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Abstract: Enhancing forecasting performance in terms of both the expected mean value and variance
has been a critical challenging issue for energy industry. In this paper, the novel methodology of
finite mixture Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) approach with
Expectation–Maximization (EM) algorithm is introduced. The applicability of this methodology is
comprehensively evaluated for the forecasting of energy related time series including wind speed,
wind power generation, and electricity price. Its forecasting performances are evaluated by various
criteria, and also compared with those of the conventional AutoRegressive Moving-Average (ARMA)
model and the less conventional ARMA-GARCH model. It is found that the proposed mixture
GARCH model outperforms the other two models in terms of volatility modeling for all the energy
related time series considered. This is proven to be statistically significant because the p-values of
likelihood ratio test are less than 0.0001. On the other hand, in terms of estimations of mean wind
speed, mean wind power output, and mean electricity price, no significant improvement from the
proposed model is obtained. The results indicate that the proposed finite mixture GARCH model is a
viable approach for mitigating the associated risk in energy related predictions thanks to the reduced
errors on volatility modeling.

Keywords: finite mixture; GARCH; EM algorithm; forecasting; wind speed; wind energy; electric-
ity price

1. Background
1.1. Introduction

Volatility prediction is a major consideration for energy-related processes or variables,
which include, but are not limited to, oil prices, energy consumptions, electricity prices,
energy generations from traditional and renewable sources, and meteorological variables
such as wind speed. In recent years, renewable energy has become increasingly cost-
competitive [1]. In terms of levelized cost of generating electricity, the median costs of
solar PV and onshore wind generations are lower than those of gas and coal generations
in the United States, China, Europe, and India. Most notably, the generation of wind
energy continued to grow in 2019 and 2020 despite the COVID-19 pandemic caused
challenges [2,3]. As such, the volatility prediction of renewable energy processes becomes
increasingly important in that it can mitigate the challenges stemming from the supply of
intermittent power to market and thus facilitate the healthy and sustainable development
of renewable energy [4].

In the prediction process of many energy variables, one usually considers two aspects:
the expectation (mean) and the variance. Take wind speed forecasting as an example: wind
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farms need not only the accurate mean wind speed, but also the turbulence (variance) of
wind speed in order to effectively manage the operations with less risk. The expectation
answers the question of “what is likely to happen?”, while the variance could be explained
as “how much risk is associated?” A good understanding of this “risk” is critical to
appropriately managing the energy conversion systems, such as preparing for suitable
production plans and scheduling proactive maintenance. Also, factoring in the “risk” can
provide invincible advantages for active participants of energy exchange market to develop
effective electricity price bidding strategies.

In this paper, we propose a novel two-component approach for forecasting means
and variance of energy time series data. The approach involves finite mixture Generalized
AutoRegressive Conditional Heteroskedasticity (GARCH) models with the adoption of
Expectation–Maximization (EM) algorithm for model parameter estimation. The approach
adopts the general autoregressive–moving-average (ARMA) model and combines it with
the mixed normal GARCH (MN-GARCH) model. To comprehensively evaluate the ef-
fectiveness of the proposed approach, three energy related subjects are selected, namely,
wind speed, wind power generation, and electricity price. For each case, we develop the
finite mixture GARCH models with the help of EM algorithm and compare their prediction
performances with those of the traditional ARMA and ARMA-GARCH models. The main
contributions of this research lie in two aspects: (1) the innovative approach of combining fi-
nite mixture GARCH and EM algorithm is for the first time proposed such that non-normal
distributions could be handled and the parameter estimation could be processed efficiently;
and (2) the proposed method is found to be superior in terms of volatility modeling com-
pared with the traditional GARCH models based on the comprehensive evaluation of three
types of energy time series data. As such, the proposed approach is a general methodology
that should be applicable to both renewable and non-renewable sectors.

The remaining sections are organized as follows. In Section 1.2, a brief literature review
is provided regarding energy time series modeling and prediction, along with a critical
analysis. In Section 2, the principles of general finite mixture model and the EM algorithm,
as well as the necessary formulations are briefly introduced. In Section 3, we present the
implementation procedure of the finite mixture GARCH approach with EM algorithm, and
describe the framework. In Section 4, the proposed approach is for the first time tested
on wind speed, power generation, and electricity price data. The results are analyzed and
compared against the ARMA and ARMA-GARCH models. Finally, conclusions are drawn
in Section 5.

1.2. Brief Literature Review

There are many data-driven approaches for modeling and predicting energy related
variables, such as statistical models, neural networks, generalized impulse response anal-
ysis methods, and hybrid approaches [5–9]. These approaches are usually for mean pre-
diction. Meanwhile, the generalized autoregressive conditional heteroscedastic (GARCH)
models have been developed to model the non-constant-volatility/heteroskedasticity [10].
The heteroskedasticity generally implies that different time series observations have non-
constant variance. However, in the commonly used ordinary least square (OLS) estimation,
the presence of heteroskedasticity becomes a challenge because OLS estimation assumes
constant variances. In this case, GARCH method becomes a promising tool to deal with
time series data with time varying volatility. For various purposes, GARCH models have
been extended into different forms, such as nonlinear GARCH (NGARCH), exponen-
tial GARCH (EGARCH), and the GARCH-in-mean (GARCH-M) model [11–15]. GARCH
model applications have appeared in various areas. In particular, the popularity of GARCH
models has been increasing in energy related studies. For instance, Garcia et al. [16] propose
a GARCH model for electricity prices. The results can be further used to develop bidding
strategies or negotiation skills in the electricity market. Liu et al. [17] develop an approach
to estimate the wind power generation by modeling wind speed volatility and thus the
operation probability of wind turbines. The proposed approach is valuable not only for the
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management of wind farms, but also for the integration of wind energy in the electricity
market. Sun et al. [18] adopt ARMA-GARCH models for forecasting of solar radiation, and
show that the ARMA-GARCH models can outperform other forecasting models without
the consideration of volatility.

However, GARCH models cannot properly handle the data with heavy tailed or
asymmetric distributions (e.g., non-normal distributions). To address this, the finite mixture
GARCH approach has been developed, and it has received much attention from academia
and industry in recent years. The original concept of finite mixture model was proposed
for two normal probability density functions [19]. However, it is until last two decades
before that this methodology was adopted in serious applications due to the tremendous
advancement of computing power [20]. To date, the existing studies for finite mixture
GARCH models are concentrated in financial related areas. Tang et al. [21] indicate that
the finite mixture ARMA-GARCH model is more effective than either the mixture of AR
models or AR-GARCH models. Hossain and Nasser [22] compare the performance of finite
mixture ARMA-GARCH with those of neural network and support-vector machines (SVM)
approaches for financial time series. The results indicate that the finite mixture ARMA-
GARCH model outperforms the other two methods in terms of directional symmetry
(DS) and weighted directional symmetry (WDS). Haas et al. [23] propose a MN-GARCH
model for the daily return data on a stock index. The empirical analysis suggests good
performance of the MN-GARCH model for both in-sample fit and out-of-sample forecasting.
Similarly, Alexander and Lazar [24] apply the general normal mixture GARCH(1,1) for
exchange rate modeling. The preliminary results reveal that the two-component mixture
GARCH(1,1) model outperforms the mixture models with three or more components, as
well as the symmetric and skewed student’s GARCH models. Broda et al. [25] propose an
approach that combines GARCH model with the mixtures of Paretian distributions. The
approach is then applied to model seven major FX and equity indices, and it turns out
to be more effective than the traditional GARCH-type models. Besides, other significant
works include the mixture asymmetric GARCH model for option pricing [26], and a class
of mixture GARCH model for capturing volatility and periodicity in non-linear time series
data [27].

Although the mixture GARCH models are effective modeling tools for time series
data, the major drawback is the existence of large number of parameters, which renders
the process of model fitting rather difficult. One way for effectively estimating parameters
in finite mixture models could be the expectation–maximization (EM) algorithm. Usually,
the EM algorithm is comprised of two steps, namely, the expectation step (E-step) and
the maximization step (M-step). The E-step provides the expectation on the missing infor-
mation based on the conditional distribution of observations, while the M-step provides
the maximum likelihood estimates (MLE) to the parameters based on the observations
and expectation of the missing information. There are numerous applications of the EM
algorithm, and particularly significant efforts have been made to fit the Gaussian mixture
models by using various versions of EM algorithms [28–31]. The well-known drawbacks
of EM algorithm lie in the local convergence and initialization, but recent studies have
addressed the problem by combining new techniques, such as k-means, greedy learning,
unsupervised learning, and genetic algorithm, with the EM algorithm [32–35].

The mixture GARCH model is also able to be fitted with the EM algorithm. However,
the related studies are relatively scarce. Nikolaev et al. [36] use the EM algorithm and
mixture GARCH model for estimating the volatility of financial returns, where AR(1) is
applied for mean equation and Student’s t distribution is used as the component for the
mixture model. Cheng et al. [37] combine the normal mixture GARCH model with the
EM algorithm for S&P500 Index and Hang Seng Index forecasting, where AR(1) is also
assumed for the mean equation. In addition, Wu and Lee [38] apply the EM algorithm
and the normal mixture GARCH model to study the excess market returns, where no
mean equation is considered. Tang et al. [21] extend the mixture AR-GARCH model to
ARMA-GARCH model, which is fitted with EM algorithm and applied for the stock price
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forecasting. However, the mean equation is also considered as a mixture component, and
this arrangement is lack of support from the mixture GARCH theory.

Although the literature shows potentials for financial applications of finite mixture
GARCH models, the effort for adopting the methodology on energy related subjects has
been lacking. More importantly, the combination of finite mixture GARCH approach with
EM algorithm has not been attempted to the best of our knowledge. As such, the proposed
research helps to bridge the research gap.

2. Finite Mixture GARCH Model and EM Algorithm
2.1. Foundation of GARCH Model

It is well known that GARCH approach is effective for modeling the time varying
volatility. It was first developed by Bollerslev [10] as an extension for ARCH model.
Consider the error term εt from ARMA(p, q) model,

yt =
p

∑
i=1

aiyt−i +
q

∑
j=1

bjεt−j + εt (1)

where ai, i = 1, · · · p and bj, j = 1, · · · q are the coefficients for the auto regressive and
moving average terms, respectively. Similarly, p and q are the orders of autoregressive and
moving average terms, respectively. If the error term εt has a time varying variance, it can
be modeled as,

εt =
√

vtzt (2)

where zt is a white noise process with mean 0 and variance 1, and can be formulated by
the following equation,

vt = α0 +
P

∑
i=1

αivt−i +
Q

∑
j=1

β jε
2
t−j (3)

where α0 is a constant term, αi, i = 1, · · · P and β j, j = 1, · · ·Q are the coefficients for the
GARCH and ARCH terms, respectively. Similarly, P and Q are the orders of GARCH and
ARCH terms, respectively. In this way, the error term follows the GARCH process of order
P and Q, denoted as GARCH(P, Q). When P = 0, the current conditional variance is not
dependent upon the previous conditional variance, and this means that the GARCH model
degenerates into an ARCH model.

2.2. Gaussian Mixture Model

A Gaussian mixture model is a weighted mixture of finite Gaussian component
densities. Assume that a random variable X follows Gaussian/Normal Mixture (NM) dis-
tribution with k components, i.e., X ∼ NM

(
w1, · · ·wk; µ1, · · · µk; σ2

1 , · · · σ2
k
)
, the probability

density function of X is,

f (x) =
k

∑
i=1

wiφi(x) (4)

where wi is the weight for the ith Gaussian component with wi ∈ (0, 1) and
k
∑

i=1
wi = 1,

φi(x) is the probability density function of the ith Gaussian component represented as
φi(x) = φ

(
x; µi, σ2

i
)
, and µi and σ2

i are the mean and variance for the corresponding
Gaussian distribution.

2.3. Finite Mixture GARCH Model

The finite mixture GARCH model borrows the idea of both GARCH model and
Gaussian mixture model. Given the error term εt from ARMA(p, q) model, the finite
mixture GARCH model assumes that εt follows a Gaussian mixture distribution, i.e.,
εt ∼ NM(w1, · · ·wK; µt,1, · · · µt,K; σ2

t,1, · · · σ2
t,K), where wk is the weight for the kth Gaussian
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component with wk ∈ (0, 1) and
K
∑

k=1
wk = 1. Moreover, the concept borrowed from

GARCH model implies that the variance of the kth component σ2
t,k can be formulated

as follows,

σ2
t,k = α0,k +

P

∑
i=1

αi,kσ2
t−i,k +

Q

∑
j=1

β j,kε2
t−j, for k = 1, · · ·K (5)

where α0,k is a constant term, αi,k, i = 1, · · · P and β j,k, j = 1, · · ·Q are the coefficient for
the GARCH and ARCH terms, respectively. Similarly, P and Q are the orders of GARCH
and ARCH terms, respectively. Hence, by combining the above mentioned technology, the
finite mixture GARCH(P, Q) can be formulated as follows,

yt =
p

∑
i=1

aiyt−i +
q

∑
j=1

bjεt−j + εt, (6)

ŷt =
p

∑
i=1

aiyt−i +
q

∑
j=1

bjεt−j (7)

p(yt) =
K

∑
k=1

wkG
(

yt, ŷt, σ2
t,k

)
(8)

σ2
t,k = α0,k +

P

∑
i=1

αi,kσ2
t−i,k +

Q

∑
j=1

β j,kε2
t−j (9)

where p(yt) is the probability density function of yt, and σ2
t,k is the variance of the kth

component at time t.

2.4. EM Algorithm for Estimating Parameters in Finite Mixture GARCH Models

As mentioned previously, in this study we adopt the EM algorithm to find parameters
of finite mixture GARCH models that maximize the log-likelihood function. The joint
probability of the finite mixture GARCH model is

p(y) =
T

∏
t=1

K

∑
k=1

wkG
(

yt, ŷt, σ2
t,k

)
(10)

and the optimal parameters that maximize the log-likelihood function need to be found,

θ̂ = arg max
θ

ln p(y) (11)

where θ represents the set of parameters in the model.
The two steps of EM algorithm, namely, E-step and M-step, are described below for

the finite mixture GARCH model fitting.

E-step

Let Z = {Zt}T
t=1 be the unobserved information, and we define Zt = k. If yt is

produced by the kth component of the model, we have the following equations

p(y, Z) =
T

∏
t=1

p(yt|Zt)p(Zt) (12)

p(Zt = k) = wk (13)
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Given the information above, the complete information joint distribution is

p(y, Z) =
T

∏
t=1

p(yt|Zt)p(Zt) (14)

and the corresponding log-likelihood function

ln p(y, Z) =
T

∑
t=1

ln p(yt|Zt)p(Zt) (15)

Hence, the Q function of the EM algorithm will be

Q(θ, θ∗)

= EZ|y,θ∗

{
T
∑

t=1
ln p(yt|Zt)p(Zt)

}
=

K
∑

Z1=1
· · ·

K
∑

ZT=1

{
T
∑

t=1
ln[p(yt|Zt)p(Zt)]

T
∏
l=1

p(Zl |yl , θ∗)

}
=

K
∑

Zt=1

T
∑

t=1
ln[p(yt|Zt)p(Zt)]p(Zt|yt, θ∗)

=
T
∑

t=1

K
∑

k=1
ln[p(yt|Zt)p(Zt = k)]p(Zt = k|yt, θ∗)

=
T
∑

t=1

K
∑

k=1
p(Zt = k|yt, θ∗)ln wkG

(
yt, ŷt, σ2

t,k

)
.

(16)

The probability density function p(Zt = k|yt, θ∗) can be further extended as follows,

p(Zt = k|yt, θ∗) =
wkG(yt, ŷt, σ2

t,k)

∑K
k=1 wkG

(
yt, ŷt, σ2

t,k

) (17)

and this completes the E step of the EM algorithm.

M-step

In the M-step, we maximize the Q function, as provided in the E-step. The parameters that

need to be adjusted are
{

w1, · · ·wk, a1, · · · ap, b1, · · · bq
}

and
{

α0,k, · · · αp,k, β1,k, · · · βq,k

}K

k=1
.

Since
{

α0,k, · · · αP,k, β1,k, · · · βQ,k
}K

k=1 must be greater than zero, we replace them by
the following,

αi,k = eδi,k for i = 0, · · · P, (18)

β j,k = eγj,k for j = 1, · · ·Q. (19)

There are many ways to maximize the Q function by adjusting these parameters. One
popular way is to take the derivative with respect to each parameter and set all derivatives
to zero to find the optimal values of parameters that maximize the Q function. Another
way to maximize the Q function is the numerical approach. In our paper, we directly
apply the build-in numerical general optimization function “nls()” in R, an open source
statistical computing software, to achieve this purpose. This build-in function can efficiently
provide estimates for the optimal parameters in the Q function by using a Newton-type
algorithm [39,40].

3. Implementing Finite Mixture Methodology

Three different modeling approaches, namely ARMA, ARMA-GARCH, and mixture
GARCH approaches are examined. The main purpose is to compare the proposed mixture
GARCH model with the ARMA and ARMA-GARCH models, and determine whether the
proposed methodology performs better in modeling energy time series data. Intuitively,
the forecasting result of the proposed mixture GARCH approach should be least as good as
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the ARMA and ARMA-GARCH models, since the two conventional models use the same
theory for the mean equation, while the proposed finite mixture GARCH model makes
significant refinement on variance modeling. The tasks of this research are to rigorously
examine if the intuition (or hypothesis) is valid, and to make quantitative comparison
among the three approaches based on various performance measures.

The mixture GARCH models are fitted by the EM algorithm mentioned in Section 2.4.
This procedure is coded in R. The computing time can vary from 1 min to 10 min for a
regular data sample, depending on the selection of initial values. This is sufficiently fast
for most forecasting applications. On the other hand, for fitting the ARMA and ARMA-
GARCH models, the commercial statistical software package SAS is adopted for ease
of implementation. For model comparison, the outputs of SAS need to be exported to
another code written in R so that the required performance measures can be calculated and
compared among the three methods.

Overall, the process for model fitting and comparison can be summarized in Figure 1.
In this paper, three types of energy time series data are collected from various sources.
For each type of data, the procedure in Figure 1 is executed and results are obtained.
As mentioned above, the EM algorithm and the observed data are first applied to fit
the mixture GARCH models by using an in-house code written in R. The outputs from
this model fitting process include the estimated parameters, fitted data and performance
measures. Meanwhile, the observed data is also provided to SAS for fitting the ARMA and
ARMA-GARCH models. Similar to the model fitting process in R, the outputs from SAS
also contain fitted data and estimated parameters. However, some performance measures
cannot be generated automatically in SAS.
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Figure 1. Procedure of fitting finite mixture GARCH model and comparison with ARMA and
ARMA-GARCH models.

To tackle this issue, the fitted data from SAS, as well as the observed data, become the
input for our code of performance measure computation in R. At last, the performances of
the three models are compared. We adopt a variety of performance measures for comparing
the proposed approach with other models. They include coefficient of determination
(R2), the value of log-likelihood function, Akaike information criterion (AIC), Bayesian
information criterion (BIC), mean absolute error (MAE), mean absolute percentage error
(MAPE), directional symmetry (DS) and weighted directional symmetry (WDS). Also,
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statistical tests, such as log-likelihood rate test and Ljung-Box test, are applied to evaluate
the model performance. The definitions of these metrics are provided in Appendix A.

4. Case Studies

To comprehensively test the applicability of the proposed finite mixture GARCH
approach, we apply it to the predictions of hourly wind speed, wind power output, and
electricity price, respectively, and compare the performances with the ARMA and ARMA-
GARCH models. As such, data on the three time series variables are collected and used
to fit the prediction models. The hourly wind speed data from a wind observation site in
Colorado, U.S. and the hourly wind power generation data from a 900 kW NEG Micon
wind turbine located in North Dakota, U.S. are obtained from our collaborators, and the
hourly electricity price data are collected online New England ISO, U.S. (https://www.
iso-ne.com/isoexpress/web/reports/pricing/-/tree/lmps-rt-hourly-final, accessed on
15 October 2020). All three datasets are collected for one year, and thus each dataset has
8784 hourly entries.

Note that the case studies mainly focus on the capability of the proposed finite mixture
model on representing the dynamic development of energy time series variables. Therefore,
the main consideration is on the sufficiency of model representation of the stochastic
terms. For selecting the orders of GARCH models, i.e., the P and Q values, we employ
the widely recommended GARCH(1,1) model according to the literature. For instance,
Haas et al. [41] show that more than one lag in the conditional variance equations does
not lead to significant improvement of the model. Alexander and Lazar [24] suggest that
instead of leading to great improvement, the finite mixture of Gaussian models with more
than two components is likely to produce biased estimation. Meanwhile, it is verified
that ARMA(2,2) is suitable for modeling the mean component for all the three time series
variables in this study. As a result, the models adopted for fitting and comparison are
ARMA(2,2), ARMA(2,2)-GARCH(1,1), and two component mixture GARCH(1,1) models.
The detailed results are presented in the following.

4.1. Wind Speed

To make a fair assessment of the proposed methodology on wind speed prediction,
three one-month wind speed data samples are drawn from the entire wind speed dataset.
The time series plots of the three samples are shown in Figure 2. Note that the averages
are 3.60, 1.99, 2.56 m/s (or 8.05, 4.44, 5.73 mph), and the standard deviations are 2.56, 1.40,
2.09 m/s (or 5.72, 3.14, 4.68 mph) for wind speed samples 1–3, respectively. After fitting the
ARMA(2,2), ARMA(2,2)-GARCH, and the 2-component mixture GARCH(1,1) model, the
estimated parameters and the performance measures are summarized in Tables 1–3 for the
three samples, respectively. In the tables, the first 15 rows of parameters (i.e., from rows a1
to w2) represent the estimated parameters of the three models, while the remaining rows
respresent the performance of the models.

First of all, the results are analyzed for the first wind speed data sample in Table 1.
It can be found that the proposed 2-component mixture GARCH can fit the wind speed
data well in terms of R2 (73.46%). Although the model can capture the majority of the total
variance, the remaining 26.54% of the total variance (from the fluctuation of wind speed
time series) still produces inaccuracy in the prediction. By comparing the proposed model
with ARMA and ARMA-GARCH models in term of R2, MAE, and MAPE, DS, and WDS, it
can be found that the three models actually produce similar values in terms of these metrics.
This suggests that the proposed approach does not significantly improve the prediction
accuracy with regard to the mean wind speed estimation. It can be attributed to the fact
that all the three methods employ the same equation for the mean wind speed modeling.

https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/lmps-rt-hourly-final
https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/lmps-rt-hourly-final
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Figure 2. Time series plots of three wind speed samples.
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Table 1. Estimated parameters and performance measures for the first wind speed data sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.808 1.525 1.728
a2 (AR2) −0.8080 −0.5363 −0.7324
b1 (MA1) 0.8342 0.4846 −0.7549
b2 (MA2) 0.1376 0.1946 −0.1222

α0 - 3.740 -
α1 (GARCH) - 0.3463 -
β1 (ARCH) - 0.2750 -

α0,1 - - 4.887
α0,2 - - 0.02051

α1,1 (GARCH) - - 0.5711
α1,2 (GARCH) - - 0.8631
β1,1 (ARCH) - - 0.5488
β1,2 (ARCH) - - 0.04721

w1 - - 0.3148
w2 - - 0.6852
R2 73.30% 72.94% 73.46%

Log-likelihood −1859 −1841 −1741

LR-test (ARMA) - 35.26 236.1
(<0.0001) (<0.0001)

LR-test (GARCH) - - 200.8
(<0.0001)

AIC 3725 3696 3505
BIC 3744 3728 3560

MAE 2.020 2.007 1.995
MAPE 37.03% 33.83% 34.07%

DS 52.03 51.89 51.89
WDS 198.2 198.8 195.1

Ljung-Box Tests (20) 17.21 20.19 14.48
(0.6393) (0.4462) (0.8053)

Table 2. Estimated parameters and performance measures for the second wind speed data sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.660 1.730 1.617
a2 (AR2) −0.6623 −0.7316 −0.6238
b1 (MA1) 0.8083 0.8951 −0.7718
b2 (MA2) 0.07321 0.01503 −0.09506

α0 - 2.4268 -
α1 (GARCH) - −0.08970 -
β1 (ARCH) - 0.3149 -

α0,1 - - 0.9122
α0,2 - - 0.03518

α1,1 (GARCH) - - 0.8360
α1,2 (GARCH) - - 0.8092
β1,1 (ARCH) - - 0.4016
β1,2 (ARCH) - - 0.1172

w1 - - 0.0990
w2 - - 0.9010
R2 70.28% 70.22% 71.04%

Log-likelihood −1454 −1430 −1294

LR-test (ARMA) - 48.94 320.4
(<0.0001) (<0.0001)

LR-test (GARCH) - - 271.5
(<0.0001)

AIC 2917 2874 2613
BIC 2935 2873 2668

MAE 1.154 1.156 1.152
MAPE 33.16% 33.24% 31.96%

DS 48.31 47.91 48.58
WDS 115.0 113.4 115.2

Ljung-Box Tests (20) 15.19 17.45 14.48
(0.7652) (0.6233) (0.8053)
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Table 3. Estimated parameters and performance measures for the third wind speed data sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.386 1.396 1.332
a2 (AR2) −0.3948 −0.4018 −0.3411
b1 (MA1) 0.5087 0.4546 −0.3889
b2 (MA2) 0.1345 0.1621 −0.1608

α0 - 0.2214 -
α1 (GARCH) - 0.7357 -
β1 (ARCH) - 0.2648 -

α0,1 - - 0.1107
α0,2 - - 0.003375

α1,1 (GARCH) - - 0.8411
α1,2 (GARCH) - - 0.7847
β1,1 (ARCH) - - 0.1643
β1,2 (ARCH) - - 0.2942

w1 - - 0.4956
w2 - - 0.5044
R2 76.61% 76.49% 76.47%

Log-likelihood −1665 −1555 −1517

LR-test (ARMA) - 219.2 295.8
(<0.0001) (<0.0001)

LR-test (GARCH) - - 76.58
(<0.0001)

AIC 3337 3124 3057
BIC 3356 3156 3113

MAE 1.542 1.540 1.539
MAPE 32.15% 32.15% 31.91%

DS 52.09 53.04 52.90
WDS 151.7 154.2 154.2

Ljung-Box Tests (20) 28.36 31.78 32.47
(0.1011) (0.04565) (0.03853)

On the other hand, in term of “Log-likelihood”, AIC, and BIC, it is clear that the
mixture GARCH model outperforms the other two models. As shown in Table 1, the
2-component mixture GARCH model produces a much higher “Log-likelihood” value of
−1741 and much lower AIC and BIC values of 3505 and 3560, respectively, compared with
the ARMA and ARMA-GARCH models. As mentioned above, higher “Log-likelihood”
values and lower AIC and BIC values suggest a better model. To verify if the finding
that the proposed model is better than the other two models is statistically significant,
two likelihood ratio tests, namely “LR-test (ARMA)” and “LR-test (GARCH)”, are run.
The former test uses ARMA(2,2) as the null model, while the later uses the ARMA(2,2)-
GARCH(1,1) model as the null model. Note that the two tests are not applicable for
ARMA(2,2), since the former test uses it as a constrained (null) model and the later test
uses a null model that has more parameters than ARMA(2,2), which will lead to negative
test statistics. Similarly, LR-test (GARCH) also is not applicable to ARMA(2,2)-GARCH(1,1)
model, since it is used as the null model in the test. As indicated by the likelihood ratio
test results in Table 1, the finding that the proposed model is better than the other two
models in terms of volatility modeling is indeed statistically significant. Certainly, it is not
difficult to observe that the GARCH model is significantly better than ARMA model in
term of volatility modeling. The reason for the two observations can be traced back to in
their model assumptions: the ARMA model presumes that the variance of wind speed is
constant; the ARMA-GARCH model assumes autoregressive conditional variance; and the
mixture GARCH model further extends the variance assumption to the mixture of multiple
autoregressive conditional variances.

The results from the first wind speed data sample indicate the proposed mixture
model outperforms the other two in term of volatility modeling. To further verify our
findings, the second and third data samples are analyzed. It can be seen that the results
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from the two data samples, shown in Tables 2 and 3 respectively, are indeed very similar
to the results from Table 1. Both show comparable prediction accuracies in term of the
mean wind speed estimations among the three models, and the proposed mixture GARCH
model is the most effective for volatility modeling. In both cases, the 2-component mixture
GARCH model produces a much higher “Log-likelihood” value and much lower AIC and
BIC values.

4.2. Wind Power Generation

Similarly, three one-month wind power generation samples are drawn from the wind
power generation dataset. The time series plots of the three data samples are shown in
Figure 3. Note that the averages are 322.08, 397.54, 303.39 kW and the standard deviations
are 313.84, 275.98, 277.98 kW for wind generation samples 1–3, respectively. At first
glance, the wind power generation is clearly more volatile than the wind speed, and this
is further shown by the results later. For the three wind power generation samples, the
parameters estimation and performance measures of ARMA(2,2), ARMA(2,2)-GARCH(1,1)
and 2-component mixture GARCH(1,1) models are summarized in Tables 4–6.

Table 4. Estimated parameters and performance measures for the first wind generation sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.650 1.780 1.711
a2 (AR2) −0.6603 −0.8088 −0.7139
b1 (MA1) 0.4090 0.5056 −0.4239
b2 (MA2) 0.1433 0.0765 −0.2246

α0 - 8.498 -
α1 (GARCH) - 0.7362 -
β1 (ARCH) - 0.4519 -

α0,1 - - 360.8
α0,2 - - 0.3149

α1,1 (GARCH) - - 0.04405
α1,2 (GARCH) - - 0.5935
β1,1 (ARCH) - - 12.23
β1,2 (ARCH) - - 0.5591

w1 - - 0.1234
w2 - - 0.8766
R2 92.95% 92.39% 92.87%

Log-likelihood −4346 −4121 −3924

LR-test (ARMA) - 449.4 843.0
(<0.0001) (<0.0001)

LR-test (GARCH) - - 393.6
(<0.0001)

AIC 8699 8256 7872
BIC 8718 8288 7928

MAE 46.93 52.63 46.76
MAPE 66.56% 65.62% 69.99%

DS 63.56 63.29 61.81
WDS 4472 4915 4670

Ljung-Box Tests (20) 36.07 44.12 39.87
(0.0151) (0.0015) (0.0052)
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Table 5. Estimated parameters and performance measures for the second wind generation sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 0.6320 1.196 1.749
a2 (AR2) 0.3400 −0.2056 −0.7482
b1 (MA1) −0.5352 −0.003100 −0.5788
b2 (MA2) −0.1092 0.02231 −0.1249

α0 - 4362 -
α1 (GARCH) - 0.03928 -
β1 (ARCH) - 0.4154 -

α0,1 - - 1.453
α0,2 - - 239.4

α1,1 (GARCH) - - 0.1320
α1,2 (GARCH) - - 0.9659
β1,1 (ARCH) - - 0.9396
β1,2 (ARCH) - - 0.005912

w1 - - 0.5198
w2 - - 0.4802
R2 91.04% 91.00% 91.31%

Log-likelihood −4339 −4315 −4183

LR-test (ARMA) - 48.72 312.9
(<0.0001) (<0.0001)

LR-test (GARCH) - - 264.2
(<0.0001)

AIC 8687 8644 8390
BIC 8705 8676 8445

MAE 56.00 56.11 56.35
MAPE 35.69% 36.13% 36.48%

DS 57.09 57.22 57.49
WDS 5533.07 5567.80 5481.77

Ljung-Box Tests (20) 19.39 21.76 21.39
(0.4964) (0.3537) (0.3745)

Table 6. Estimated parameters and performance measures for the third wind generation sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 0.5032 1.885 1.563
a2 (AR2) 0.4421 −0.8907 −0.5787
b1 (MA1) −0.6758 0.8001 −0.3866
b2 (MA2) −0.1665 0.1363 −0.01207

α0 - 32.74 -
α1 (GARCH) - 0.3092 -
β1 (ARCH) - 2.431 -

α0,1 - - 0.5342
α0,2 - - 0.07412

α1,1 (GARCH) - - 0.9420
α1,2 (GARCH) - - 0.6459
β1,1 (ARCH) - - 0.2585
β1,2 (ARCH) - - 0.4728

w1 - - 0.09006
w2 - - 0.9099
R2 89.23% 88.19% 89.03%

Log-likelihood −4413 −4412 −4095

LR-test (ARMA) - 2.100 635.7
(0.5519) (<0.0001)

LR-test (GARCH) - - 633.6
(<0.0001)

AIC 8834 8838 8214
BIC 8853 8870 8270

MAE 60.38 65.49 60.48
MAPE 90.54% 87.51% 87.86%

DS 60.59 60.86 60.73
WDS 5889 6120 5908

Ljung-Box Tests (20) 16.08 15.82 26.46
(0.7116) (0.7278) (0.1512)
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Figure 3. Time series plots of three wind power generation samples.

Based on the results from the first wind generation data sample in Table 4, it can be
seen the three models have close performances for mean estimation in terms of R2, MAE,
MAPE, DS, WDS and Ljung-Box test, and no clear winner can be declared. However,
in terms of volatility modeling, the proposed mixture GARCH model is superior to the
ARMA and ARMA-GARCH models. This is because it generates a higher “Log-likelihood”
value (−3924), a lower AIC value (7872), and a lower BIC (7928) value. In addition, the two
likelihood ratio tests, namely, LR-test (ARMA) and LR-test (GARCH), also suggest that the
mixture GARCH model is better in terms of volatility modeling. However, by comparing
the results of LR-test (ARMA) and LR-test (GARCH) in Table 4 with the wind speed
results in Tables 1–3, it is clear that the test results in Table 4 are larger. This implies that
the mixture GARCH model makes more significant improvement in wind power output
modeling than in wind speed modeling. The greater improvement indirectly provides
evidence for the “wilder” (greater and non-constant) volatility that lies in the wind power
output data. This is because a “wilder” volatility provides more room for improvement
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in term of volatility modeling. Another evidence of higher fluctuation in the wind power
output data can be reflected by the higher R2 and MAPE values observed in Table 4 as
compared to those in Tables 1–3. A higher R2 usually means a better fit in terms of total
variation explained by the model. As suggested by the formulas for R2 and MAPE in
Appendix A, higher values of R2 could result from larger values of ∑

i
(yi − y)2, or smaller

values of ∑
i
(yi − ŷi)

2. However, a higher MAPE usually indicates a worse fit (i.e., a larger

n
∑

i=1
|ŷi − yi| value). Thus, it is reasonable to assert that the very large values of ∑

i
(yi − y)2

(volatility/variance/fluctuation) are the main contributing factor for the large values of
both R2 and MAPE.

The findings obtained from the first wind generation data sample can also be verified
by the results of the other two data samples in Tables 5 and 6. The three models show
similar performance for mean estimation in terms of R2, MAE, MAPE, DS, WDS and
Ljung-Box test, while the proposed approach shows the upperhand for volatility modeling.
It is consistently supported by the much larger “Log-likelihood” value and much lower
AIC value and BIC value from the proposed approach compared with the other two
models. It is worthwhile to mention that for the third wind generation data sample, the
ARMA(2,2)-GARCH(1,1) model does not perform better than the ARMA model even in
terms of volatility modeling, as suggested by the LR test(GARCH), AIC and BIC values.
However, the mixture GARCH model can still outperform the other two models. This
confirms that the mixture GARCH model is indeed a more powerful tool as compared to
the conventional GARCH model, because it even suits the situation where the GARCH
model may not work well.

4.3. Electricity Price

Three one-month data samples of day-ahead electricity price (New England Locational
Marginal Pricing) are drawn from the same time periods as wind speed and wind power
generation. The corresponding time series plots are shown in Figure 4. Note that the
averages are 70.65, 52.25, 91.97 $/MWh and the standard deviations are 27.62, 19.99,
33.75 $/MWh for electricity price samples 1–3, respectively. The estimated parameters
and performance measures from the models are summarized in Tables 7–9 for the three
electricity price data samples, respectively. By analyzing the three tables, the findings from
wind speed and wind power generation are once again verified. In other words, the three
models have close performance for mean estimation as reflected by R2, MAE, MAPE, DS,
WDS and Ljung-Box tests. Although the proposed approach shows slightly better results
in some metrics compared with the other two models, it also has slightly errors in other
metrics. On the other hand, the mixture GARCH model consistently outperforms the other
two models in term of volatility modeling, as suggested by the “Log-likelihood”, AIC and
BIC values, as well as the likelihood ratio tests. Table 7 shows that for the first electricity
price sample, the “Log-likelihood” value of the proposed approach is −3033, larger than
those of ARMA and ARMA-GARCH models. The AIC and BIC values are 6090 and
6145, respectively, smaller than the counterparts of ARMA and ARMA-GARCH models.
Tables 8 and 9 further confirm the same trend for volatility modeling of electricity price.

Another interesting finding is that the MAPE values for the electricity price samples
are significantly smaller, as compared with the results from the wind speed and wind
power output samples. Also, Figure 4 shows that the three electricity price time series
samples are much more “stable” or less fluctuating than the wind speed and wind power
output. As such, the metric of MAPE heavily depends on the characteristic (volatility)
of data.
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Figure 4. Time series plots of three electricity price data samples.



Energies 2021, 14, 2352 17 of 22

Table 7. Estimated parameters and performance measures for the first electricity price sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.610 −0.03110 1.641
a2 (AR2) −0.6101 0.9603 −0.6407
b1 (MA1) 0.8013 −1.141 −0.7369
b2 (MA2) 0.1088 −0.1355 −0.2082

α0 - 210.6 -
α1 (GARCH) - 0.03493 -
β1 (ARCH) - 0.4504 -

α0,1 - - 0.09248
α0,2 - - 14.98

α1,1 (GARCH) - - 0.2966
α1,2 (GARCH) - - 0.9593
β1,1 (ARCH) - - 0.4872
β1,2 (ARCH) - - 0.009343

w1 - - 0.5791
w2 - - 0.4209
R2 55.53% 50.02% 56.76%

Log-likelihood −3223 −3189 −3033

LR-test (ARMA) - 67.58 379.6
(<0.0001) (<0.0001)

LR-test (GARCH) - - 312.0
(<0.0001)

AIC 6454 6392 6090
BIC 6472 6424 6145

MAE 11.59 11.89 11.65
MAPE 19.05% 17.91% 19.14%

DS 52.36 53.04 53.31
WDS 1081 1220 1113

Ljung-Box Tests (20) 67.94 141.0 78.52
(<0.0001) (<0.0001) (<0.0001)

Table 8. Estimated parameters and performance measures for the second electricity price sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.654 1.801 1.783
a2 (AR2) −0.6544 −0.8012 −0.7833
b1 (MA1) 0.9953 0.6557 −0.7019
b2 (MA2) −0.06100 0.3195 −0.2905

α0 - 23.26 -
α1 (GARCH) - 0.3448 -
β1 (ARCH) - 0.6309 -

α0,1 - - 8.669
α0,2 - - 13.21

α1,1 (GARCH) - - 0.4210
α1,2 (GARCH) - - 0.6365
β1,1 (ARCH) - - 0.9873
β1,2 (ARCH) - - 0.1368

w1 - - 0.4086
w2 - - 0.5914
R2 60.96% 57.31% 59.26%

Log-likelihood −2934 −2700 −2635

LR-test (ARMA) - 467.2 596.9
(<0.0001) (<0.0001)

LR-test (GARCH) - - 129.7
(<0.0001)

AIC 5875 5414 5294
BIC 5894 5446 5350

MAE 7.069 6.779 6.648
MAPE 13.31% 12.16% 12.02%

DS 59.92 60.05 60.19
WDS 622.9 656.2 627.3

Ljung-Box Tests (20) 29.77 79.99 67.33
(<0.0001) (<0.0001) (<0.0001)
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Table 9. Estimated parameters and performance measures for the third electricity price sample.

Parameter ARMA(2,2) ARMA + GARCH ARMA + Mixture GARCH

a1 (AR1) 1.586 1.624 1.723
a2 (AR2) −0.5860 −0.6251 −0.7236
b1 (MA1) 0.6347 0.6752 −0.7605
b2 (MA2) 0.2795 0.2676 −0.1927

α0 - 189.4 -
α1 (GARCH) - 0.1104 -
β1 (ARCH) - 0.5045 -

α0,1 - - 0.04628
α0,2 - - 0.09644

α1,1 (GARCH) - - 0.8695
α1,2 (GARCH) - - 0.9780
β1,1 (ARCH) - - 0.5788
β1,2 (ARCH) - - 0.005595

w1 - - 0.2438
w2 - - 0.7562
R2 66.65% 66.44% 67.19%

Log-likelihood −3265 −3211 −3112

LR-test (ARMA) - 107.5 305.5
(<0.0001) (<0.0001)

LR-test (GARCH) - - 198.0
(<0.0001)

AIC 6538 6436 6248
BIC 6556 6468 6303

MAE 12.68 12.66 12.48
MAPE 19.87% 19.52% 18.74%

DS 58.30 58.16 57.09
WDS 1165 1163 1146

Ljung-Box Tests (20) 22.42 21.63 32.40
(0.3183) (0.3612) (0.0392)

4.4. Limitations

The proposed methodlogy, in its current form, has certain limitations. Addressing
the limitations would become important research tasks in the future. First, the proposed
approach adopts the relatively simple MN-GARCH model, while many other forms of
GARCH models (e.g., NGARCH, EGARCH, and GARCH-M models) should also be
considered. It would be intriguing to compare the performances of those GARCH models
with the MN-GARCH model in the proposed approach. Second, the methodology is limited
to univariate processes. Many applications might require the capability of describing and
predicting multivariate processes. For instance, wind energy prediction might be improved
with both wind speed and direction information [42]. As such, it is belived that the
extension of the proposed methodology to multivariate processes is of great importance.
Third, the nonlinear relatiosnhip between variances might be captured with higher accuracy
by introducing machine learning models. Although GARCH models have been successful
in volitility modeling and enjoy elegant and simple mathematical construction, machine
learning models such as support vector machines (SVM) and covolutional neural network
(CNN) have started to play an important role in this field. The combination of the two
approaches has been reported to be promising. As such, in the futture, the investigation on
the combined machine learning-GARCH approach should be conducted and compared
with the approach proposed in this work.

5. Conclusions

For modeling and predicting the challenging renewable energy and energy related
time series subjects, we propose a two-component finite mixture GARCH approach that
adopts ARMA model and combines it with MN-GARCH model for volatility modeling.
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Meanwhile, we apply the EM algorithm to efficiently estimate the model parameters. To
verify the effectiveness of the proposed approach, we not only apply this approach to three
different energy related time series, namely, wind speed, wind power generation, and
electricity price, but also test three random data samples for each time series to ensure
results consistency.

For all the three time series, the conventional ARMA and ARMA-GARCH models
are also adopted to compare with the proposed mixture GARCH model. In this case,
ARMA(2,2) and ARMA(2,2)-GARCH(1,1) models are found suitable. The results generate
two general findings, which are consistent among all data samples of any particular time
series variable, as well as among different time series variables. First, there is little evidence
that the proposed 2-component mixture GARCH approach can always outperform the
ARMA and ARMA-GARCH models in term of estimations of mean wind speed, mean wind
power output, or mean electricity price. Second, the proposed approach does outperform
the ARMA and ARMA-GARCH models in terms of volatility modeling, and the superior
performance is proven to be statistically significant. The practical significance of the
findings is clear: the proposed approach provides a novel and robust tool for energy related
predictions which can effectively mitigate the prediction risks thanks to reduced errors in
volatility estimation.
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Appendix A

Coefficient of determination (R2)

R2 is commonly used to measure the goodness of fit of a model by computing the
fraction of the total variance. The formula for calculating R2 is shown as follows,

R2 = 1− ∑i (yi − ŷi)
2

∑i (yi − y)2

where yi are the observed values, ŷi is the estimated value, and y is the sample mean.

Akaike information criterion (AIC)

AIC is an indicator on how well a statistical model fits the data. The formula for
calculating AIC is as follows,

AIC = 2k-2ln(L),

where k is the number of model parameters, and ln(L) is the maximized log likelihood for
the model.

Bayesian information criterion (BIC)

Being closely related to AIC, BIC is another tool of model selection based on likelihood
function. The model with the lowest BIC is selected. BIC is calculated as follows,

BIC = kln(n)-2ln(L),
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where k is the number of model parameters, n is the number of data points, and ln(L) is the
maximized log likelihood for the model.

Mean absolute error (MAE)

MAE is a measure for the average magnitude of prediction errors, and a lower MAE
value is preferred. The formula for calculating MAE is as follows,

MAE =
1
n

n

∑
i=1
|ŷi − yi|

where yi are the observed values, ŷi is the estimated value, and n is the sample size.

Mean absolute percentage error (MAPE)

MAPE is an indicator of the overall relative prediction accuracy for a model. It usually
adopts the following form,

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
where yi are the observed values, ŷi is the estimated value, and n is the sample size.

Directional symmetry (DS)

DS is roughly defined as “things going the same direction” and can be calculated as,

DS =
100

n− 1

n

∑
i=2

di

di =

{
1, if (yi − yi−1)(ŷi − ŷi−1) ≥ 0
0, otherwise

where yi are the observed values, ŷi is the estimated value, and n is the sample size.

Weighted directional symmetry (WDS)

WDS measures the magnitude of forecasting error and the direction. It places more
penalty on the targets with incorrectly predicted directions than those with correctly
predicted directions. WDS is defined as,

WDS =
100 ∑n

i=2 di|ŷi − yi|
n

di =

{
0.5, if (yi − yi−1)(ŷi − ŷi−1) ≥ 0
1.5, otherwise

where yi are the observed values, ŷi is the estimated value, and n is the sample size.

Log-likelihood rate test

The likelihood ratio test can be used to compare the fits of two competing models. The
test statistic D is calculated as follows,

D = −2 ln(“likeihood f or null model” /“likelihood f or alternative model”)

where the statistic D is assumed to follow the chi-squared distribution with degrees of
freedom df1-df2, which measures the difference in the number of parameters between the
two models.

Ljung–Box test

The Ljung–Box test measures the randomness and independence of observed data. It
can be defined as follows,

Q = n(n + 2)
h

∑
k=1

ρ̂2
k

n− k
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where n is the sample size, ρ̂2
k is the sample autocorrelation at lag k, and h is the number of

lags being tested [15].
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