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Abstract: Covalent organic frameworks (COFs) are emerging crystalline polymeric materials with
highly ordered intrinsic and uniform pores. Their synthesis involves reticular chemistry, which
offers the freedom of choosing building precursors from a large bank with distinct geometries and
functionalities. The pore sizes of COFs, as well as their geometry and functionalities, can be pre-
designed, giving them an immense opportunity in various fields. In this mini-review, we will focus
on the use of COFs in the removal of environmentally hazardous metal ions and chemicals through
adsorption and separation. The review will introduce basic aspects of COFs and their advantages
over other purification materials. Various fabrication strategies of COFs will be introduced in relation
to the separation field. Finally, the challenges of COFs and their future perspectives in this field will
be briefly outlined.

Keywords: covalent organic frameworks; synthesis; functionalities; adsorption; separation

1. Introduction

Purification processes such as distillation, evaporation, concentration, and crystalliza-
tion are important in basic research as well as playing an important role in industries. These
processes, however, operate at the expense of environmental deterioration by consuming
an enormous amount of energy, further promoting global warming. Industrial effluents
also contain a large amount of chemical and bio-chemical hazardous ingredients polluting
the already scarce freshwater resources. Moreover, many industries waste a large amount
of precious chemical compounds and organic solvents due to the lack of economical separa-
tion/purification materials. Therefore, purification processes with low energy requirements
may benefit the environment by saving energy on one hand and saving important capital
costs on the other. In recent years, adsorption- (entrapment) and membrane (size exclusion)-
based purification have attracted immense research and industrial interest due to their low
energy consumption as well as simple and environmentally friendly operation. Various
amorphous materials such as hyper-cross-linked polymers (HCPs) [1,2], porous organic
polymers (POPs) [3,4], conjugated microporous polymers (CMPs) [5–7], and activated
carbon [8–10]; and crystalline materials such as metal-organic frameworks (MOFs) [11–14]
and zeolites [15–19], have shown excellent preliminary separation performance. Covalent
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organic frameworks (COFs) are a class of crystalline framework material synthesized from
purely organic building blocks. Their synthesis involves reticular chemistry, which gives
immense freedom of pre-design. Their pore geometry, size, and functionalities can be
pre-determined by choosing building units from a large bank. Yaghi and co-workers first
reported COFs based on boroxine and boronate ester rings [20]. These COFs, however,
are prone to deformation in the presence of even trace amounts of humidity rendering
them unsuitable in aqueous conditions. Later, imine-based COFs were reported to have
superior chemical and solvent stability. Banerjee and co-workers prepared β-ketoenamine
COFs with exceptional stability at high temperatures and in extreme acidic and basic
conditions [21]. Similarly, Thomas and co-workers reported triazine-based COFs prepared
at 400 ◦C, exhibiting excellent thermo-chemical stabilities [22]. Some of the important
applications and various types of COFs are shown in Scheme 1 and Figure 1, respectively.
Among many important aspects, COFs offer pore post-functionalization due to their or-
ganic nature, for specific desirable applications such as gas storage [23–25], catalysis [26,27],
electronic devices [11,28], electrode material for batteries [29–32], etc.
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The most attractive feature of COFs is their framework structure with uniform and
extended porous channels, attracting the interest of scientists in the purification/separation
field. Earth’s environment is under threat from the increasing disposal of hazardous in-
gredients such as heavy metals and poisonous organic and bio-organic chemicals [33–39].
Due to their distinct features, COFs represent themselves as viable alternative materials
to address these issues [40,41]. Suitable pore designs and functionalities can render COFs
as adsorbents for trapping hazardous metals, organic and bio-pollutants, and greenhouse
gases [39,42–47]. As adsorbents, COF pores attract and trap pollutants based on their
affinity towards functional COFs. COFs are also touted as excellent robust materials to
fabricate separation membranes [48,49]. In the membrane form, pollutants are separated
based on diffusion rates relying on the size, geometry, or charge of permeate and retentate.
COFs have been reported to remove toxic components from both gases and liquids. More-
over, functionally decorated COFs can facilitate catalytic degradation of pollutants and
convert them to clean energy. Our group has extensively worked on metal oxides and their
composites for the application of photo- and electro-catalytic process [50–67], but recently
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we have shifted our focus towards COFs due to their excellent characteristic properties.
Although COFs were first reported in 2005, their environmental applications have only
attracted interest very recently [68]. Since then, COFs have been extensively explored for
various environmentally related applications. We believe that an up-to-date account is
urgently required for scientists in this field. A review on a similar topic was published
elsewhere in 2019 [69]. However, great progress has been made since then in this field
and a review covering the new methods and strategies for the synthesis of COF materials
towards environmental application is urgently needed to guide emerging scientists in
this field.
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2. Evolution of COF Synthesis through Time

A brief evolution overview of various COF synthetic methods since their first re-
port will be discussed here. The first COF was based on boroxine and boronate-ester
linkages [20]. Although highly crystalline, these COFs are not suitable for an aqueous
environment as the crystallinity and framework nature is destroyed even in the presence of
a trace amount of water due to the electron-deficient boron. Later on, various other COFs
based on imine [27,70], triazine [71], hydrazine [72], and keto-enol [29,73] linkages were
reported, exhibiting excellent stability in organic, aqueous environments as well as harsh
acidic and basic conditions. The synthesis of COFs intended for environmental applications
generally follows bottom-up and top-down approaches. The former involves solvother-
mal [20], interfacial polymerization [74,75], in-situ growth [76], micro-wave assisted [77],
and on-surface crystallization [78,79] methods, and the latter involves delamination of COF
powders into mono/few-layer sheets for further applications [80]. COF pore geometry can
be pre-determined by choosing suitable linker symmetry (Figure 1) or modified through
post-functionalization. Further elaboration of these synthetic and post-functionalization
methods is beyond the scope of this review. Many other reviews have covered various
aspects of COF reticular synthesis and properties in detail [81–90].
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3. Important Aspects of COF Materials towards Cleaner Environment

Industries are polluting our environment in two ways: (i) disposal of hazardous chem-
icals in water reservoirs; (ii) and greenhouse gases into the air. Materials with advanced
functionalities to trap these hazardous chemicals and gases are urgently required to address
these issues [91]. COFs are materials that have intrinsic, uniform, ordered and tailorable
pores along with high surface area, making them very attractive for trapping and sepa-
rating these hazardous molecules. COFs with multi-functional pores have extended their
applicability in environmental cleansing. Due to their high surface area and ordered porous
channels, they can not only be used to trap/store gas molecules but can also function as
separating media to remove unwanted chemicals from the waste solution. This application
can reduce environmental pollution as well as help in the recovery of precious solvents to
be re-used in industries, rendering the whole operation environmentally and economically
friendly. Recent development has yielded COFs with extraordinary stability in harsh
acidic and basic conditions, rendering them highly desirable in industrial purification and
trapping applications [21,92]. The rational design of COFs needs careful consideration
of many aspects for intended purification applications. In this section, we will discuss
some important aspects of COFs such as structure, morphology, and charge of their pores,
as well as their stability, which makes them ideal alternative materials for environmental
applications.

3.1. Pore Structure

Trapping or separation processes involve distinct characters of pores, the most impor-
tant being their size. The pore geometry and structure can be pre-designed by choosing
monomers with appropriate symmetry, as shown in Figure 1. The size of environmental
pollutants ranges from sub-nanometer (metals) to several nanometers (dyes) and even up
to micrometer (bio-pollutants such as bacteria, etc.) [93,94]. Therefore, careful consideration
should be given to designing COFs for specific purification applications. COFs with pore
sizes ranging from 0.5–5 nm have been reported so far, making them highly desirable in
size-dependent separation processes. Banerjee et al. exhibited control over pore size by
cross-linking precursors of different lengths and obtained COFs with pores in the range
of 1.4–2.6 nm. 1,3,5-trifromylphloroglucinol (TFP) was chosen as the aldehyde-bearing
monomer, whereas four amine-bearing monomers with different lengths were chosen as
linkers (Figure 2) [74].

Similarly, Ditchel et al. efficiently reduced the pore size of COFs by choosing linkers
with six methyl or ethyl groups directing into the pores of the framework [95]. Pore
surface engineering or pore post-functionalization is another strategy to tune the pore
structure of COFs. Jiang et al., for the first time, reported an interesting strategy to first
synthesize COFs with azide functionalities [96]. The COFs were synthesized through the
condensation reaction between azide-appended benzene diboronic acid (N3-BDBA) and
benzene diboronic acid (BDBA) with hexahydroxytriphenylene (HHTP). The azide could
be easily cross-linked with many moieties such as propyl acetate, –COOH, –NH2, –COOMe,
–OH, and –C≡C through click chemistry. The pore size was controlled between 1.2 and
3 nm by employing this strategy. Moreover, introducing these functional groups through
post-functionalization also rendered COFs with desirable wettability and charge surfaces.

3.2. Hydrophobicity/Hydrophilicity of COFs

The morphology of COFs, such as their surface area and hydrophilic/hydrophobic na-
ture, is very important for purification processes. COFs with a surface area of >2000 m2·g−1

have already been reported [73,97]. Ordered porous channels along with such high surface
area are highly desired for purification/trapping applications. Hydrophilic/hydrophobic
properties of COFs are another important controllable aspect, which are exploited by
merely choosing desired linkers or through post-functionalization. COFs with hydrophobic
nature [98] will enhance their applications in organic media, whereas hydrophilic COFs [99]
will work better in aqueous media. Zhang et al. prepared a superhydrophobic COF through
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pore surface functionalization and evaluated their application in harsh conditions [100].
They first synthesized the COF and the pores were grafted with fluoride. The contact angle
was increased from 0◦ to 150◦ by varying fluoride grafting. The modified COF retained
its crystallinity and hydrophobicity under extremely harsh conditions such as in boiling
water and in solutions with pH ranging from 1 to 14. Similarly, Hu et al. synthesized a
hydrophilic triazine-based COF (Figure 3) and used it as a sensor for the detection of gallic
acid (GA) and uric acid (UA) [101].
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3.3. Structural Stability

The first reported COFs based on boroxine and boronate ester linkages had poor
stability in even a small amount of water. This phenomenon arises from the fact that
the boron sites are electron deficient and can undergo nucleophilic reaction, resulting in
structural degradation through hydrolysis. The effect is more severe as water is produced
as a by-product during COF synthesis, which can facilitate the backward reaction and
therefore severely affect their industrial applications. For environmental applications,
COFs need to retain their ordered structure in practically harsh conditions. Linkers with
strong covalent bonding to extend the framework, along with hydrogen bonding between
interlayers, can overcome this shortcoming to some extent. Imine, azines, hydrazine,
imides, and triazine-based COFs exhibit exceptional stability in harsh conditions because
they are synthesized through acidic catalyst-based reversible reactions. Therefore, the
backward reaction will be facilitated in an acidic environment but the COF should be stable
in water as well as organic solvents [102]. Banerjee et al. explored a reversible/irreversible
approach to improve COF stability one step further in solvents with pH ranging from 1 to
14 [21]. The same group also exhibited that increasing hydrogen bonding in the framework
can also improve the stability of COFs [103]. They incorporated –OH functionalities
adjacent to the –C=N bonds to introduce –OH–N=C hydrogen bonds, which ultimately
safeguarded the imine nitrogen from hydrolysis in the presence of both acids and water.
Similarly, other groups have improved COF stability through increasing intra-molecular
hydrogen bonding to improve the COFs overall thermo-chemical stability [104,105].

3.4. Pore Charge

Pore charge is a crucial factor in the separation or trapping of hazardous chemi-
cals through electrostatic interactions. According to Donnan’s theory, a negative charge-
separating barrier will repulse divalent anions whereas divalent cations will be attracted.
Therefore, if the negatively charged separating barrier is an adsorption agent then the
cations will be trapped inside the matrix, but if the barrier is a membrane then the posi-
tively charged ions will transport more efficiently leaving anions in the feed. The same
phenomenon is applied to the oppositely charged separating barrier. So far, very little atten-
tion has been given to design-charged COFs. Ma and co-workers introduced cationic sites
in the COF (EB-COF:Br) by reacting 1,3,5-triformylphloroglucnol and ethidium bromide
(EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide) [106]. Similarly, Oakey
et al. prepared a negatively charged COF by introducing carboxyl functional groups in the
COF’s backbone and introduced them as fillers in the preparation of mixed matrix mem-
branes [107]. In addition to the narrow size distribution of COF pores, the deprotonated
-COOH− enhanced the rejection of bovine serum albumin (negatively charged protein) to
as high as 81% at a COF loading of 0.8%. A similar approach was adopted to prepare a
COF with modifiable carboxyl functional groups to prepare 12 COFs with variable aper-
ture size and was self-assembled as continuous membranes [108]. It is expected that the
synthesis of COFs based on charged pores for environmental application will attract more
attention in coming years by incorporating functional groups such as hydroxyl, sulfonic
acid, amine, etc.

4. Applications of COFs towards Environment

COFs are touted as ideal candidates for applications towards a clean environment.
COFs can function as adsorbent/trapping materials for hazardous moieties. In addition,
COFs can be used as a catalyst for green energy production, catalytic degradation of
pollutants, as a sensor for gas detection, and as membrane-forming materials to separate
solid as well as gaseous pollutants. The applications of COFs have been summarized in
Table 1.
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4.1. Adsorption

Thanks to their ordered porous framework structure and ease of functionalization,
COFs can be used to adsorb many hazardous pollutants and toxic metals as well as adsorb
hazardous gases. Several aspects of COFs such as their tunable architecture, uniform and
tailorable pores, ease of incorporation of functional sites, low density, and large surface
area make them appealing for adsorption applications.

4.1.1. Adsorption of Heavy Metals

The presence of heavy metals in water even in trace amounts poses a great threat to
human health. The capture of these heavy metals is of crucial importance for a healthy
environment. Hu et al. employed an interesting strategy to coat COFs with polydopamine
(PDA) [109]. The COF@PDA showed an excellent adsorption affinity towards Cu(II) and
the adsorption equilibrium was achieved within ten minutes with an adsorption capacity
of 109.2 mg/g. Furthermore, the adsorbed Cu(II) was heated to obtain (COF@PDA@CuO)
and used as a fire-retardant of epoxy resins. Tong et al. incorporated a thiol (-SH) group
in the COF framework to adsorb Hg(II) from contaminated water [110]. In another work,
three different covalent triazine framework-based COFs decorated with S ((MSCTF-1,
MSCTF-2, and xSCTF-2) were synthesized and evaluated for Hg2+ adsorption [111]. These
COFs exhibited high adoption efficiency towards Hg2+ (840.5 mg/g) thanks to the S in
the backbone of COFs. Ma et al. employed a post-functionalization strategy to prepare
a COF for mercury removal through adsorption [112]. They first synthesized the COF
with vinyl functionalities that could be easily modified with S functionalities through a
thiol-ene click reaction to obtain modified COF (COF-S-SH). The resulting COF exhibited
unprecedented adsorption capacity for mercury. More importantly, COF-S-SH mercury
concentration could be reduced from 5 ppm to 0.1 ppb, which is below the consumable
limit of 2 ppb. They attributed such high adsorption to factors such as ordered porous
structure and the existence of abundant chelating groups. Another serious threat to the
environment is caused by radioactive metals such as effluents containing UO2

2+/Eu3+.
Removal of these metals from the effluents needs urgent attention. Hu et al. proposed a
composite material containing an MOF and a COF decorated with -NH2 functionalities
((NH2-MIL-125(Ti)@TpPa-1) [113–115]. The composite material was able to remove both
UO2

2+ and Eu3+ at fast rates of 536.73 mg/g and 593.97 mg/g respectively (Figure 4).

4.1.2. Adsorption of Hazardous Chemicals and Gases

Zhao et al. synthesized a composite containing metal oxide, an MOF, and a COF
(Fe3O4@TAPB-COF@ZIF-8) and applied it for the adsorption of bisphenol, an endocrine-
disrupting chemical interfering with the human hormonal system [116]. The composite
materials achieved detection of concentrations as low as 0.04 ng/mL in a wider range of
0.25–1000 ng/mL. Due to its stable organic framework structure, the composite material
exhibited excellent repeatability and reproducibility. The same group also reported a type
of COF (TAPT-DHTA) and employed it for the adsorption of phenoxy carboxylic acid
(PCA) pesticides in plant food derivatives [117]. Effluents from textile industries containing
organic dyes are posing one of the biggest challenges to our environment. Removal of
these dyes also needs attention to safeguard the environment. Jamshidian et al. reported a
composite material of MOF–COF (MIL-101-NH2@COF) to remove acid blue 9 dye, a type
of carcinogenic organic chemical [114]. They obtained an adsorption capacity of 256 mg/g
thanks to the enhanced affinity between the dye and the functionalities of composite
materials. Greenhouse gases such as CO, CO2, and CH4 pose yet another threat to the
ozone layer and subsequently to the life on Earth. Porphyrin-based COFs were synthesized
and evaluated as adsorbents for these greenhouse gases [115]. Due to the high surface area,
sheet-like structure, and uniform pores, the metal-free porphyrin sheets exhibited excellent
affinity towards these gases. In another report, triazine-based COFs were synthesized by
trimerization reaction of 1,3-bis-, 1,3,5-tris- and 1,3,5,7-tetrakis(4-cyanophenyl)adamantane
and employed for the adsorption of CO2 [118]. Due to the stable structure and high
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BET surface area (1180 m2/g) with ideal pore size distribution (0.4–1 nm), an excellent
CO2 uptake of 58.1 cm3 g−1 at 273 K was achieved. Similarly, a triazine-based COF was
synthesized with a pore size in the range 0.52–0.54 nm [119]. The resulting COF (CTF-
FUM-350) exhibited excellent adsorption for CO2 while N2, a valuable gas, could be easily
collected in the permeate.

Energies 2021, 14, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 4. Adsorption of metals, toxic chemicals, and greenhouse gases. Adapted with permission from references [109], 
copyright 2021 Elsevier, [113] copyright 2021 American Chemical Society, [116] copyright 2021 Elsevier, and [117] copy-
right 2021 Elsevier. 

4.1.2. Adsorption of Hazardous Chemicals and Gases 
Zhao et al. synthesized a composite containing metal oxide, an MOF, and a COF 

(Fe3O4@TAPB-COF@ZIF-8) and applied it for the adsorption of bisphenol, an endocrine-
disrupting chemical interfering with the human hormonal system [116]. The composite 
materials achieved detection of concentrations as low as 0.04 ng/mL in a wider range of 
0.25–1000 ng/mL. Due to its stable organic framework structure, the composite material 
exhibited excellent repeatability and reproducibility. The same group also reported a type 
of COF (TAPT-DHTA) and employed it for the adsorption of phenoxy carboxylic acid 
(PCA) pesticides in plant food derivatives [117]. Effluents from textile industries contain-
ing organic dyes are posing one of the biggest challenges to our environment. Removal of 
these dyes also needs attention to safeguard the environment. Jamshidian et al. reported 
a composite material of MOF–COF (MIL-101-NH2@COF) to remove acid blue 9 dye, a type 
of carcinogenic organic chemical [114]. They obtained an adsorption capacity of 256 mg/g 
thanks to the enhanced affinity between the dye and the functionalities of composite ma-
terials. Greenhouse gases such as CO, CO2, and CH4 pose yet another threat to the ozone 
layer and subsequently to the life on Earth. Porphyrin-based COFs were synthesized and 
evaluated as adsorbents for these greenhouse gases [115]. Due to the high surface area, 
sheet-like structure, and uniform pores, the metal-free porphyrin sheets exhibited excel-
lent affinity towards these gases. In another report, triazine-based COFs were synthesized 
by trimerization reaction of 1,3-bis-, 1,3,5-tris- and 1,3,5,7-tetrakis(4-cyanophenyl)ada-
mantane and employed for the adsorption of CO2 [118]. Due to the stable structure and 

Figure 4. Adsorption of metals, toxic chemicals, and greenhouse gases. Adapted with permission from references [109],
copyright 2021 Elsevier, [113] copyright 2021 American Chemical Society, [116] copyright 2021 Elsevier, and [117] copyright
2021 Elsevier.

4.2. COFs as Sensors for Chemicals

Alongside adsorption, detection and sensing of heavy metals is also an important area
of research focus. Timely detection of these hazardous elements can prevent the pollution of
the environment. Wang et al. prepared a thioether-functionalized COF for the detection of
Hg2+. The π-conjugated framework functioned as a signal transducer, the densely packed
and evenly distributed thioether as a receptor, and the uniform pores as mass transfer
enhancers [68]. The resulting COF exhibited high sensitivity, selectivity, and visibility
thanks to these combined factors. Recently, N, S-rich COFBTT-TZT was synthesized by
Song et al. [120]. The COF showed excellent sensing of Hg2+ in the range 0.54 nM–5.0 µM
at a sensing limit of 0.18 nM. In the same report, they converted COFBTT-TZT (functioning
as precursor and template) to hollow N, S-doped C@Pd nanorods to design electrochemical
sensors for paracetamol. Similarly, Banerjee et al. synthesized imide-based COFs for the
detection of hazardous nitrophenols [121]. The exfoliated COF nanosheets of TpBDH
and TfpBDH showed excellent “turn-on” and “turn-off” effects in solid and dispersed
states, respectively. Similarly, COFs have been reported for the detection of ammonia [122],
nitroaromatic explosives [123–125], Cu2+ [126], picric acid [127], gallic acid (GA) and uric
acid (UA) [128], levodopa content in human urine and blood serum samples [129], etc.
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4.3. COF as Pollutant Degradation Agent for Clean Environment

Catalytic degradation of pollutants is an attractive alternative to a clean environ-
ment. However, traditional catalysts face the challenges of low surface area, stability, and
recyclability. Materials to address these issues are highly desired [130,131]. COFs are
ideal candidates for the above-mentioned applications due to their ordered structure with
high surface area and excellent thermo-chemical stability. Cai et al. reported a triazine
functionalized COF (TTO-COF) based on olefin linkages, which exhibited excellent chem-
ical stability under severe conditions (see Figure 5) [132]. 4-formyl phenyl) triazine and
2,4,6-trimethyl-1,3,5-triazine were used as precursors to synthesize the COF, which was
stable at temperatures as high as 400 ◦C. More importantly, TTO-COF exhibited excellent
photocatalytic degradation of organic dyes and organic pollutants. In another report, a
series of COFs denoted as CuPor-Ph-COF were grown in situ on a g-C3N4 support (CuPor-
Ph-COF/g-C3N4) (see Figure 5) [133]. Rhodamine B was chosen as a model pollutant
for degradation. Due to the faster separation of photogenerated charges in COF pores,
the composite CuPor-Ph-COF/g-C3N4 exhibited higher photocatalytic activity compared
to pure COF and g-C3N4. The Fenton reaction is an advanced oxidation process (AOP)
for organic pollutant degradation that involves the generation of hydroxyl or peroxyl
radicals from ferrous ion-activated hydrogen peroxide. Traditionally, the Fenton reaction is
carried out through a homogenous catalyst that is not recyclable and makes the process
expensive. Fang et al. synthesized a functionalized COF (JUC-521-Fe) and employed it as a
heterogeneous catalyst to carry the Fenton reaction [134]. Rhodamine 6G, a highly toxic
dye, was used as a model pollutant. JUC-521-Fe achieved a very high catalytic activity with
a reaction rate constant of 2.8 × 10−2/min and more than 95% degradation efficiency in
just 90 min. Similar approaches have been employed by other groups to degrade pollutants
such as phenol [135], BPA [136], and organic dyes [137–141].
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4.4. COFs as Membrane-Forming Materials

Due to their tunable pore aperture and pore environment, COFs are touted as ideal
candidates to be employed in separation membranes. The traditional separation mem-
branes to separate pollutants either in the gaseous form or in the solid form from the
aqueous or organic solvents usually lack regular porous channels, rendering them with
low permeance performance. In this section, we will discuss different strategies to use
COFs in the separation field towards environmental protection.
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4.4.1. Mixed Matrix Membranes (MMMs)

Incorporation of COFs in the traditional polymeric materials to enhance their flux/permeance
is perhaps the most explored approach. Polymeric membranes exhibit low flux due to
their dense and irregularly porous structure. MMMs are prepared by adding a filler
material to make their structure loose and enhance the porosity. However, MMMs face the
challenge of a trade-off between permeance and selectivity. Materials with regular porous
structures and functionalities are highly desired to function as fillers [13]. COFs provide
such opportunities. Dan et al. exfoliated COF (NUS-2 and NUS-3) into mono/few-layer
nanosheets and embedded them in a poly(ether imide) (Ultem) or polybenzimidazole (PBI)
matrix to fabricate mixed matrix membranes [142]. The resulting MMMs exhibited excellent
trapping performance for CO2, an extremely alarming greenhouse gas. Using a similar
approach, another highly selective MMM was fabricated by employing COF nanosheets
as filler materials [143]. Due to the adsorption of gases in pores of COFs, a mixture of
gases such as CO2/N2 and CO2/CH4 could be separated with a high degree of accuracy.
Recently, Jiang et al. designed an innovative strategy of using COF hollow microspheres
and incorporated them as fillers into Pebaxmatrix [144]. The COF microsphere surfaces
were decorated with polyethylene glycol monomethyl ether (PEG) before their embedment
in MMMs. COFs played a dual role in flux enhancement; the transport resistance was
reduced due to the COFs’ regular pores while the ethylene oxide groups on PEG reduced
the pore size of COFs as well as enhancing their compatibility with the polymer matrix. As
a result, an excellent CO2/CH4 separation performance was achieved even surpassing the
2008 Robenson’s upper bound. A more detailed review specifically on the CO2 separation
via COF is available elsewhere [145].

Besides hazardous gas separation, removal of pollutants from water as well as the
transformation of unhealthy water into drinkable water (desalination) is another pressing
issue that needs urgent attention. A cationic COF (TpEB) was employed as a filler during
the fabrication of polyacrylonitrile (PAN) membranes. The charge on the COF enhanced
the compatibility of the COF with the polymer matrix. As a result, a high rejection rate for
BSA (an organic pollutant and fouling material) along with an excellent water permeance
performance of 380 L/m2.h.bar [146] were obtained. Our group employed an interesting
strategy to exploit the low-density nature of COFs [147]. A COF (COF TpHZ) was mixed
as a filler in the polymeric matrix of poly(ether sulfone). Due to the low density of the
COF compared to the polymer, they migrated to the upper surface during membrane
formation to form a density-based gradient distribution. COFs endowed the membrane
with enhanced hydrophilicity with a permeance of 2.48 kg/m2 and a separation factor of
1430 for a water/ethanol mixture. The morphology of the filler material also has a distinct
impact on the resulting MMMs. Gao et al. synthesized COF (TpPa-2) through microwave
(MW) and mechanochemical (MC) methods [148]. They observed that compared to the
MC method, the COF synthesized via the MW method exhibited a much higher surface
area, good stability, small particle size, and lower agglomeration tendency. As a result,
even a small amount of 0.2% COF as a filler improved the permeance manifolds while still
keeping excellent selectivity, addressing the trade-off challenge. As mentioned earlier, the
compatibility of filler material plays an important role in the resulting MMMs. Polymers
that are organic in nature are more compatible with organic fillers compared to their
inorganic counterparts. Xu et al. incorporated carboxylated COF (COF-COOH) as a filler
in the preparation of MMMs [149]. The resulting MMMs showed enhanced hydrophilicity
and negative charge rendering the MMMs a 4-fold higher permeance and excellent rejection
rate for NaCl. Slowing the reaction rate of polyamide (PA) membrane synthesis can also
enhance the denseness of the PA layer, thus enhancing the permeance. Gao et al. proposed
that reducing the diffusion rate of an amine-bearing monomer from the aqueous to the
organic phase can yield microdefects in the PA layer, which was proposed by Alan Turing
many years ago (See Figure 6) [150]. They achieved this degree of slow diffusion by
using polyvinyl alcohol as the filler material, which could slow down the diffusion of
piperazine through hydrogen bonding interactions. Our group recently employed reactive
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COF nanosheets as fillers in the fabrication of MMMs [80]. The COF nanosheets played
a dual role. In the aqueous phase, they interacted with piperazine through hydrogen
bonding, therefore reducing its diffusion rate into an organic phase. During the interfacial
polymerization stage, the COF nanosheets reacted with trimesoyl chloride (TMC) through
their peripheral –NH2 groups. Due to the synergistic effect, the resulting MMMs obtained
an extraordinary 6.8-fold flux enhancement while keeping a steady salt rejection rate.
Similarly, we reacted COF nanosheets with graphene oxide (GO) nanosheets for the first
time to prepare a mixed nanosheet membrane assembled from the reacted two kinds of
nanosheets [151]. GO nanosheets have mechanical stability but are non-porous, whereas
COF nanosheets are porous. By reacting these two kinds of nanosheets and self-assembling
them in membrane form, the water pathway was shortened by manifolds. Compared to a
flux of ≈16 L/m2.h.bar for a pristine GO membrane, the GO-COF membranes exhibited
226 L/m2.h.bar permeance with similar dye rejection rates.
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Table 1. Summary of various applications of COFs.

COFs as Adsorbent Materials

Abbreviation Adsorbed Material Capacity Reference

COF@PDA Cu(II) 109.2 mg/g [109]
COF-SH Hg(II) 1283 mg/g [110]

MSCTF-1, MSCTF-2, xSCTF-2 Hg+2 840.5 mg/g [111]
COF-S-SH Hg+2 and Hg0 1350 and 863 mg/g [112]

NH2-MIL-125(Ti)@TpPa-1 UO2
2+ and Eu3+ 536.73 and 593.97 mg/g [113]

Fe3O4@TAPB-COF@ZIF-8 Bisphenol Detection limit (0.04 ng/mL) [114]

TAPT-DHTA Phenoxy carboxylic acids (PCAs)
pesticides Detection limit (0.007 ng/g) [115]

MIL-101-NH2@COF Blue 9 dye 256 mg/g [116]
Porphyrin sheets Greenhouse gases NA [117]

PCTF5 CO2 CO2 uptake of 58.1 cm3/g at 273 K [118]
CTF-FUM-350 CO2 57.2 cm3/g at 298 K [119]

COFs as Sensor Materials

Abbreviation Sensing Materials Reference

COF-LZU8 Hg+2 [68]
COFBTT-TZT Paracetamol [120]

TpBDH and TfpBDH Nitrophenols [121]
TPE-Ph COF Ammonia [122]

COP-3 and COP-4 Nitroaromatic explosives [123]
COF-Cage 4 Picric acid [127]
ACOF-TaTp Gallic acid and uric acid [128]

AgCo/TAPB-DMTP-COF Levodopa [129]

COFs as Fillers in Mixed Matrix Membranes

Abbreviation Application Reference

COF-Ultem and COF-PBI CO2 separation [142]
TpPa-1@PBI-BuI and TpBD@PBI-BuI Greenhouse gases separation [143]

COF-MMM CO2/CH4 separation [144]
TpEB BSA removal [146]

COF TpHZ Water/ethanol separation [147]
COF (TpPa-2) Organic foulant removal [148]

COF (COF-COOH) Desalination [149]
PA-rCON Desalination [80]
GO-CTN Dye removal [151]

COFs as Active Layers in Separation Membranes

Abbreviation Method of Preparation Application Reference

Tp-PA1, TpPA-2 etc Liquid-liquid interfacial
polymerization Dye separation [74]

TFP-PDA Solid-vapor interfacial
polymerization Dye separation [75]

COF-LZU1 In-situ polymerization Dye separation [76]

4.4.2. Stacking of COF Nanosheets in the Membrane Form

COFs are crystalline materials with layered structures assembled through pi-pi stack-
ing. Several reports have highlighted the exfoliation or delamination of COFs into single
or few layers [152,153]. Self-assembling these COF nanosheets (CONs) is yet another
attractive approach towards fabricating COF membranes for environmental applications;
yet very few reports exist on this topic. Jiang et al. reported an interesting strategy to
exfoliate COFs into CONs and self-assemble them with cellulose nanofibers through a
mixed dimensional assembly [154]. Due to the shielding effect, membranes with precise
pore sizes in the range 0.45–1.0 nm were obtained. The resulting membrane exhibited a
very high flux of 8.53 kg/m2.h.bar. The membranes could be used both for dehydration



Energies 2021, 14, 2267 13 of 21

of n-butanol (separation factor of 3876) and desalination with 96.8% Na2SO4 rejection.
Li et al. explored the use of photo-isomerizable azobenzene as a driving agent for the
exfoliation of a variety of COFs into CONs [155]. They obtained CONs with a larger lateral
area compared to traditional exfoliated CONs due to the high compatibility between COF
structure and azobenzene molecules. The membranes obtained from the resulting CONs
exhibited very high permeance of 596 L/m2.h.bar with excellent retention of hazardous
dye molecules. Similarly, Liu et al. exfoliated COF into CONs and self-assembled them
into membrane [156]. Due to the ultralow solvent-interface interaction and plethora of
porous channels, the membranes exhibited water permeance of 141.5 L/m2.h.bar and
excellent molecular and ion separation. In another report, a cationic COF (EB-COF:Br) was
synthesized through a bottom-up approach and then exfoliated into CONs [106]. These
CONs were self-assembled with vacuum assistance into stacked COF membranes. Due
to the high positive charge density on the membrane, they exhibited selective separation
of hazardous dyes with different charges. These membranes obtained 98% rejection of
anionic dyes.

4.4.3. Pure COF as Active Separation Layer in Membranes

Membranes with a purely COF selective layer are an attractive goal, yet are very
challenging to achieve. In fact, very few reports have so far exhibited successful membrane
fabrication with COF as an active layer. The biggest challenge is the processability of
COFs as the traditional COFs are synthesized as insoluble and unprocessable powders.
Translating the porous structure of these powders into membrane form is a daunting
challenge. Banerjee et al. reported an interfacial crystallization method to obtain various
defect-free COF membranes [74]. To slow down the initial polymerization, they employed
an interlayer containing water. The aldehyde monomer was dissolved in an organic solvent
followed by the interlayer of water and then an aqueous solution containing a catalyst
and an amine-bearing monomer. The reaction was kept in static conditions for 3–5 days to
obtain highly crystalline COF membranes that exhibited an unprecedented high permeance
both towards the water and organic solvents along with good dye rejection rates. This
work still faced some challenges, such as the amine-bearing monomer also being soluble in
the organic solvent. It led to a thicker membrane because the polymerization could not
be limited to the interface. Besides, the liquid–liquid interface is very fragile and could
be disrupted with even a gentle shaking. The membrane formation also took longer due
to room temperature. Our group addressed those challenges by employing a solid-vapor
interface to crystallize COF membranes as described in Figure 7 [75]. One monomer
was grown on solid support. The second monomer was vaporized to react with the first
monomer. Due to the static and stable solid-vapor interface, the reaction temperature could
be increased up to 150 ◦C. Secondly, the reaction was confined at the interface. Therefore,
highly crystalline and ultra-thin (120 nm) membranes were fabricated in just 9 h. Due to
high crystallinity and low thickness; these membranes outperformed all other reported
COF membranes by manifolds. Caro et al. employed an in-situ polymerization method to
fabricate COF membranes directly on the alumina support [76]. The alumina support was
first functionalized with APTES and a thin layer of aldehyde monomer was grown on it
through in-situ polymerization. Later, the alumina support with aldehyde monomer was
immersed in a mixed monomer solution to grow a thin layer of COF on top of the support.
The composite membranes were used as such for nanofiltration purposes. They exhibited
good permeance as well as dye rejection performance.
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5. Conclusions and Perspectives

Reticular chemistry composed of COFs is the most advanced emerging materials
science. Although the developments in COFs are still in the early stage, the salient feature
of these materials, like the ease of functionalization with tailored pore windows and sizes,
reflect their potential for certain applications. These characteristics suggest that these are
an emerging class of material in a wide range of applications including photocatalysts,
adsorbents for heavy metals and dyes, membranes for gas, and metal separation. A vast
amount of the literature has been reviewed in this article. Emphasis has been given to
highlighting the main characteristic features of COFs and their role in environmental
remediation.

The structure, morphology, pores, and charge on COF pores were elaborated on for
their role in environmental applications. Several COFs have been synthesized using various
synthetic approaches comprising solvothermal methods. Although initially reported COFs
were not stable, however, introducing hydrogen bonding and other functional groups has
increased the stability of current COFs. The pore size of COFs can be pre-designed by
choosing specific sizes of monomers for particular applications. The pore size ranging
from 0.5–5 nm has been reported so far making them highly desirable in size-dependent
separation processes. The pore charge is crucial when COFs are used as adsorbents
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or membranes for separation. The negatively charged pore separates the cations and
vice versa.

Due to their pore and structural tunability, COFs have been extensively used as good
adsorbents for hazardous materials. Heavy metals in water like Cu, Hg, Eu, organic
dyes, and greenhouse gases have been removed effectively through COF chemistry. COFs
have also shown excellent sensing for heavy metals with low detection limits in water
and human urine and blood samples. COFs are ideal candidates for the photocatalytic
degradation of organic dyes and pollutants with high stability and recyclability. Due to
functionality and pore window size, COFs have been used in the preparation of defect-free
membranes. MMMs have excellent separation performance for CO2 separation from the
air and natural gas, surpassing the upper bound curve. Besides, nanosheets of COFs have
been fabricated on porous supports, which exhibited high selectivity. In the future, intense
research is required for the application-oriented synthesis of COFs, such as COFs with
large porosity for adsorption, active sites for photodegradation, and the ability of linkers to
form defect-free films for separation membranes.

Despite such huge advancements in COF chemistry for environmental applications,
several challenges can still be addressed.

1. COFs with certain functionalities are still needed.
2. Economically viable preparation methods are needed for commercialization.
3. The crystallinity of the COF materials is still an issue that needs further incitement.
4. Many COFs are not stable in humid conditions and this is a serious issue.
5. CO2 separation in the presence of water and other acidic gases is not well explored.
6. More structural performance of COFs need to be designed for environmental applications.
7. The fragile nature of a pure nanosheet of COFs is challenging for industrial applica-

tions. Thus, flexible COF membranes would be an attractive approach.
8. The environmental risk management data for COFs is still lacking, which needs to be

addressed.
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