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Abstract: The efficiency of tunnels systems is often evaluated using numerical simulations. This
concerns both to normal and emergency mode of tunnel systems operation. Therefore the safety
level of tunnel users may depend on the quality of numerical models being built. The most often
studied areas cover the researches on natural and forced airflows in the normal mode and on fire
development and smoke spreading in the emergency mode as well as modeling of fan operation.
Thus, many software packages implementing Computational Fluid Dynamics (CFD) are applied
here. Despite the available software is recognized as reliable, the problem arises because the built
numerical models should be validated at least partially with experimental data. There is a shortage of
experimental data from real tunnels due to high costs and many organizational or formal difficulties.
Some researchers use data from scaled experiments, but this leads to problems connected with scaling.
The paper presents the application of two widely used software packages—Fire Dynamics Simulator
(FDS) and ANSYS Fluent to reproduce some scenarios of the operation of a tunnel ventilation system
for normal and emergency mode. Most of results were compared with data obtained by own full
scale measurements or data available in literature. Some practical issues concerning the application
of FDS and ANSYS Fluent were discussed as well.

Keywords: CFD; tunnel airflow; tunnel fires; FDS; ANSYS Fluent

1. Introduction

Accurate airflow reproducing is the crucial issue while modeling the operation of a
tunnel ventilation system at any mode or fire development and smoke spreading in a case
of fire [1]. Since commonly used software packages which implement Computational Fluid
Dynamics (CFD) are recognized as reliable and soundly validated, the main problem is to
built a suitable and faultless numerical model. The two most popular software packages
are Fire Dynamics Simulator (FDS) and ANSYS Fluent. The first one is willingly used
mainly for simulation of fire development [2,3]. The latter one is a multipurpose package,
and can be used for any issue related to fluid and heat flow [4]. There are some design
decisions to be made before the start of modeling. All approximations and simplifications
have to be justified.

Some of the issues presented here have already been somehow considered, but they
may still be a challenge when facing the task of accurate modeling of airflows and fires in
tunnels [5,6]. But very often numerical models of tunnels are built without paying sufficient
attention to them and eventually it may lead to results which are burden with significant
discrepancies. The matter goes worse if there is no possibility to compare numerical results
to experimental data and the results become regarded as reliable. The article deals with the
following issues:

• modeling of the heat properties of tunnel walls,
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• taking into account the drag caused by protruding details of tunnel infrastructure
(lamps, traffic signs, cables, fans),

• modeling of jet fans,
• selecting of the turbulence model,
• taking into account the influence of external wind,
• modeling the stack effect,
• monitoring of the solution convergence.

Obviously, the presented above list is not exhaustive. There are some issues not
addressed, for instance the influence of vehicles movement on airflow. However, the
discussed matters concern the most common problems faced by researchers dealing with
flows in road tunnels. Whenever it was reasonable references to experimental data, which
validated presented models were provided. The rest of the paper is divided into sections
dedicated to successive topics. The last goes the conclusion section, which sums up the
most important findings.

2. Modeling of Tunnel Walls

The first step while developing a tunnel model is to build the geometry and specify
the properties of the materials the tunnel is built of. This is a very important stage of the
work. The tunnel model should accurately reflect the real object. The geometry of the
tunnel should be accurately mapped and so the materials it is made of. This will allow for
proper modeling of heat flow and reproduction of temperature distributions in case of fire
analyzes. The material from which the tunnel vault is made has the ability to accumulate
heat, which will have an impact on its distribution in the tunnel space. Only when the
considered flow is regarded as isothermal the tunnel walls could be modeled as adiabatic
surfaces. Otherwise the heat transfer between air or other gases and tunnel walls must
be taken into account. Hence, studies can be found in which the walls of the tunnel are
modeled as concrete partitions [7]. Among others, Hua modeled the fire damage in a tunnel
structure. He provided a framework to characterize the distributions of fire temperature
within a tunnel structure. However, the information on the way of modeling tunnel walls
is most often omitted. This can be accepted when the manuscript deals only with the
issue of cooled smoke flow in the tunnel, for example due to the evacuation process [8].
However, when modeling the complete picture of smoke flow, it should be remembered
that the tunnel wall temperature may affect the results of such analyzes. When there is
no information, the tunnel walls were modeled usually as “default”, and in most CFD
programs such default setting means the adiabatic boundary conditions. This even applies
to manuscripts where the temperature distribution caused by fire was considered [9,10].
Similarly, Kim considered the effect of the tunnel slope on plug-holing phenomenon. He
investigated the temperature distribution at different tunnel inclinations, assuming at the
same time the adiabatic walls of the tunnel [11].

It is significantly important for modeling of fire development and hot smoke spreading.
The commonly accepted scenario assumes that due to the heat transfer from hot gases to
tunnel ceiling and sucking cold air the smoke layer is cooled down and therefore it lowers
and the initial stratification disappears.

To show the importance of the discussed matter a numerical model was prepared
using FDS software. A tunnel of cross-section of 8 m × 6.4 m and 300 m long was modeled.
A fire of HRR equal to 4 MW was placed at the middle of the tunnel length. The fire grew
linearly during 60 s. Additionally a dynamic pressure of 1Pa was applied to one of the
tunnel portals to simulate a weak natural airflow. Figure 1 shows temperatures recorded
0.05 m beneath the ceiling at selected distances downstream the fire.
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Figure 1. Temperatures recorded at: (a) 25 m, (b) 100 m downstream the fire. 

These outcomes confirmed the expectations: for adiabatic ceiling the temperatures 
were higher and the difference was more clearly visible with increasing distance from the 
fire source. In the presented above numerical experiment so called layer zoning devices 
to measure smoke layer height were also applied. Although the temperature differences 
are significant, the recorded heights of the smoke layer didn’t differ in such a unequivocal 
way. These measured differences were of order of fluctuations. It can be explained by the 
fact, that in an early fire stage for both wall models, despite a clear temperature difference 
the upper layers were hot enough to keep the similar smoke stratification. 

3. Modeling the Additional Drag Caused by Details of Tunnel Infrastructure 
Tunnels walls and ceiling are richly equipped with many items (lamps, cables, fans, 

sensors, road signs), which generate drag against airflow. This can significantly change a 
perpendicular distribution of air velocity and eventually affect the magnitude of average 
longitudinal velocity. This drag need to be taken into account when modeling airflow in 
tunnels. One should have in mind that modeling inaccuracies concern especially regions 
close to walls and ceiling. Therefore they may impact on the obtained picture of such phe-
nomena as backlayering [12,13] and plug-holing [11], which are essential for assessing the 
efficiency of ventilation systems. 

It is difficult to model all of these details accurately due to very high workload. For-
tunately, this additional drag can be modeled by introducing so called equivalent rough-
ness. It is the same way as the natural wall roughness is accounted for [14]. Thanks to the 
carried out measurements in a 678 m long road tunnel [15] it was possible to depict dis-
tributions of air velocity at selected cross-sections of the examined tunnel for different 
configurations of switched on jet fans. A set of 5 tall and 6 short stand-poles with mounted 
thermo-anemometers was used for precise airflow velocity measurement. Then using AN-
SYS-Fluent the flows were reproduced for different heights of wall roughness (hr). The 
roughness of the road surface was adopted as 0.002 mm, which is the natural roughness 

Figure 1. Temperatures recorded at: (a) 25 m, (b) 100 m downstream the fire.

These outcomes confirmed the expectations: for adiabatic ceiling the temperatures
were higher and the difference was more clearly visible with increasing distance from the
fire source. In the presented above numerical experiment so called layer zoning devices to
measure smoke layer height were also applied. Although the temperature differences are
significant, the recorded heights of the smoke layer didn’t differ in such a unequivocal way.
These measured differences were of order of fluctuations. It can be explained by the fact,
that in an early fire stage for both wall models, despite a clear temperature difference the
upper layers were hot enough to keep the similar smoke stratification.

3. Modeling the Additional Drag Caused by Details of Tunnel Infrastructure

Tunnels walls and ceiling are richly equipped with many items (lamps, cables, fans,
sensors, road signs), which generate drag against airflow. This can significantly change a
perpendicular distribution of air velocity and eventually affect the magnitude of average
longitudinal velocity. This drag need to be taken into account when modeling airflow in
tunnels. One should have in mind that modeling inaccuracies concern especially regions
close to walls and ceiling. Therefore they may impact on the obtained picture of such
phenomena as backlayering [12,13] and plug-holing [11], which are essential for assessing
the efficiency of ventilation systems.

It is difficult to model all of these details accurately due to very high workload.
Fortunately, this additional drag can be modeled by introducing so called equivalent
roughness. It is the same way as the natural wall roughness is accounted for [14]. Thanks
to the carried out measurements in a 678 m long road tunnel [15] it was possible to depict
distributions of air velocity at selected cross-sections of the examined tunnel for different
configurations of switched on jet fans. A set of 5 tall and 6 short stand-poles with mounted
thermo-anemometers was used for precise airflow velocity measurement. Then using
ANSYS-Fluent the flows were reproduced for different heights of wall roughness (hr). The
roughness of the road surface was adopted as 0.002 mm, which is the natural roughness
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of tarmac. The obtained results were compared with the measurement data. An example
for two jet fans operating in the normal mode far from the measurement cross-section is
shown in Figure 2.
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ment details. 

Figure 2. Comparison of measured and calculated velocity profiles for hr = 0.1 m. Stand-poles are marked by letters A–K.
Thin green horizontal lines indicate differences.

As a measure of the modeling accuracy the root mean square deviation (RMSD) was
adopted. The relation between the value of RMSD and the height of wall roughness (hr)
can be well approximated by a parabola (determination coefficient R2 = 0.954), which is
shown in Figure 3.
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Figure 3. Square regression RSMD~hr [5].

As it can be seen the best fit was obtained for the equivalent wall roughness equal to
0.1 m. Although, the velocity values predicted by Fluent for regions close to walls were
still higher than real ones, the overall accuracy was the highest. If the equivalent wall
roughness increased the value of RMSD would rapidly increase and the average airflow
velocity would be much too low. Since the infrastructure of the examined tunnel can be
regarded as a typical one, it is a premise that this value of equivalent wall roughness
can be applied commonly when modeling airflows instead of taking into account all
equipment details.
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4. Modeling of Jet Fans

Jet fans are obviously the most important components of a longitudinal ventilation
system. Therefore the accurate airflow modeling strongly depends on the way the fans are
introduced into a numerical model. The fundamental formula governing a fan operation
describes the relation between outlet velocity (uout) and unit force (Sa, ratio of the fan thrust
to its volume), which corresponds to the pressure jump is given below (ρ denotes fluid
density and l denotes the fan length) [16]:

Sa =
ρu2

out
l

(1)

A very popular approach used in ANSYS Fluent is to set a certain value of the fan
outlet velocity (denoted here as IO model) [17,18]. But except the simplicity this fan model
has no other advantages. The main drawbacks are unrealistic radial distribution of air
velocity and faked composition of the exhaust air (in a case of fire modeling). The summary
of jet fan models available in ANSYS Fluent is shown in Figure 4 and briefly described in
Table 1 [19].
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Table 1. A brief description of fan models, based on [19].

Model Description Input Data

IO A pair of surfaces of type ‘inlet’ and ‘outlet’ Outlet velocity
A A region with the volume momentum source Unit force corresponding to the pressure jump

B Infinite thin rotor surface Pressure jump or fan characteristics, optionally
axial and radial velocity profiles

C A cylindrical volume corresponding to a
rotor of real dimensions Pressure jump or fan characteristics

Models B and C are capable to reproduce accurately the distribution of all components
of airflow velocity in a fan jet at almost every distance from an outlet. However, they
require more computational resources than other models and they are not very popular.
Model B was used to analyze the pressure loss due to traffic jam conditions in a road
tunnel [20]. Model A can be regarded as a reasonable tradeoff between accuracy and
complexity. This model is encountered in numerical analyzes of the reduced-scale tunnel
with longitudinal ventilation system where jet fans that have the inlet/outlet sections
inclined at a fixed pitch angle (α = 6◦) toward the tunnel floor [21]. Excluding the region
just behind the fan outlet the jet is reproduced very accurately. What is important, with a
given pressure jump such a fan operates properly for variable air density (for instance due
to variable temperature or variable gas composition).

The axial velocity distributions along fan axis for a jet for all discussed fan models
are shown in Figure 5. Additionally the experimental data obtained by Giesien team in
2011 [22] are shown. As Giesen reported the diameter of the fan was 0.29 m and its length
was 2.6 m. To strictly keep the experiment conditions the following parameters were
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adopted: outlet velocity of 18 m/s for IO model, unit force of 165.1 N/m3 for A model and
pressure jump of 448 Pa for models B and C.
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Analyzing the presented data, one can see that all curves but the one of IO model
almost converge at a distance shorter than 5 m. Models B and C imitate the flow in the
region just behind the fan outlet with a higher accuracy. Outputs of A model are the worst
in this region, but its curve very quickly tends to the others. Therefore, having in mind
other advantages it is widely applied for modeling of flows in entire tunnels space.

In FDS jet fans are modeled in the way similar to A model: two HVAC components
acting as an inlet and an outlet are connected with a duct (Figure 6). However, the fan
capacity is determined by a set value of volume flow rate (not thrust), which makes it
vulnerable to variable air density [23].
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There are manuscripts analyzing the phenomena taking place in tunnels, in which fan
modeling is completely omitted. A constant flow at the tunnel inlet is assumed as velocity
inlet [24,25]. This distorts the results of the analyzes because the stream generated by the
axial fan never covers the entire cross-section of the tunnel. This means that the velocity
distribution at a tunnel cross-section is not the same, it is related to the shape of the jet and
the roughness of the tunnel walls.

5. Selecting of the Turbulence Model

Fluid flow modeling is a very complex problem mainly due to turbulences. Generally,
in CFD approach the entire computational domain is divided into small cells. For each
such cell, balance equations should be solved for all quantities being considered, at least for
mass, energy and momentum. Since apart from simplest cases the direct numerical solution
of these equations, which govern the fluid flow is nowadays still generally impossible due
to technical reasons, many different simplifications are introduced to cope with this issue
in reasonable time. There are two main approaches used here: Large Eddy Simulation
(LES) and Reynolds Averaged Navier-Stokes (RANS).

In the first one only the largest eddies are directly solved and the smaller eddies are
modeled analytically [26]. It is that the predominant part of eddies is smaller than cell size,
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so a low-pass Favre filter is applied to the transport equations for mass, momentum and
energy. Hence, just mean values of considered quantities are calculated for each cell [27].
Because of its nature LES method requires transient calculation mode.

The latter approach assumes that from engineering point of view just averaged values
are important. Thus the instantaneous fluid velocity (u) is regarded as a sum of the average
velocity (U) and fluctuating velocity (u′):

ui = Ui + u′i, i = x, y, z (2)

By definition the average of fluctuating component is equal to zero u′i = 0. By
substituting this to the basic Navier-Stokes equations, a new quantity called Reynold’s
tensor of viscous stresses is achieved. The values of the tensor’s components can be solved
directly, what leads to the Reynolds Stress Model (RSM). The RSM model is accurate even
for complex and anisotropic flows with strong gradients but is computationally demanding.
Further simplifications adopt Bussinesq’s hypothesis, which assumes that turbulent stresses
are transported in a way similar to viscous stresses. Hence the components of the Reynold’s
tensor are expressed by a new single variable—turbulent viscosity. Depending on some
details there are two models developed: k-ε and k-ω. Term k corresponds to the kinetic
turbulence energy, ε is dissipation rate of turbulence energy and ω is specific dissipation
rate of turbulence energy (ω = ε/k). Both of them are nowadays somewhat like industry
standards, for instance Chen et al. and Zhao et al. used k-ε model [14,28], meanwhile
Król and Król used k-ω model [29,30]. However using them one must be aware of their
drawbacks and limitations. Very simplifying the issues, the k-ε model better describes the
bulk flows, meanwhile the k-ω model performs better for flows near walls.

FDS uses LES turbulence model by default, thus a list of researchers, who use LES is
long [31–33]. It is dedicated for low-Mach buoyancy driven flows, which are specific for
the fire phenomenon. Meanwhile ANSYS Fluent supports a majority of known models.

The performances of different turbulence models were examined again using exper-
imental data obtained by Giesien team [22]. The fan model of type A was applied and
different turbulence models were checked for free and wall jets [5,19]. The parameters of
the A fan model were adopted as earlier in Section 4.

Since LES can work only in the transient mode the data shown for it came from
averaging of 10 series recorded successively by 2 s. As a quantity being a comparison
criterion the distribution of the axial velocity for free and a wall jets was selected. It was
considered over a distance of 5 to 15 m behind the fan outlet (Figure 7).
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sipation rate of turbulence energy (ω = ε/k). Both of them are nowadays somewhat like 
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while Król and Król used k-ω model [29,30]. However using them one must be aware of 
their drawbacks and limitations. Very simplifying the issues, the k-ε model better de-
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The exact comparison of LES with other turbulence models is difficult due to different
nature of them. But it is clearly visible that for free jets all models of the RANS family gave
almost the same predictions, which were in accordance with the measurement. Meanwhile
LES predicted much higher velocity, especially close to the fan outlet. At larger distances
LES outputs fit with the measurements in a higher degree.

The situation was different for wall jets: the accordance between the RSM prediction
and the measurement was almost perfect, other RANS models overestimated the air
velocity and the LES predictions oscillated between both curves.

The observed divergences decreased as the distance from fan outlet increased. Thus
from practical point of view, when fully developed flows in long tunnels are considered
the differences are meaningless and this is why all mentioned turbulence models can be
and actually are widely applied. But if phenomena close to a fan outlet are examined the
selection of a turbulence model should be preceded by a deep analysis.

6. Impact of the External Wind

When considering the phenomena occurring in a road tunnel equipped with a ventila-
tion system, it should be taken into account that flows in the tunnel under real conditions
are affected by the external wind. Obviously, the wind has a particular importance when
natural ventilation is designed in a tunnel. Here, the wind is the main driving force af-
fecting the airflow next to the stack effect, which will be discussed later and the impact of
the road traffic. Meanwhile, analyzes often ignore the effect of wind on the flows inside
the tunnel. Simply, a specific flow velocity in the tunnel is assumed, without specifying
whether this velocity results only from the operation of fans or also from the influence of
the external wind [9]. Sometimes researchers consciously assume that the pressure inlet at
the tunnel portal is 0 Pa. This means that the influence of external wind is not taken into
account in the analyzes and this is clearly indicated [20].

The most accurate way to take into account the impact of the external wind is to
accurately model the whole vicinity of tunnel portals. The added volumes should be of
size up to several times greater than respectively tunnel portal width and height. Such
approach leads in an obvious way to an abnormal extension of the computational domain.
Figure 8 presents the numerical model of the influence of the external wind, which contains
the outer volume neighboring to the windward portal.
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Figure 8. Wind blowing at the windward portal of the modeled tunnel.

This can be avoided by an application of a certain value of dynamic pressure (∆p)
directly to the tunnel portals according to well known Bernoulli’s formula (uwind denotes
the external wind velocity):

∆p = c
ρu2

wind
2

(3)

The value of c coefficient should be adjusted to obtain the same velocity of natural
airflow as for real external wind. It depends on the geometry of the vicinity of tunnel
entrance and may require the method of trial and error.

This issue was examined by comparing two numerical models: the first was the full
one (as in Figure 8), the second contained just the tunnel interior, but the relevant dynamic
pressure was applied at the entrance portal.

The value of the dynamic pressure was calculated using the former numerical model
at a vertical plane just behind the tunnel entrance. Figure 9 presents the relation between
the additional pressure caused by the wind and the external wind velocity. A perfect
accordance with Formula (3) can be observed.
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Then the calculated values of dynamic pressure were applied to the second model.
Additionally, the airflow velocity inside the tunnel was calculated using well known semi-
empirical Darcy-Weisbach formula with wall roughness adopted as above (Dh denotes a
tunnel hydraulic diameter, L denotes its length, λ is Darcy drag coefficient depending on
Reynolds number and wall roughness):

∆p = λ
ρu2

airL
2Dh

(4)
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Using Moody’s diagram and fitting the relative roughness height hr/Dh the value of
Darcy drag coefficient can be determined as λ = 0.042. Figure 10 shows the comparison of
the obtained results. As it can be seen almost exact accordance was obtained. However,
one must have in mind that the relevant value of dynamic pressure representing the wind
impact must be determined in advance in some way.
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7. The Stack Effect Modeling

A stack effect is the second cause of the natural airflow occurrence. This appears when
colder air enters the inclined tunnel whose walls are warmer. Such temperature difference
could be caused by the circadian rhythm or the occurrence of geothermal sources. The
heat is transferred from walls to air and warms it, hence air density decreases and due to
buoyancy forces it starts to move upwards. In such a way an inclined tunnel acts as a heat
engine. Its cycle runs between the temperature of the tunnel wall (heat source) and the
ambient temperature (cooler).

There are two ways to reproduce this phenomenon. The simplest one is to introduce
additional dynamic pressure at the lower tunnel portal in a similar way as for external
wind [34,35]. Assuming air is an ideal gas, this thermally induced pressure can be expressed
by the following formula [36,37]:

∆p = ρ0Tamb

(
1

Tamb
− 1

Ti

)
g∆h (5)

In this formula Ti and Tamb denote the average air temperature inside the tunnel and
the ambient temperature respectively, ∆h denotes the difference of portal heights.

The more complex approach requires to model tunnel walls as a boundary condition
with given temperature or even to model the whole tunnel shell of concrete with given
temperature deep in the bulk. To show this some simulations were carried out for two
tunnels inclined by 3% and 6%. The ambient temperature was 7 ◦C, a the airflow was
examined for selected values of tunnel walls temperature (the phenomena inside walls
bulk were not taken into account). The numerical model contained also the volumes in
the vicinity of both tunnel portals. Its structure and the applied boundary conditions are
shown in Figure 11. The external wind velocity (at ‘velocity inlet’ boundary condition) was
set to 0 for this case.
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Figure 11. The structure of the numerical model of stack effect [15].

The average airflow longitudinal velocity at the cross-section in the middle of tunnel
length was regarded as the result. It is presented in Figure 12. Additionally values used in
Equation (5) are shown. A crucial issue was to specify the temperature of air inside the
tunnel, because it is not equal to the tunnel walls temperature. Eventually the average
value coming from the mentioned full simulation was taken. Then, as previously the flow
velocity was determined using Darcy-Weisbach formula for calculated pressure value.
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walls and external temperature.

The first observation is quite obvious: the simulation results proved that the naturally
induced airflow could be significant enough to impact on the operation of a ventilation
system. In turn this suggests that the contribution of the stack effect must be taken
into account when modeling airflows in an inclined tunnel. The approach which uses
Equation (5) gives the accurate predictions on airflow velocity but the real air temperature
inside the tunnel must be known.

The described above approaches were also validated with experimental data: using
data on wind velocity and pressure at the tunnel portals, temperature at the portals
and inside the tunnel both additional pressure components were calculated according
to Equations (3) and (5), then the flow velocity was determined using Equation (4) and
compared with the measured natural airflow velocity. The accuracy about 13% was
achieved (1.11 m/s measured and 1.28 m/s calculated) [35].
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An additional issue must be considered when modeling in ANSYS Fluent flows which
are driven by the buoyancy in inclined tunnels. The gravity must be switched on (while,
it is FDS default). It is recommended to set operating density to 0 and to use ‘Body Force
Weighted’ method for pressure spatial discretization. If any pressure boundary conditions
are applied, the pressure value must be set accounting for the pressure drop along with the
height (p0 is the reference pressure):

p = p0 − ρgh (6)

This will generate the natural atmospheric pressure profile (again it is FDS default)
It can be done with the use of a User Defined Function (UDF), which controls the given
boundary conditions. For the discussed simplified models the contributions of wind
influence and stack effect can be taken into account here together as additional pressure
components as well.

8. Monitoring of the Solution Convergence

The issue considered in this section concerns mainly steady mode numerical modeling
in ANSYS Fluent(or other similar codes). It may seem to be of less importance than
others, but neglecting it might lead to significantly inaccurate results, which is noticed by
some researchers [38,39]. Despite its apparent simplicity (just a tube) tunnels pose specific
challenges in modeling. It is a result of the aspect ratio of the computational domain.
Tunnels are extremely long in comparison to their width or height. One must be aware
that the common way of monitoring the convergence of solution could be inadequate for
some calculations, especially in steady mode. This can be illustrated in a simple numerical
model of jet fan operation, which was built up in ANSYS Fluent. In the presented example
a steady flow in a long tube (length 300 m, diameter 6 m) for a given fan capacity (pressure
jump 450 Pa) was sought using k-ω turbulence model. The fan of A type was placed at the
centerline of the tube.

The default convergence criteria (10−6 for energy and 10−3 for others residuals) were
switched off. Figure 13 presents the solution progress for different initial values of air
velocity. The points, for which the solution would converge according to the default
convergence criteria settings are marked.
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As it is easily visible there is a difference of 0.35 m/s between both solutions. Therefore
it is advisable to switch off the default convergence criteria and introduce additional
monitored values and use them as a convergence index.

9. Conclusions

The article deals with some details concerning modeling of airflow and fire devel-
opment in road tunnels. The considered issues might seem trivial for those who are
experienced in this area, but the literature review proved that some authors seem to be
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quite unaware of the importance of the matter discussed here. Meanwhile, similar papers
on good practices have appeared for other domains, in which CFD methods are also in-
volved [38,39]. The problem arises because the calculated flows almost never fit accurately
the measured ones, and this is an obvious fact to be reconciled with. But being aware of
the pitfalls one can prepare his numerical model as precisely as possible. On the other
hand some necessary tradeoffs, which may result in inaccuracy would be adopted with the
full awareness.

The presented work is a result of plenty of time spent when trying to fit numerical
models of tunnel airflows and fires to experimental data, which came from own or literature
measurements. The carried out numerical experiments showed that:

• in cases involving tunnel fires walls must not be adiabatic,
• additional flow drag caused by tunnel infrastructure can be replaced by the equivalent

wall roughness equal to 0.1 m,
• the fan model of A type (with given unit volume force) is a reasonable solution in

most cases modeled in ANSYS Fluent,
• all examined turbulence models give almost similar and reliable results for fully

developed flows, however the RSM model is the most accurate and the LES model
will not provide an average steady picture of a flow,

• in some situations, when phenomena close to a fan outlet or complex flows are consid-
ered a deep preliminary analysis is recommended to avoid inappropriate turbulence
model selection,

• the influence of the external wind and the stack effect on flows in tunnels is significant
and can be modeled by an additional pressure at the windward portal, however
determination of the exact value of this pressure is not an obvious issue,

• it is recommended to monitor the convergence process to avoid its premature termina-
tion (this concerns mainly steady calculations in ANSYS Fluent).

Basic level issues such as mesh density determination or mesh sensitivity analysis are
omitted in the paper. One should have in mind that from the first moment when building
a numerical model every assumption may have an impact on modeling accuracy. Hence,
the authors hope the presented information will appear helpful for those, who deal with
modeling of flows and fires in tunnels.
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