we only need to consider
whether to power on a new idle server or schedule tasks to a running server. The cooling
efficiency of different cooling modules may be different, so it is also necessary to determine
which cooling module is allocated for the task. To determine which server resources and
cooling module resources are chosen, we need to calculate the energy changes caused by
scheduling the task to different cooling modules. We calculated the sum of the power
changes brought about after all the tasks assigned in the chosen module finish instead
of only considering the power change value at the current time slot. We can apply the
marginal cost evaluation to guide the task scheduling process to choose the suitable server
and cooling system resources with the minimum energy cost. Using the Equation (20) the
cooling module resource is chosen, and with the Equation (21), we can decide whether to
choose a running server or an idle server.

5.2.3. Heterogeneous Data Center Cluster

In the heterogeneous data center cluster, we assume that the servers are heteroge-
neous. Different servers have different peak power consumption, idle power consumption
and energy efficiency. Different cooling modules have numerous cooling effectiveness and
cooling parameters. Thus, when the tasks arrive dynamically, scheduling tasks to which
server under which cooling module will cause varying energy consumption costs. It can
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be decided by the marginal cost evaluation to choose suitable server and cooling system
resources too. We need to determine which cooling module resource to choose, whether
to choose a running server or a static server and decide the type of servers. With the
Equations (21) and (20), the most energy-efficient server and cooling resources will be
chosen. We need to calculate the energy changes after all the tasks in the current servers of
the data center finish if the task is scheduled to any servers, such that the server chosen for
the arriving task will lead to the minimum energy consumption.

Thus, based on Sections 5.2.2 and 5.2.3, we can conclude that the developed definition
of marginal energy can be applied in homogeneous and heterogeneous data center clusters
to guide task scheduling.

5.2.4. Optimal Scheduling Condition with Marginal Cost Evaluation

The task scheduling strategy needs to determine which server and cooling module
resources for the arrived tasks to choose. (1) Which server and cooling module resources
in the off state should be powered on in each time slot; (2) turning servers and cooling
systems on/off; (3) deciding on the specific server and cooling system resources to satisfy
the request of tasks; (4) determining the minimum state transition. With the definitions
of the marginal energy of servers and cooling modules in data centers, the optimal task
scheduling condition is developed. The basic idea is scheduling tasks to the servers with
the minimum marginal energy value, which will lead to a minimum increase in overall
energy after allocation and ensure the power-efficient optimal allocation. We need to
calculate the energy changes after all the tasks in the current servers of the data center
finish if the task is scheduled to any servers, such that the server chosen for the arriving
task will bring the minimum energy consumption. The optimal scheduling condition is
shown in Equations (22) and (23)

(1) Choosing the server resources with the minimum marginal energy value for the
arrived task.

∀sik(i ∈ N|j, p ∈ Mi),
∂Eξ

DC
∂Psip

≤
∂Eξ

DC
∂Psij

(22)

(2) Determining which cooling module resource to choose.

∀cq(q ∈ N),
∂Eξ

DC
∂Psi

≤
∂Eξ

DC
∂Psq

(23)

where Eξ
DC = ∑i=N

i=1

(
∑

j=M
j=1

∫ t=ξend

t=ξ init Pt
sij

dt
)
+ ∑i=N

i=1

(∫ t=ξend

t=ξ init Pt
ci

dt
)
+
∫ t=ξend

t=ξ init (Pserver
trans +

Pcooler
trans )dt.

5.3. Scheduling Strategy Using the Marginal Cost and Task Classification Method

The task classification method, definitions of marginal energy and optimal scheduling
condition with marginal cost evaluation of the data center have been described above. In
this part, the task scheduling strategy with the marginal cost evaluation and task classifi-
cation method is proposed to minimize the entire energy consumption. The scheduling
strategy will (1) determine which server and cooling module resources in the off state
should be powered on in each time slot; (2) determine various servers and cooling systems
to turn on/off; (3) decide on the specific server and cooling system resources to (4) satisfy
the request of tasks; (4) determine the minimum state transition.

To optimize the total energy consumption in data centers, there exist two ideas. Firstly,
we should classify servers according to the tasks run times and ending time such that
the tasks can be scheduled to the same classified servers with the same label. Secondly, we
should choose the servers and cooling resources with minimum marginal energy value.
The energy-aware task scheduling strategy is presented in Algorithms 1 and 2.
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Algorithm 1 Energy-aware task scheduling.

Require:
Task ta and the label C(α, β).

Ensure:
The Server Sij allocated to the task.

1: for i ∈ [1, N], j ∈ [1, Mi] do
2: if (RAcpu

sij − Rcpu
ta
≥ 0)&&S(α, β) == C(α, β) then

3: Put Sij into the set θ(α,β);
4: end if
5: end for
6: if θ(α,β) 6= ∅ then
7: Calculate the marginal energy value with CalMarC(θ(α,β))
8: Calculate the marginal energy value with CalMarC(θ(0,−1))
9: return the server Sij with minimum marginal energy value

10: Classify the server and set the label of the server as S(α, β);
11: end if
12: if θ(α,β) = ∅ then
13: for Ci(i ∈ [1, N]) do
14: for Sij with label C(0,−1) do
15: return the server Sij with minimum marginal cost value using CalMarC(θ(0,−1))

16: Classify the server and set the label of the server as S(α, β);
17: end for
18: end for
19: end if

When a task is submitted by users to the data center, through the classification con-
troller, the task will obtain a category label C(α, β). All servers are traversed to find the
servers whose available CPU resource is larger than the resource requested by the task and
with the same category label denoted by S(α, β). Servers that satisfy the above conditions
will be put into a set θ(α,β). If θ(α,β) 6= ∅, we will select an active server from the set θ(α,β)
for the arriving task as follows:

• Due to the heterogeneous characteristics of servers, scheduling tasks to different
servers will cause various amounts of energy consumption; thus, we utilize the
concept of marginal cost to decide which server resource is suitable. For every active
server in the set θ(α,β), the marginal energy Mserver

spq is calculated with the Equation (21).
The process of calculating the marginal energy value is described in Algorithm 2,
which is a sub-algorithm of Algorithm 1. Lines 11–14 in Algorithm 2 calculate the
energy changes after all the tasks in the current servers of the data center finish if the
task ta is scheduled to any servers. Besides, it calculates the sum of the server power
consumption changes, the cooling system power consumption changes and the state
transition power consumption changes at each moment before the end times of task
ta. The sum of the power changes is set as the marginal energy value.

• Considering the transition power consumption, we need to decide if we should to
turn on a new server or just choosing a running server with the same label. Thus,
for each idle server in the set θ(0,−1), we calculate the marginal energy value us-
ing the Equation (20) and Algorithm 2 to decide the cooling resource and with the
Equation (21) to choose the server resource.

• Scheduling the submitted task to a server that satisfies the optimal scheduling condi-
tion based on the Equation (22).

If θ(α,β) = ∅, we need to choose an idle server whose label is S(0,−1) from all cooling
modules for the submitted task as follows:
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• For each cooling module, the marginal energy value of cooling modules is calculated
to decide on the cooling resources using Equation (20)

• Due to the data center being heterogeneous, the idle servers in different modules may
be different and have different power consumption and energy efficiency. Thus, in this
heterogeneous cluster, it is necessary to determine the server resource. The marginal
energy value of servers is calculated using Equation (21) and Algorithm 2.

• Finally, we schedule task ta to an idle server with the minimum marginal energy
value according to the Equations (22) and (23) and provide a classification label for
the idle server.

Algorithm 2 CalMarC(server_sets).

Require:
Server sets θ(α,β) or θ(0,−1), and Task ta

Ensure:
The marginal energy value of data centers.

1: currentTime← Get the current time slot
2: Tasklist← Get all running tasks list
3: TaskNum← Get total task number of server Sij
4: λij = 0.0 and p = 0.0
5: Get the current utilization rsij of the server sij
6: if TaskNum >= 1 then
7: p = (P f ull

sij − Pidle
sij

)× (2Rcpu
ta

/RTcpu
sij − (rsij + Rcpu

ta
/RTcpu

sij )1.4 + rsij
1.4)

8: else
9: p = Pidle

sij
+ (P f ull

sij − Pidle
sij

)× (2Rcpu
ta

/RTcpu
sij − (rsij + Rcpu

ta
/RTcpu

sij )1.4 + rsij
1.4)

10: end if
11: while Tasklist 6= null and currentTime < rta + sta do
12: ∆ = λij + ( f (Psi + p)− f (Psi ))× (eta − currentTime) + p
13: λij = ∆ + (Pserver

trans + Pcooler
trans )

14: end while
15: return λij

When the task is submitted dynamically, within the proposed scheduling strategy
EATS, the task will be assigned to the suitable server resources and cooling resource
with the minimum marginal energy value. Finally, the time complexity of the EATS will
be analyzed.

From step (1) to step (4), the active and available server set whose label is the same as
the arriving task is acquired. Assume that there exist z servers in the data center, thus the
time complexity is O(z).

If θ(α,β) 6= ∅, it depicts how to choose a suitable server resource with the minimum
marginal energy value from step (7) to step (10). Step (7) and step (8) represent calculating
the marginal energy value of the server in the active and available server set θ(α,β) and
idle server set θ(0,−1) using Algorithm 2. Steps (6) to (15) in Algorithm 2 introduce how
to calculate the marginal energy value of data centers. We need to calculate the energy
changes after all the tasks in the current servers of the data center finish if the task is
scheduled to any servers, such that the server chosen for the arriving task will bring the
minimum energy consumption. Assume that the length of running task list is denoted by
ω, the time complexity isO(2 ∗ω). Step (9) and step (10) in Algorithm 1 represent choosing
the server resource with the minimum marginal energy value with the time complexity
O(|θ(0,−1)|+ |θ(α,β)|).

If θ[β,η] = ∅, we need choose an idle server with the minimum marginal energy value
using Algorithm 2 which is shown from step (13) to step (19) in Algorithm 1. The time
complexity is O(N ∗ |θ(0,−1)| ∗ ω). Thus, the overall time complexity of EATS is O(z) +
O(2 ∗ ω ∗ (|θ(0,−1)| + |θ(α,β)|)) + O(N ∗ |θ(0,−1)| ∗ ω) = O(z + ω ∗ (|θ(0,−1)| + |θ(α,β)|) +
N ∗ |θ(0,−1)| ∗ω).



Energies 2021, 14, 2382 15 of 26

6. Experiments

In the section, to appraise the proposed strategy that can effectively reduce the whole
energy consumption of the data center, we built an experiment system, and the details of
our experiment setup and results are presented.

We built our simulation platform based on JAVA with OpenJDK 11.0.10 (Oracle,
USA). The experiment was conducted on a machine equipped with windows 10 operating
system, Intel(R) Core(TM) i5-9500 CPU, 3.00GHz 3.00GHz, 8GB RAM, 2TB Disk storage.
During the simulation, most information, including the server power and cooling power,
the transition power of servers and the total data center power at each time slot, was saved
into files. After the information collection and data collation, the figures were plotted
through Matlab software.

6.1. Experimental Setup

Assume that a data center consists of 5 modules, each module containing 600 servers.
Therefore, there are a total of 3000 servers in the data center. For the cooling system,
the cooling parameter k in Equation (8) is set to 5× 10−4 [25], and the parameter of chiller
system COPchiller is set to 5 [32]. The fan rate of CRAH is set to 0.66 [35]. The idle power
and peak power of CRAH are 100 and 3000 W, respectively. The transition power of servers
from on state to off state is denoted as 118.52 W [36], and the power consumed by the
transition from off state to on state is 128.21 W [36]. The settings of the experiments are
shown in Table 1.

Table 1. Experimental settings.

Parameter Value

Number of servers 3000

Number of cooling modules 5

k 5× 10−4

COPchiller 5

pidle
crah 100 W

ppeak
crah 3000 W

f 0.66

P
sij

on←o f f 118.52 W

P
sij

o f f←on 128.21 W

We utilized two types of datasets to evaluate the performance of the proposed strategy
EATS, both of which come from real-world traces. The two datasets are Google cluster
data [8] and Alibaba Cluster Data V2018 [9]. We randomly selected some resource data over
1 day from the two datasets and extracted the task traces from files (batch_task.csv of Al-
ibaba cluster data and task_events_table.csv of Google cluster data), including task arrival
times, task end times and the CPU resource requirements of each task. The Google cluster
dataset presents the resource utilization data of servers during a month and Alibaba cluster
dataset provides the resources usage data of 4000 machines in 8 days. The per-minute work-
load CPU utilization values of the two datasets are presented in Figure 3a,b, respectively.
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(a) Per-minuter workloads of Google cluster Data.
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(b) Per-minuter workloads of Alibaba cluster Data.

Figure 3. The highly random workloads in data centers.

In the data center cluster, it is assumed that the servers are heterogeneous. Different
servers have different peak power consumption, idle power consumption and energy
efficiency. In a cooling module, there exist six types of servers. Table 2 provides the power
parameters of the six types of servers in the data center [25,26,37].

6.2. The Baseline Algorithm

In the experiment, the proposed strategy EATS is compared with two techniques
(Tech-1 and Tech-2).

• Tech-1: In Tech-1, it schedules tasks between the various cooling modules based on
the load balancing practice. For the servers, it gives preference to scheduling tasks to
active servers.

• Tech-2: Tech-2 is based on the algorithm rTCS in [25]. rTCS schedules the arriving task
in real-time. Once a task arrives, rTCS will firstly classify the task and servers using a
task classification algorithm. After the tasks are labeled, the tasks will be scheduled
to the servers with the same label. As a result, high utilization of servers will be
guaranteed. As for the quadratic characteristic of the cooling function, to further
reduce the energy consumption of cooling systems, tasks with the same label will be
allocated to different cooling modules evenly.

Table 2. Server parameters in the experiment.

Server Type
Server Power Parameters

Idle Power (W) Peak Power (W) CPU Cores Total Number

1 200 500 16 600

2 200 300 32 300

3 100 200 8 600

4 110 300 96 600

5 430 1000 64 450

6 1590 2490 16 450

6.3. Results
6.3.1. Energy Consumption of Servers and Cooling System

In a heterogeneous data center, the servers are heterogeneous and have different
energy efficiencies and levels of power consumption. First, the energy consumption of
servers and cooling systems of the proposed strategy EATS is compared with that in Tech-1



Energies 2021, 14, 2382 17 of 26

and Tech-2, respectively. As different datasets have different characteristics, it is necessary
to compare the results for energy reduction based on various datasets. Therefore, we
utilized two real world datasets (Alibaba cluster data and Google cluster data) to verify
the performance of EATS regarding improving the energy efficiency of servers and cooling
systems, respectively. The server energy consumption results using Alibaba cluster data
are illustrated in Figure 4a. As shown in Figure 4a, the server energy consumption of EATS
was the smallest compared with other two algorithms, which verifies the effectiveness
of the proposed EATS at reducing server energy consumption. Apart from the Alibaba
cluster data, we also used the Google cluster data to validate the performance of EATS.
The server energy consumption results using Google cluster data are indicated in Figure 5a.
With Figure 5a, it can be concluded that EATS can save more energy of servers than Tech-1
and Tech-2. Thus, based on Figures 4a and 5a, we can conclude that EATS is effective at
reducing server energy consumption in comparison to Tech-1 and Tech-2.
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(a) Comparison of server energy consumption.
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(b) Comparison of cooling energy consumption.

Figure 4. Comparison of cooling and server energy consumption for Alibaba cluster data.
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(a) Comparison of the server energy consumption.
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(b) Comparison results of the cooling system energy
consumption.

Figure 5. Comparison of cooling and server energy consumption for Google cluster data.

We compare cooling system energy-saving results with Tech-1 and Tech-2 using the
two datasets next, and the results are shown in Figures 4b and 5b, respectively. The
results shown in Figure 4b are based on Alibaba cluster data. Figure 4b indicates the
energy-saving results using Google cluster data. From the two figures, we can find that the
energy consumption of cooling systems caused by EATS is the least compared to Tech-1
and Tech-2, which shows that EATS can also effectively improve the energy efficiency of
cooling systems.

As illustrated in Figures 4 and 5, the effectiveness of EATS at jointly reducing the
energy consumption of servers and cooling systems is validated.
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6.3.2. Transition Energy Consumption

In this part, we compare the energy caused by the server and cooling system state
transition with other algorithms. As frequent system state transitions will cause more
energy consumption and extra cost, it is vital to devise an energy-efficient scheduling
strategy that can optimize the energy caused by the state transitions. EATS aims at jointly
improving the energy efficiency of servers, cooling systems and the energy caused by
state transitions. To verify the effectiveness of the proposed algorithm, we compare the
transition energy consumption with Tech-1 and Tech-2, and the comparative results using
Alibaba cluster data are depicted in Figure 6. As shown in Figure 6, the transition energy
consumption achieved by the proposed strategy EATS was the smallest; this is because these
two algorithms (Tech-1 and Tech-2) only consider the energy consumption optimization
of servers and cooling systems without considering the energy consumption caused by
state transitions. Therefore, the results in Figure 6 display that the proposed strategy EATS
can effectively save data center transition energy consumption compared with Tech-2 and
Tech-1. They also verify that the proposed strategy EATS is efficient in cooperatively saving
the total energy consumption of servers, cooling systems and state transition in the data
center compared with Tech-1 and Tech-2.
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Figure 6. The comparison results of transition energy consumption for Alibaba cluster data.

6.3.3. Total Energy Consumption

The core idea of the paper is to optimize the total energy consumption consisting of
servers, cooling systems and state transitions energy. Thus, we collated the output data
and summarize the total energy consumption of the three algorithms. The comparison
results utilizing the Alibaba cluster data are depicted in Figure 7. Figure 8 shows the
results of total energy consumption based on Google cluster data compared with other
two algorithms. As we can see in these two figures, the energy consumption achieved by
EATS was the smallest in comparison to Tech-1 and Tech-2. As the proposed strategy EATS
focuses on cooperatively improving the energy efficiency of servers, cooling systems and
reducing the energy costs caused by system state transitions, EATS achieved the smallest
energy consumption of a data center, which indicates that jointly optimizing the energy
consumption of servers, cooling systems and state transition energy is efficient. With the
results of Figures 7 and 8, we can validate the better performance of EATS regarding energy
savings comparedd with Tech-1 and Tech-2 using various datasets.
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Figure 7. Comparison of data center energy consumption for Alibaba cluster data.
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Figure 8. Comparison of data center energy consumption for Google cluster data.

6.3.4. Various Scenarios

To analyze the energy-saving results of EATS under various data center scenarios,
we add three scenarios with the same total number of servers, but the number of cooling
modules and the number of servers in each module are different. We conducted the
experiments under each data center scenario and compared the total energy consumption
of EATS with that of the other two algorithms. The comparison results are shown in
Figure 9. In Figure 9, scenario 1 represents that a data center consisted of one cooling
module and the module had 3000 servers. Scenario 2 represents that a data center included
three cooling modules and each module included 1000 servers. Scenario 3 represents that a
data center included five cooling modules and each module included 600 servers, which
is the same as in the base assumption of the paper. Scenario 4 represents a data center
that has 10 cooling modules, and every module has 300 servers. Based on the results
concluded from Figure 9, we found that under different data center scenarios, the total
energy consumption of EATS was always the smallest compared with Tech-1 and Tech-2.
This validates that under different data center scenarios, the proposed algorithm EATS is
effective at reducing the total data center energy consumption.
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Figure 9. Comparison results of the total energy consumption with different data center scenarios.

6.3.5. Task Arrival Intensity

In this part, first, we compare the total energy consumption of EATS with Tech-1 and
Tech-2 under various task arrival intensities in Figure 10. The task arrival intensity means
the number of arriving task per minute. Data 1, Data 2, Data3, and Data 4 in Figure 10
represent different datasets with various task arrival intensities. From Data 1 to Data 4,
the task arrival intensity value is gradually increasing. The four kinds of data are all from
Alibaba cluster data. Data 2, Data 3, and Data 4 are obtained by expanding 2, 3, and 4 times
on the basis of data 1, respectively. As we can see from Figure 10, the energy consumption
of a data center reduced by EATS is largest compared with Tech-1 and Tech-2. Besides,
with the increase of task arrival intensities, the performance of EATS on reducing the
energy consumption become more better compared with the algorithm Tech-1. The results
indicate that the performance of EATS is better than the other two techniques in reducing
the total energy consumption under different task arrival intensities.
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Figure 10. The influence of various task arrival intensities on the energy consumption.

Next, the transition energy consumption under different task arrival intensities is
compared. Figure 11 presents the transition energy-saving results in comparison to Tech-1
and Tech-2 with various task arrival intensities. In Figure 11, Data 1, Data 2, Data 3,
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and Data 4 indicate four kinds of datasets from Alibaba cluster data with different task
arrival intensities. From Data 1 to Data 4, the task arrival intensities of each dataset are
gradually increasing. We found that with the changes of task arrival intensities, the energy-
saving results of EATS were always better than other two algorithms, which verifies that
EATS outperforms the others in terms of reducing the transition energy consumption of the
data center compared with Tech-1 and Tech-2. The transition energy consumption caused
by the algorithm Tech-1 was less than that of algorithm Tech-2, but as shown in Figure 10,
the total data center energy consumption of Tech-1 was larger than the consumption
of Tech-2 and EATS. Tech-2 and EATS both consider the joint energy optimization of
servers and cooling systems, which verifies the effectiveness of jointly optimizing the
energy consumption of data centers. The proposed strategy EATS considers the energy
optimization of servers, cooling systems and system state transition cost; thus, the state
transition and total data center energy consumption of proposed strategy EATS was
smallest compared with Tech-1 and Tech-2. This verifies that the proposed strategy EATS is
effective in cooperatively saving the total energy consumption of servers, cooling systems
and state transition in the data center compared with Tech-1 and Tech-2.
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Figure 11. The comparison results of various task arrival intensities—the transition energy consumption.

6.3.6. Different Numbers of Cooling Modules

In the paper, we assumed that a data center includes five cooling modules, and each
module had 600 servers. Thus, there were a total of 3000 servers in the data center. To verify
the performance of the proposed strategy, it was necessary to analyze the influence of
the number of cooling modules on the data center energy consumption. Thus, we made
other assumptions about the number of cooling modules and compared the total energy
consumption with Tech-1 and Tech-2. The comparison results are shown in Figure 12
using Alibaba cluster data. As shown in Figure 12, 3, 4, 5, 6, 7, 8, 9 and 10 were the
numbers of cooling modules, respectively. Each module included 500 servers. As such,
we assumed that a data center consisted of three cooling modules, and each module
included 500 servers. Thus there were 1500 servers in the data center. We assumed that
a data center consisted of four cooling modules, and each module included 500 servers,
etc. From the figure, we find that although the number of cooling modules was changed,
the energy-saving results of EATS were always better than those of Tech-1 and Tech-2.
Besides, with the increase in the number of cooling modules, the energy consumption
by Tech-1 and Tech-2 increased. However, there was basically no change in the energy
consumption value of our strategy, which indicates that the idea of marginal cost we
introduced in the strategy can well determine the most energy-efficient server resources
and cooling resources. Thus, the effectiveness of reducing the total energy consumption of
the proposed strategy is validated.
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Figure 12. Comparison of total energy consumption with different numbers of cooling modules for
Alibaba cluster data.

6.3.7. Different Numbers of Servers

The experiments were based on a data center scenario wherein the data center has
3000 servers and the servers are divided up by five cooling modules, such that each module
contains 600 servers to support the resource needs. We also conducted the experiments in
other scenarios where in a data center there were different numbers of servers. Figure 13
shows the comparison results of total energy consumption with different numbers of
servers. We compare the performances of EATS with various numbers of servers in a data
center (1800, 3000, 4200, 5400), respectively, and the servers were divided into six cooling
modules. As such, in a data center, there was a total number of 1800 servers that were
divided into six cooling modules, so each module had 300 servers; there was a total of
4200 servers that were divided into six cooling modules, so each module had 700 servers,
etc. With the energy reduction results in Figure 13, we found that with the changes of server
number, the energy consumption of the proposed strategy EATS was stable. However,
the energy consumption results of Tech-1 and Tech-2 became more lager with the increase
in the number of servers. The results in Figure 13 indicate the effectiveness of the concept
of marginal cost in the evaluation of the energy behaviors in the data center. With the
marginal cost evaluation, the strategy will schedule the task to the suitable servers with
less energy consumption. This verifies that EATS is effective at optimizing the total energy
consumption of a data center under various numbers of servers.

6.3.8. Energy Consumption in One Module

We compared the energy reduction results under various numbers of cooling modules
and servers; see Sections 6.3.6 and 6.3.7. It is vital to compare the energy-saving results
when there is only one cooling module in the data center, which means the data center
consists of one cooling module and the module has a total number of 3000 servers. The com-
parison results of total energy consumption with one module are shown in Figure 14 using
Alibaba cluster data.
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Figure 13. Comparison of total energy consumption with different number of servers for Alibaba
cluster data.
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Figure 14. Comparison of total energy consumption with one module for Alibaba cluster data.

From Figure 14, it can be concluded that under one cooling module, the energy
consumption of the data center achieved by EATS is the least among the three algorithms.
It is hence validated that the proposed strategy EATS performs better than Tech-1 and
Tech-2 in energy consumption.

Figure 15 indicates the energy-saving results under different datasets regarding total
data center energy consumption with one module. The four datasets were all extracted
from Alibaba cluster data, and the task arrival intensity of the datasets gradually decreased
from dataset 1 to dataset 4. As indicated in Figure 15, EATS can effectively reduce energy
consumption compared with the other two algorithms under various arrival intensities.
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Figure 15. The comparison results of the energy consumption with one module and various datasets.

7. Conclusions and Future Work

Data centers are rapidly multiplying and becoming widespread, which is resulting in
high energy consumption and inefficient resource utilization. This inefficiency of data cen-
ters wastes resources and energy, which may hinder the further development and usage of
data centers. In this paper, an energy-aware task scheduling strategy based on the marginal
cost and task classification method was proposed to reduce the energy consumption of
servers and cooling systems cooperatively so that the total energy consumption of data cen-
ters is minimized see Supplementary. Firstly, joint energy consumption models, including
the server, cooling system energy and state transition models were developed. The energy
consumption optimization problem in data centers was formulated. Two cooling modes,
including outside air cooling and chilled water cooling, were applied, and a strategy was
developed to choose the optimal utilization of these two cooling systems in different time
slots. Secondly, the concept of marginal cost in data centers was introduced to guide the
task scheduling. The task classification method was used to classify tasks and servers to
improve resource utilization combined with the marginal cost concept. A task scheduling
algorithm using the marginal cost and task classification method was developed to solve
the data center energy minimization problem to optimize the server energy consumption,
the cooling system energy consumption and the state transition cost, collaboratively, such
that the total data center energy consumption is reduced. Finally, experiments were con-
ducted using two real-world datasets (Google cluster data and Alibaba cluster data). The
experiment results indicate that the proposed algorithm EATS is effective at optimizing
data center energy consumption and improving resource utilization. The workloads in the
cloud often vary over time, and the resource requirements, arrival rates and running time
have large variations. The predictions for the workload resources and workload running
time are important and worthy of further investigation. Besides, task migration is also a
key technology in data centers, and the introduction of marginal cost into task migration
and resource management is also a problem worthy of study.

Supplementary Materials: Supplementary materials are available online at https://dl.acm.org/doi/
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