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Abstract: For the stable supply of oil and gas resources, industry is pushing for various attempts
and technology development to produce not only existing land fields but also deep-sea, where
production is difficult. The development of flow assurance technology is necessary because hydrate
is aggregated in the pipeline and prevent stable production. This study established a system that
enables hydrate diagnosis in the gas pipeline from a flow assurance perspective. Learning data were
generated using an OLGA simulator, and temperature, pressure, and hydrate volume at each time
step were generated. Stacked auto-encoder (SAE) was used as the AI model after analyzing training
loss. Hyper-parameter matching and structure optimization were carried out using the greedy
layer-wise technique. Through time-series forecast, we determined that AI diagnostic model enables
depiction of the growth of hydrate volume. In addition, the average R-square for the maximum
hydrate volume was 97%, and that for the formation location was calculated as 99%. This study
confirmed that machine learning could be applied to the flow assurance area of gas pipelines and it
can predict hydrate formation in real time.

Keywords: gas hydrate; diagnostic model; artificial intelligence; stacked auto-encoder; greedy
layer-wise

1. Introduction

According to the 2019 EIA Energy Report, global energy consumption will continue to
grow until 2050 [1]. According to this report, several resources are used as energy sources,
including oil, natural gas, coal, nuclear power, and hydro. Still, the most crucial thing of
them is oil and natural gas. Thus, to ensure a stable supply of oil and gas demand, industry
is pursuing various technological attempts to effectively develop existing land fields. Hu
studied crucial parameters and their effects on recovery factor in the tight reservoir and
carbon dioxide adsorption [2], and Mazarei researched stable gas supply in cold weather [3].
This expansion of research leads to the production in areas where production is difficult
such as deep seas. In sub-sea production systems, petroleum presenting in the reservoir
is a mixture of various components. When pressure and temperature change during
production, many deposition problems can occur, such as paraffin, hydrate, and resins.
This deposition usually interferes with oil and gas flow in the pipeline, from which the flow
assurance concept was proposed [4]. Flow assurance is an engineering technology used to
ensure the hydrocarbon fluids are transmitted economically over the life of a project in an
inappropriate environment [5].

In general, deposition in inaccessible deep-sea production systems is difficult to
eliminate. They usually reduce the cross-sectional area of pipeline and hinder stable
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production (Figure 1). For example, there have been 51 cases of wax deposition during
production in the Gulf of Mexico over 10 years, and it costs a lot to solve [6].
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Figure 1. Parametric diagram of the production of paraffin waxes and hydrates in a pipeline (Non-
Newtonian Fluid Dynamics Group, 2016).

Moreover, in the production and transportation of natural gas, gas hydrate can be
created. Gas hydrate is an ice-like solid compound made from water and gas under low-
temperature and high-pressure conditions, known as a nuisance in the gas pipelines [7].
Gas hydrates are frequently occurred in subsea pipelines or permafrost regions. Like
paraffin wax, gas hydrate generation causes serious problems because of blocking pipelines
(Figure 2). There are several methods to solve the gas hydrate blockage, such as depressur-
ization or inhibitor injection. However, all of these methods are costly and time-consuming.
Hydrate formation along the natural gas pipeline has been identified as a serious threat
to the success of gas field operation. Annually, a significant operating expense of about
hundreds of millions of USD is devoted to hydrate prevention, with half spent on inhibition.
In contrast, offshore operations additionally spend approximately USD 1 million per mile
on the insulation of subsea pipelines to prevent hydrates [8].
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Even if only one spot of the long pipeline is blocked, the flow rate decreases, and the
pipeline is damaged. As a result, the entire gas production system should be shut down for
maintenance. Therefore, it is very important to quickly diagnose and gas hydrate formation
to prevent pipeline blockage in terms of flow assurance. Accordingly, it is essential to
develop a method that can diagnose hydrate deposition as soon as possible. However, it is
challenging to predict these depositions for several reasons; the first is that the pipelines are
often constructed on the extensive areas of wilderness, grasslands, rivers, sea, and forests,
making it difficult to monitor directly. Secondly, kinetic modeling of hydrate formation
is very complex. The physics of deposition is very ambiguous and various driving forces
may contribute to hydrate formation [10]. Moreover, the thickness and shape of deposition
layer are dependent on fluid composition and field environmental conditions. Artificial
intelligence (AI)-based methods can overcome these challenges, making it easier to predict
hydrate volume.

AI refers to a system in which a computer deduces on its own as if a person is
engaging in brain activity, performs professional work through determination, or supports
problem solving. The global AI industry is expected to grow exponentially from about
USD 600 million in 2016 to USD 36.8 billion in 2025 [11] and to steadily increase in the
petroleum industry (Figure 3).
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In particular, AI is often used to monitor or predict the deterioration of facilities and is
mainly used for the purpose of the flow assurance in oil and gas industry. A mathematical
model that could estimate hydrate dissociation conditions based on the feed-forward
artificial neural network (ANN) has been presented [12]. Moreover, hydrate formation
temperature has been calculated using an ANN [13]. The diagnostic system using AI is
highly adaptable to the oil and natural gas field and has great accuracy compared to the
existing mathematical models. To utilize the AI model, data that will be used for machine
learning is needed. However, because the formation of hydrate usually occurs within the
pipeline where monitoring equipment is not installed, there is great difficulty in obtaining
actual information from the operation data. The target gas pipeline in this study is installed
on the seabed, and it is practically impossible to obtain the hydrate formation data because
it is a problem that should never occur during the field operation. The way to overcome
this is a digital twin.

A digital twin is a digital replica of a living or non-living physical entity [14]. Digital
twin refers to a digital model of potential and actual physical assets, processes, people,
places, systems, and devices that can be used for various purposes. Since the digital twin
concept was proposed in 2002, it is still emerging as more sophisticated simulations become
possible due to IoT, cloud, and big data technologies. The digital twin is actively applied
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in heavy industry, which has a relatively high demand, such as producing expensive,
complex structure design, long in use, complicated operation to check, and continuous
maintenance. As a result, it comprehensively integrated IIoT, AI, big data, and cloud
computing technologies; the purpose is to achieve intelligent facility management. In this
study, using this digital twin concept, a pipeline flow simulation model was constructed to
reflect the target field with operation data, such as pressure, temperature, and the flow rate.

Several studies suggesting gas hydrate diagnostic solutions using AI have common
limitations, which are as follows: (1) The models utilized in previous studies are simple
models, which require a lot of input but have fewer output values as a result. To predict
the hydrate formation in entire pipeline, a large number of output values are needed,
such as the pressure, temperature, flow rate, and hydrate volume present in each section.
Thus, the prediction of hydrate formation is impossible in all sections of the pipeline.
(2) There are no studies that predict hydrate formation within the entire pipeline while
simultaneously predicting the growth of hydrates over time. This study attempted to apply
AI techniques to establish a pipeline diagnostic solution that can predict the formation of
hydrate to mitigate the flow assurance challenges. Notably, the originality of this study
is that it can accurately predict the formation and growth of hydrate layer with time at
all locations in the pipeline by using machine learning. Moreover, to enhance the field
applicability, a model was developed to estimate the pressure and temperature profile,
appearance temperature, and deposition thickness throughout the pipeline using the flow
rate, pressure, and temperature information, which is generally acquired in the field.

2. Methods
2.1. The Calculation Model of Hydrate Formation Using OLGA

The simulation of multi-phase fluid flow involves conservation equations such as mass,
momentum, and energy, and it needs a numerical simulator to solve these equations. The
OLGA software has been used in the industry for decades as a predictable multi-phase flow
pipeline simulator. OLGA consists of various modules, some of which contain slugging,
wax deposition, and hydrate formation. Figure 4 shows the simulation process of OLGA.
The input process is needed to define the pipeline materials and network components such
as nodes and flow paths. Then the information about the fluid is entered. Finally, boundary
and initial conditions are specified. The simulation will be conducted after all the input
information has been applied. Three phase model is derived by applying 9 conservation
equations. The transport equations are outlined in the following sections in a general,
continuous form [15].

In the hydrate case, the hydrate equilibrium curve is used as an input, and the
hydrate volume fraction can be predicted. There are 2 options: hydrate check and hydrate
kinetic in OLGA. The hydrate check model can be used to obtain information when there
is a risk of reaching pressure and temperature conditions under which water can form
hydrates. Hydrate kinetic models enable predicting the location where hydrate plugs will
be formed in oil and gas pipelines. Especially, a hydrate kinetic model is more suitable
for systems with small mass and heat transfer resistance. The hydrate kinetic model
includes 3 separate modules, which have hydrate formation, growth, and transportation.
Transportation models include mass and thermal diffusion through particle boundary
layers and hydrate shells to consider both heat and mass transport limits. The equation of
the hydrate formation mechanism is as follows [16].

The driving force of hydrate formation is given by the sub-cooling as follows:

∆T = Tec − Tsys (1)

where Tsys is the system temperature and Tec is the hydrate equilibrium temperature at the
system pressure. The hydrate formation rate is proportional to the temperature driving
force. When the driving force is positive and hydrates are forming, the amount of gas
consumption due to the hydrate formation is calculated by the reaction rate,
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− rgas = −
dmgas

dt
= Ask1 exp (

k2

T
)∆T (2)

where As is the surface area between the hydrocarbon-rich phase and the aqueous phase,
rgas is the mass of gas consumed per second, and k1 and k2 are rate constants.

The agglomerating nature of hydrate particles is addressed using classical crystal-
lization theory, with limited information of hydrate particles, representing the rheological
behavior by the relative viscosity. The relative viscosity of suspension with agglomerating
particles is given by

µr =
1−∅e f f

(1− ∅e f f
∅max

)
2 (3)

where∅max is the maximum volume fraction, and effective volume fraction is obtained from

∅e f f ≈ ∅(
dA
dP

)
(3− f )

(4)

The effective volume fraction includes the original volume fraction and the fluid
trapped inside the aggregated particle. The symbols of dP and dA represent the diameter
of monomer particle and aggregated particles, respectively. f is the fractal dimension.

2.2. Machine Learning Using Stacked Auto-Encoder

One of the machine learning techniques, unsupervised learning, is selecting similar
cases and learning characteristics using unlabeled data. In particular, this technology
can be applied within pipelines that are difficult to obtain data. It can detect weak pipe
integrity, such as cracks and corrosion, and analyze the oiliness to prevent risks such as
explosions. Moreover, due to the nature of the wide installed area of the pipeline, pressure
and temperature drops are hardly detected when the hydrate occurs. Therefore, it is
virtually impossible to diagnose them with conventional monitoring methods. In the end,
applying artificial intelligence technology is essential, which can reduce the risk of accidents
caused by deposits in pipelines and enable rapid response in case of an emergency. In this
study, the programming language Python was utilized, and TensorFlow was used as a
library for building and operating machine learning programs. After that, the structure of
the artificial intelligence model was constructed by applying a stacked auto-encoder. In
particular, the fine-tuning technique was used to enable the prediction of hydrate in all
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sections of the pipeline by utilizing the pressure, temperature, and flow rates acquired in
the oil and gas fields to consider the site applicability.

Auto-encoder is an artificial neural network whose purpose is to fully recover input
data from the output layer, similar to a common neural network structure, but characterized
by the same size of the input layer and output layer [17]. Figure 5 is the structure of an
auto-encoder with a single hidden layer.
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As shown in Figure 5, an auto-encoder consists of an encoder and a decoder. The en-
coder acts to compress the input data into a low-dimensional hidden layer. Simultaneously,
the decoder performs the task of restoring the compressed data to the same data level as
the input data. Units in the hidden layer need to recover input data from compressed data,
implying key features of the input data. Equations (5) and (6) are the formulas calculated
from the encoder and decoder of the auto-encoder, respectively.

(1) Encoding of auto− encoder : a(x) = f(Wx + b) (5)

(2) Decoding of auto− encoder : x′ = f(W ′a(x)) + b′ (6)

where x and x′ are input and reconstructed data, respectively, and the training is carried
out to minimize the error of 2 vectors. a is an active function and usually uses nonlinear
functions such as Sigmoid, Leak relu, and Tanh.

Stacked auto-encoder (SAE) is a deep-seated neural network model consisting of
multiple auto-encoder layers that enable more diverse functions to be expressed in single-
layer models [18]. For SAE, greedy layer-wise algorithm is utilized to solve the vanishing
gradient problem that occurs when the hidden layer increases [19]. The greedy layer-wise
method assumes that there are no other hidden layers in models with multiple hidden
layers when learning about the first hidden layer. Later, for the second hidden layer,
the first hidden layer parameters are fixed during learning. This method can overcome
existing vanishing gradient problems, and complex problems can be solved using multiple
hidden layers. In traditional machine learning algorithms, when learning 2 training
datasets, 2 models are made independently and use them even if 2 datasets have similar
characteristics. On the other hand, transfer learning learns the new model by receiving
information from the previously used model. For example, pre-build models contain the



Energies 2021, 14, 2313 7 of 22

desired pipeline information, such as formation temperature and hydrate volume. Weight
and bias calculated by 1:1 matching are stored in a checkpoint. In making the second
model, the input variables are changed to obtainable pressure, temperature, and flow rates
acquired from the field. The models learned in the first model are brought in to form a new
hidden layer in front and conduct secondary learning. It can be used to reduce learning
time significantly. At this point, the pre-learned model is defined as pre-training, and the
process of using it to learn a new model is defined as fine-tuning.

Most hydrate estimation/prediction studies were conducted using multi-layer percep-
tron (MLP), but the MLP model is generally used when the input and output dimensions
are equal or smaller, and this study had difficulty optimizing and does not guarantee
convergence. The time series models LSTM (long short-term memory) and GRU (gated
recurrent unit) should consider the time step, making it impossible to predict within all
pipeline sections. In this study, the model was selected by comparing and analyzing the
training loss values of MLP, LSTM, and SAE (stacked auto-encoder). In general, training
loss is an indicator of how stable learning is going, and the lower the better. Figure 6
specifies the results. The MSE (mean square error) values of MLP and LSTM models were
increased, which resulted in poor optimization and convergence due to a large number of
output data compared to the number of input data.
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Conversely, SAE is an auto-encoder with multiple hidden layers, configured to mirror
encoder and decoder, and used to analyze the characteristics of the data through learning.
Additionally, to analyze the characteristics of the output data using the greedy layer-wise
technique, we changed the input layer after the pre-learning and relearned by applying
the fine-tuning technique. Learning was conducted so that the MSE value was close to
zero during learning, which converged on the optimal solution. It was relearned using the
analysis of features. Therefore, this study used the SAE model to construct the regression
model and construct optimal learning results through repeated experiments.

A library is needed to implement and operate machine learning/deep learning pro-
grams, and many libraries such as Torch, Caffe, MXNet, Chainer, and CNTK exist. Ten-
sorFlow, which was used in this study, is a machine learning library that provides various
functions to easily implement machine learning programs, especially deep learning pro-
grams, created by Google. TensorFlow supports various languages such as Python, Java,
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and Python is the most advantageous because most useful functions are mostly imple-
mented in Python libraries.

The basic unit of TensorFlow is the calculation graph, and the graph contains the edges
representing the tensor and nodes. Each node can provide multiple outputs by multiple
inputs [20]. The following Figure 7 is a diagram of the neural network model with multiple
hidden layers. The left side is a symbolic diagram of the neural network. The right side is
represented by a calculation graph in Tensorboard, using three vectors as input.
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3. Results
3.1. Model Construction and Base Simulation

In this study, a virtual platform was established for the existing offshore gas platform
located in Bay of Bengal, offshore western Myanmar, and field data were used to build the
model. The schematic of the model is shown in Figure 8.

Each well has a choke valve that controls gas production in the wellhead. The three
wellheads are connected to the manifold through a jumper, and the produced gas is
transported to the offshore platform through the horizontal subsea pipeline. A topside
choke valve is installed in front of the separator. The operating conditions are 60 kg/s of
mass flow rate in manifold (20 kg/s for each well), 353.15 K of fluid temperature in the
wellhead, and 284.8 K ambient temperature in the inlet of the pipeline. The temperature
and pressure conditions in the outlet of the pipeline are 300.45 K and 8.25 MPa, and the
thermal conductivity of the pipeline material is 250 W/M2K.

The pipeline geometry and fluid information are set the same as the field. The
horizontal pipeline has 13,000 m length, 0.3174 m of inner diameter, and 5.00 × 10−5 m
of roughness. The total pipeline is subdivided into 123 grid sections to improve accuracy.
Model specifications are represented in Table 1.

For the target gas field, more than 99% of methane is producing and very little
compositions of other components are observed, this model has set up a fluid composed of
100% methane. The hydrate equilibrium curve was derived using CSMHYD, a hydrate
phase equilibrium program developed by the Colorado School of Mines (Figure 9).

In general, hydrate occurrence has to be prevented, and continuous inhibitor injection
such as KCl and MEG techniques is usually applied to prevent hydrate formation. There-
fore, this study assumed that these inhibitor injection lines were failed, and hydrate may
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occur. A preliminary study was conducted to make the hydrate forming conditions. The
pressure, temperature, and flow rate were set to extreme conditions. As a result, the base
simulation case was constructed, and the artificial operation conditions are addressed in
Table 2. The results of the base simulation are illustrated in Figure 10a. Hydrate began to
occur at around 2000 m, where the fluid temperature dropped below the hydrate formation
temperature, and a maximum of 0.75% of the hydrate occurred at 5500 m. The entire simu-
lation period was 1 h, and the results were recorded every 6 min. The growth of hydrate
volume fraction is indicated in Figure 10b, and the peak point moved to the backend of the
pipeline over time.
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Table 1. Model specifications.

Inlet Boundary

Mass flow rate 60 kg/s
Temperature 353.15 K

Outlet boundary

Pressure 8.25 MPa
Temperature 300.45 K

Horizontal pipeline

Ambient temperature Inlet: 284.8 K
Outlet: 293.15 K

Horizontal distance 13,000 m
Heat transfer coefficient 250 W/M2K

Roughness 5.00 × 10−5 m
Inner diameter 0.3174 m

Sections 123
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Table 2. The difference of field model and base case of hydrate formed.

Operation Constraint Field Model Base Case

Mass flow rate (kg/s) 60 60

Inlet fluid temperature (K) 353.15 318.15

Outlet pressure (MPa) 8.25 8.25

Outlet fluid temperature (K) 300.45 300.45

Inlet ambient temperature (K) 284.8 273.15

Heat transfer coefficient (W/M2K) 250 100
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Figure 10. The base model simulation result (a) and growth of hydrate volume (b).

3.2. Sensitivity Study for the Generation of Learning Data

To make input data for machine learning, different OLGA cases with different loca-
tions and volume fractions of hydrate are needed. Moreover, it is necessary to select the
influencing parameters that affect hydrate formation and to understand the changes in
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locations and volume fractions of the hydrate. Typically, the five factors (presence of free
water, low temperature, high operating pressure, flow pattern, and presence of H2S and
CO2) affect the hydrate formation. For the convenience of analysis, this model assumes that
water needed to form hydrates exists in the pipeline. Thus, except for the presence of free
water, other factors are examined for understanding the hydrate formation in the pipeline.

After analyzing the flow pattern of all OLGA cases, we found that the flow pattern
remained stratified flow and did not change. In addition, the mole fraction of CO2 and
H2S had little effect on hydrate formation, and these factors were ignored. Therefore, low
temperature and high operating pressure were considered.

The modeling parameters linked to the above two factors are mass flow rate, fluid
temperature, ambient temperature, and heat transfer coefficient, and Table 3 shows the
range of each parameter. In the case of fluid temperature at the inlet, the range was selected
between 278.15 and 318.15 K, which was lower than actual field data, in order to create
conditions in which more hydrates were formed. For this field model, the length of the
pipeline was long enough that it was thought that a temperature gradient in the pipeline
would affect the hydrate volume fraction. Because the inlet is located subsea, and the outlet
exists at the offshore platform, the difference in ambient temperatures between the inlet
and outlet varies due to the seasonal change in platform temperature. The corresponding
effect will affect the formation of hydrates. The temperature gradient outside the pipeline
is artificially generated by entering different ambient temperatures in the inlet and outlet.
The temperature difference between the inlet and outlet was set as 275.15 to 287.15 K. For
the heat transfer coefficient, the range of 100 to 200 W/M2K was set to increase the effect of
ambient temperature on the fluid temperature inside the pipeline. A total of 400 OLGA
cases were run to obtain the learning data.

Table 3. The range of parameters.

Parameters
Range

Min Mean Max

Mass flow rate (kg/s) 60 (base) 80 100

Fluid temperature (K) 278.15 298.15 318.15 (base)

Difference of ambient temperature from
inlet to outlet (K) 275.15 281.15 287.15

Heat transfer coefficient (W/M2K) 100 (base) 150 200

A sensitivity study was carried out on how the four selected parameters affect the
location and volume fraction of the hydrate using the results of 1 h.

First, an analysis of flow rates was conducted, which is shown in Figure 11a. The
forming position of hydrate was not much different, but the larger the flow rate, the more
hydrates were generated at the back of the pipeline. In addition, the maximum hydrate
volume tended to decrease as the flow rate increased. This was because the high flow rate
increased the flow velocity, and the formed hydrate was stripped.

Among the operating condition variables, the most significant affecting factor on the
generation of hydrates was temperature. In the case of fluid temperature, the hydrate
volume fraction trend was similar, but the lower the temperature, the more hydrates formed
at the front of the pipeline (Figure 11b). The gas flowing inside the pipeline initially had
a high temperature, and the temperature was decreased during the flow. When the fluid
temperature fell below the hydrate formation temperature, hydrates were generated. At the
backend of the pipeline, the hydrate volume fraction was almost the same because the fluid
temperature decreased to an ambient temperature that all cases showed similar results.

The temperature difference between the inlet and the outlet is shown in Figure 11c.
The overall hydrate volume fraction and location were similar, but large temperature
differences decreased the amount of hydrate volume generated at the back of the pipeline.
This was because the ambient temperature of the outlet was high.
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Figure11 Figure 11. The result of hydrate volume fraction during sensitivity study.

In the heat transfer coefficient, as it increased, the fluid temperature decreased be-
cause the effect of ambient temperature became high, and the maximum hydrate volume
increased. This tendency was similar to the results of fluid temperature (Figure 11d).

Based on these analyses, we applied a simple random sampling (SRS) technique
for obtaining learning data. Each OLGA case consisted of 10 timetables, and each table
included the hydrate volume fraction, pressure, temperature, flow rate, and hydrate
appearance temperature on 123 grid sections.



Energies 2021, 14, 2313 13 of 22

3.3. Machine Learning and Validation

Through sensitivity study, location, and volume fraction where hydrate can be formed
were analyzed, and learning data were generated for machine learning. The output
produced from OLGA was difficult to apply directly to machine learning and required
pre-processing. Therefore, the necessary information was extracted from OLGA output,
and learning data were processed. TensorFlow was used as a machine learning library, and
the SAE was applied as the AI model. The machine learning environment was an I5 core
CPU, 64 GB Ram, and GeForce RTX 2080. The model structure is shown in Figure 12.
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To establish the model structure, the number of hidden layers and nodes were both
hyper-parameters, and therefore we conducted several experiments to find the optimal
number. When the number of hidden layers was set as seven at the pre-training phase, the
training loss was best converged. In this phase, each layer was trained in an unsupervised
manner. As shown in Figure 12, the total 615 data of hydrate volume fraction, pressure,
and temperature in all grid sections were set in input and output to proceed pre-training.
The reason for learning with the same input and output layers was to analyze and learn
about the characteristics of hydrate volume, pressure, and temperature data and to output
these data in all grid sections that should ultimately be predicted.

After each layer was learned, fine-tuning was performed to initialize the weight of
encoder parts in the pre-trained model. In this process, the weights calculated in the
decoder section were frozen because the input dimension changed to five values, but the
output value was maintained. Therefore, the weight already obtained in pre-training was
reused to reduce learning time in a supervised manner.

The second training phase was also a matching process with new input values, and
thus hyper-parameter matching was performed. The number of hidden layers in the
encoder was increased gradually, starting from one, and the structure optimization was
carried out. As a result, it showed the least convergence value when the number of the
hidden layer was one, and when the number of hidden layers was more than two, the
difference in convergence values was not significant. Thus, in order to reduce learning time,
we utilized a total of six hidden layers, and a total of five inputs (mass flow rate, pressure
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and temperature at inlet, pressure and temperature at outlet) were used to recalculate
weight through encoders.

The total number of datasets utilized for learning/validation and evaluation was 4000
(10 time tables for each OLGA case), comprising 2,460,000 data (123 sections and 5 variables
for each time table). Among them, 3200 datasets (2560 for learning, 640 for validation) were
used for learning, while the remaining 800 datasets were used for evaluation. Thereafter,
learning data was normalized to the [−1,1] range. The reason for normalization is that the
size of the data depends on the variables when the original values are used, which can lead
to optimization problems or lack of convergence. The activation function for the hidden
layer was configured as Leak relu, and the Tanh was applied as a last output activation
function. The basic reason for using the activation function was to maximize the learning
effect in AI models with many hidden layers by changing the data to nonlinear. The reason
for transforming data into nonlinear was to overcome the limitations of linear classifiers.
If the data are linear, no matter how deep the hidden layer is, the linear characteristic
such as f(ax + by) = af(x) + bf(y) eventually results in the same outcome when using one
hidden layer or dozens of hidden layers. Therefore, a nonlinear activation function was
used to take advantage of the use of many hidden layers. In the case of Leak relu, the
learning speed is the fastest compared to other activation functions. Moreover, the use of
sequential data is likely to result in a vanishing gradient problem. Vanishing gradient is a
phenomenon in which the gradient is zero in learning through the hidden layers and no
longer learning. Tanh is often used to prevent this.

The learning algorithm (optimization algorithm/Optimizer) was used for optimiza-
tion. Optimization means finding a factor in the model that minimizes the loss function.
The most representative technique is the stochastic gradient descent method (SGD), and the
recent development of machine learning technology has led to the development of many
optimizers. The most popular optimizer currently used is Adam, a technique combining
momentum and the RMSProp method, and an optimizer that improves accuracy and
learning step size. Therefore, Adam Optimizer was applied in this study.

Overfitting protection was prepared using Dropout techniques and L2 regularization
(7), but if the data order within the epoch is the same, the gradient value in a single batch
may not represent the entire dataset, and local minimum or overfitting is likely to occur.
To solve this problem, we applied a shuffle-batch to the learning data on every epoch to
prevent the gradient falling into zero at local minimum point. The MSE (mean squared
error), a qualitative measure of statistical estimated accuracy, was used as a cost function to
determine the difference between the estimated value and the actual value. The parameters
used for learning are given in Table 4. The batch size and learning rate were calculated
through repeated experiments. The epoch was fixed at 10,000, and then the learning was
carried out. If the training loss was converged, the learning was finished. Moreover, grid
search was performed several times for weight optimization.

L(x, y) =
1
n

n

∑
i=1

(yi − hθ(xi))
2 + λ

n

∑
i=1

θ2
i (7)

where n is the number of elements, yi and hθ(xi) are real value and predicted value, λ is
learning rate, and θi is weight.

In the pre-training phase, in order to output the values that should ultimately be
predicted, we set the total 369 data (123 sections × 3 variables) of hydrate volume fraction,
pressure, and temperature in the input–output layer. A total of 80 iterative grid searches
in pre-training determined the optimal number of nodes in hidden layers with the least
value of MSE. Table 5 represents an example of grid search. The index means the count of
grid search. Layer means the hidden layer, and the numbers in the table mean the number
of nodes of each hidden layer. As a result of the grid search, the MSE value of index 79
showed the lowest value of 0.98 × 10−3. Figure 13 shows the training and validation
process of index 79, and the training loss converged at epoch 1000. Therefore, the decoder
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structure, the number of nodes, and the weights in hidden layers 4 to 7 were frozen to
shorten the learning time of second training.

Table 4. The parameters used for machine learning.

Input 615 (pre-training)/5 (second training)

Output 615

Learning rate 1.00 × 10−6

Batch size 1560

Epoch 10,000

Drop out 0.6

L2 regularization 0.50 × 10−3

Activation function Leak relu/Tanh

Optimizer Adam

Table 5. The result of grid search about pre-training.

Index Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 MSE

1 128 64 32 16 32 64 128 32.78
2 256 128 64 32 64 128 256 14.78
3 1024 512 256 128 256 512 1024 1.59
4 2048 1024 512 256 512 1024 2048 2.96
5 512 256 128 64 128 256 512 3.08

. . . . . . . . . . . . . . . . . . . . . . . . . . .
79 2048 1024 512 256 512 1024 2048 0.98 × 10−3

80 4096 2048 1024 512 1024 2048 4096 1.00
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In the second training phase, new hidden layers were added to the encoder part to
use the input values mass flow rate, pressure and temperature in inlet, and pressure and
temperature in outlet. For the optimization of the AI model, we conducted 80 grid searches
again. Table 6 shows that the structure of index 6 had the smallest MSE. Therefore, this
model was selected as the final optimized model. Moreover, Figure 14 shows the training
and validation process of index 6, wherein the training loss converged with an MSE value
of 1.04 × 10−3 at epoch 300.

Table 6. The result of grid search about second training.

Index Layer 1 Layer 2 Layer 4 (Fixed) Layer 5 (Fixed) Layer 6 (Fixed) Layer 7 (Fixed) MSE

1 16 32

512 256 1024 2048

1.85 × 10−3

2 16 64 1.74 × 10−3

3 32 128 1.09 × 10−3

4 64 256 1.12 × 10−3

5 128 64 1.28 × 10−3

6 128 256 1.04 × 10−3

. . . . . . . . . . . .
79 256 256 1.08 × 10−3

80 256 512 1.07 × 10−3
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4. Discussion

The optimal model was constructed through learning and validation, and the model
was evaluated using the test dataset with the R-square method. It was calculated through a
comparison between actual data and prediction. This value ranges from zero to one, and
the model is useful if the coefficient of determination has a value close to one.

A total of 800 datasets (80 OLGA cases) were used for evaluation. The evaluation
dataset had mass flow rate and pressure, temperature, and hydrate volume fraction at
each grid section. The mass flow rate, pressure, and temperature in inlet, pressure, and
temperature in the outlet of evaluation data were received as input signals. The result
value derived from the AI model, the hydrate volume fraction, pressure, and temperature
were compared with the value of evaluation data.

To ensure that the growth of the hydrate was properly predicted when the input
signal was continuously entered, the hydrate diagnostic model carried out a time-series
forecast, which evaluated accuracy over time in a single OLGA case, and an accuracy
evaluation for the location where the maximum volume was formed. Table 7 and Figure 15
show the result of the time-series forecast for one OLGA case. In general, pressure and
fluid temperature showed relatively high accuracy. In Figure 15, it is possible to describe
the growth of hydrate volume, and it was shown to have an accuracy of 77% of hydrate
volume. In terms of hydrate volume, the accuracy was low in the early times when the
hydrate volume was small, but the accuracy increased as the volume of hydrate grew.
The actual and predicted data in Figure 15 were rearranged on the basis of the maximum
hydrate volume to prove the logic that accuracy increased as the hydrate volume increased
(Figure 16). According to the figures, the predicted accuracy also increased as the maximum
hydrate volume increased over time. Therefore, as the hydrate volume increased over time,
the prediction accuracy increased.

Table 7. The result of R-square evaluation for one OLGA case.

R-Square Evaluation Result

Time-Series Maximum Hydrate Volume in all
Grid Sections Pressure in all Grid Sections Fluid Temperature in all

Grid Sections

6 min 0.46 0.99 0.94
12 min 0.59 1 0.92
18 min 0.68 0.99 0.95
24 min 0.78 1 0.92
30 min 0.80 0.99 0.89
36 min 0.84 1 0.94
42 min 0.86 0.99 0.94
48 min 0.87 0.98 0.89
54 min 0.89 1 0.91
60 min 0.95 1 0.87

Average 0.77 0.99 0.91

Through the previous time-series forecast results, we were able to determine that
prediction accuracy for the maximum hydrate volume and location was high at a later
time. However, it was confirmed that the maximum hydrate volume at 60 min was
slightly different from the formed location. Therefore, an overall performance analysis was
performed for the location and maximum hydrate volume. A total of 80 evaluation datasets
were extracted and compared with AI diagnosis results. Table 8 shows the maximum
hydrate volume and formation position in each case of the evaluation dataset and shows
the prediction accuracy. According to Figure 17, the R-square value of the maximum
hydrate volume was measured as 97%, and it was found that the volume of hydrate was
overestimated below 0.6% and underestimated above. For the formed location, the value of
R-square was 99%, but the error was calculated through the MAE because the error range
of the actual data and forecasts existed. On average, there was a location error of about
261 m. For this pipeline model, 13,000 m pipeline was divided into 123 grid sections, and
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thus each section was approximately 105 m long. Considering the number of grid sections,
we found that the error was not significant.

The diagnostic system was constructed for detecting hydrate formation (Figure 18a).
When mass flow rate, pressure, and temperature in inlet, pressure, and temperature in the
outlet are delivered through the input module, it is transferred to the input data of the
AI model in real-time. In the AI model, the hydrate volume, pressure, and temperature
in the pipeline are predicted over time by utilizing input data. The predicted results are
illustrated in the GUI program over time, which is shown in Figure 18b. When hydrate is
formed, the warning message is printed, and, finally, all records are stored in the CSV form. 

2 

 
Figure15 

 
Figure17 

Figure 15. The difference of actual data and AI prediction results.
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Table 8. The accuracy of maximum hydrate volume and formed location at 60 min about total 80 OLGA cases using
R-square and MAE.

OLGA Cases Actual Maximum
Hydrate Volume (%)

Predicted Maximum
Hydrate Volume (%)

Actual Location of
Maximum

Hydrate Volume (m)

Predicted Location of
Maximum

Hydrate Volume (m)

Case1 0.41 0.48 8048 8082
Case2 0.69 0.65 10,451 11,795
Case3 0.31 0.49 9432 9970
Case4 0.47 0.48 6781 6781
Case5 0.43 0.49 11,991 11,795
Case6 0.70 0.68 916 940
Case7 0.41 0.41 12,171 12,381
Case8 0.73 0.68 9456 9970
Case9 1.06 1.00 11,939 11,795

Case10 1.20 1.20 6958 6958
. . .

Case71 1.00 1.00 8237 8259
Case72 0.48 0.49 12,201 11,795
Case73 1.18 1.18 4985 4985
Case74 0.98 1.00 12,413 12,381
Case75 0.65 0.60 2296 2291
Case76 0.73 0.68 10,435 9970
Case77 0.70 0.63 8577 8082
Case78 1.16 1.18 10,835 9970
Case79 0.21 0.49 2823 2877
Case80 0.62 0.62 8632 8082

Average R-square = 0.97 MAE = 261

 

2 

 
Figure15 

 
Figure17 Figure 17. The accuracy of maximum hydrate volume and location with 80 evaluation cases.
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5. Conclusions

In this study, a machine learning technique was applied to establish a system that
can diagnose hydrate for flow assurance purposes in gas pipelines. A parametric and
sensitivity study was conducted to identify the formation characteristics of hydrate. Based
on these results, we generated and evaluated learning data for machine learning. Hyper-
parameter matching and structure optimization were carried out using the SAE model and
the greedy layer-wise technique. The detailed procedures and results are as follows.

(1) Through time-series forecast, we determined that AI diagnostic models could
depict growth of hydrate volume. As the hydrate volume increased, the AI model was
able to diagnose more accurately. Moreover, the predicted trend for the entire pipeline was
more similar to the actual data.

(2) In the evaluation of overall performance, the average R-square for the maximum
hydrate volume was 97%, and that for the formation position was calculated as 99%.

(3) The developed AI model can indicate abnormalities within a very short time
and accurately diagnose maximum hydrate volume and formation location. This study
confirmed that AI could be applied to the flow assurance area of petroleum pipelines. It is
expected that this study can be applied to the pipelines lying in various environments.

Author Contributions: Conceptualization, Y.L. and J.L.; software, Y.S.; validation, Y.S. and B.K.;
writing—original draft preparation, Y.S. and B.K.; writing—review and editing, Y.S. and Y.L.; super-
vision, J.L. and Y.L.; funding acquisition, Y.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Energy Efficiency & Resources Core Technology Program
of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial
resource from the Ministry of Trade, Industry & Energy, Republic of Korea (no. 20172510102150).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by Institute of Information & communications Technol-
ogy Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2020-0-01557).

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 2313 21 of 22

Nomenclature

AI artificial intelligence
ANN artificial neural network
∆T sub-cooling
Tsys system temperature
Tec hydrate equilibrium temperature at system pressure
rgas mass of gas consumed per second
As surface area
k1 rate constant
k2 rate constant
µr relative viscosity
∅max maximum volume fraction
∅e f f effective volume fraction
dP diameter of monomer particle
dA diameter of aggregated particle
f fractal dimension
x input
x′ reconstructed data
W weight
b bias
SAE stacked auto-encoder
MLP multi-layer perceptron
LSTM long short-term memory
GRU gated recurrent unit
MSE mean square error
SRS simple random sampling
SGD stochastic gradient descent
n number of elements
yi real value
hθ(xi) predicted value
λ learning rate
θi weight in L2 regularization
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