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Abstract: Cognitive radio is expected to be implemented in smart grids since it presents high
reliability, high accuracy and low transmission time by utilizing licensed bands opportunistically.
Shadowing environment affects the performance of channel availability detection of local spectrum
sensing since it occurs occasionally. Therefore, the cooperative spectrum sensing is encouraged to be
used for addressing shadowing issues. The principle cooperative spectrum sensing techniques suffer
from unreliable local information from secondary users (SUs) who are encountered by the shadowing
effect. Then, several alternative methods, adaptive majority rule and improved weight algorithm
(IMA) is proposed by taking the SUs reliability into account. However, the unreliable SUs are still
considered according to the algorithm. Therefore, in this paper, we propose an adaptive multi-criteria
thresholding (AMT) to determine the channel availability according to the SUs reliability. The main
contribution of AMT is three-fold. First, the new reliable weight calculation is proposed by utilizing
analytic hierarchy process (AHP) under three major criteria. Second, AMT is flexible to the number
of SUs since it adapts the decision weight on the optimal number of SUs according to the reliable
SUs. Third, the shadowing issue is addressed by taking only reliable SUs into account.

Keywords: cooperative spectrum sensing; fusion rule; AHP; shadowing; smart grid

1. Introduction

During the last decade, a number of wireless communication applications have notice-
ably grown together with communication resources demand. Smart grid [1] is the modern
electrical grid which comprises of the communication module for exchanging information
between utility, data concentration unit (DCU) and customers. Therefore, communication
is a critical function of smart grid that has to be reliable, efficient and fast. However, the
conventional static communication channel allocation cannot meet the requirement of
emerging smart grid technology and others.

Stated by traditional policy, licensed bands cannot be utilized by unlicensed users or
a secondary user (SU) even if the licensed bands are not utilized by primary users (PUs).
Therefore, the unlicensed spectrum resource cannot satisfy the current spectrum demand.
Depending on the current underutilization of licensed spectrum resource, a cognitive radio
(CR) [2–7] is encouraged to be used for addressing the underutilization issue. By utilizing
CR technology, not only PU can use the licensed band, it can be dynamically utilized by
SUs with unharmed interference to the PU. As stated in the first cognitive radio standard,
IEEE 802.22 [8], television bands are allowed to be utilized by the SU where two types of
PU signal are considered, i.e., TV broadcasting and wireless microphone signal.

In the CR networks, a SU can communicate to others in two ways. First, in infrastructure-
based networks, the SU communicates to others via a base station (or fusion center) who
gathers the information from SUs for making decisions such as declaring the availability
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of the considered channel. Second, ad hoc networks [9], the SU communicates to others
through the neighboring SUs. However, before starting the communication, the SU must
ensure that its communication must not interfere with the PU or the communication channel
is not being utilized. In practice, the ad-hoc nodes, or SUs, are considered as mobile devices
with their location changing dynamically and the received PU signal strength may vary
according to several factors including the distance between them and the PU transmitter,
varying environment and obstacles in transmission path of the received PU signal. There-
fore, the performance of detecting the channel availability of ad-hoc network may suffer
from those environments than the infrastructure based. Therefore, we focus on the ad-hoc
nodes. Spectrum sensing [10–46] is the vital function of CR which is used to identify the
PU’s state. To achieve the spectrum usage requirement of CR, an efficient spectrum sensing
is required. If the spectrum sensing presents a wrong declaration about PU state, the SU
will start its communication and will cause interference to the PU.

Principally, non-cooperative spectrum sensing techniques are widely considered
where the PU’s state is identified by an SU individually. In practice, there are several issues
that degrade the spectrum sensing performance including the low quality of PU’s signal
due to low signal-to-noise ratio (SNR) [11–14], noise uncertainty [14,15], and shadowing
effect [16,17]. Low SNR and noise uncertainty issues can be addressed by modifying
the non-cooperative spectrum sensing techniques [18–34]. Energy detection [19–21] is
the simplest non-cooperative technique which compares the detected signal energy to the
predetermined threshold in order to identify the PU’s state. However, this simple technique
gives an inefficient spectrum sensing performance under low SNR and noise uncertainty
issues. The covariance-based spectrum sensing [22] was proposed to address the noise
uncertainty issue. However, it comes at a cost of high computational burden and long
sensing time. Then, a number of solutions of ED were proposed to address these issues,
e.g., adaptive schemes for energy detection [23–25], two-stage spectrum sensing [26], multi-
slot techniques [27], spectrum sensing based eigen-decomposition [28,29] and learning
based spectrum sensing [30–34]. However, these techniques still identify the PU’s state
individually and cannot address the issues of shadowing.

Depending on the shadowing issue, the signal of the PU, i.e., PU in an area that the
broadcast signal is obstructed by objects, cannot be detected by the SU since the broadcast
signal from the PU is obstructed by buildings where the strength of the signal is lower than
can be detected, as depicted in Figure 1. Then, the individual spectrum sensing may declare
a wrong state of the PU, e.g., the PU occupies the licensed channel but the SU declares
the channel as available instead of unavailable affected by the hidden PU. Therefore, a
cooperative spectrum sensing is determined as the efficient strategy for addressing the
shadowing issue. Once the PU’s state is identified cooperatively using local information
from several SUs, based on cooperative strategy, the fusion center assigns a number of
SUs to sense the PU’s state and the detected results are reported to the fusion center via
the control channel. The fusion center identifies the PU’s state by combining the gathered
information using the information fusion rules. Then, the fusion rule is the vital method of
cooperative spectrum sensing.
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In general, there are two data fusion schemes including hard combination and soft
combination. For hard combination rules [35–40], the fusion center receives the local
binary decision, 0 or 1, from several SUs and then performs the data fusion via the hard
combination rules—OR, AND and majority [35,36]. It should be noted that the binary 1
identifies an existent state of PU while binary 0 identifies an inexistent state. Nevertheless,
the expected performance is not met by using the traditional information fusion rules
due to their merits/demerits. On the other hand, soft combination strategy [41] combines
the local sensing data transmitted by several SUs and the fusion center combines this
information and constructs the global test statistic. Then, it is compared to the soft decision
threshold to identify the PU’s state. However, the soft fusion scheme comes at a cost
of system complexity and the computational burden. Therefore, the hard combination
becomes more popularly utilized and study takes place to improve the performance of
principle techniques—OR, AND and majority rule— through several solutions. It should
be mentioned that the performance of spectrum sensing can be evaluated through two vital
metrics including cooperative probability of detection (Qd) and cooperative probability of
false alarm (Q f ). Qd is determined as the correct declaration when the PU exists. Q f is
determined as the wrong declaration when the PU does not exist.

The first principal fusion rule, OR rule, declares the channel status as unavailable once
a PU is detected by a single SU. Although the OR fusion rule presents a high probability
of detection since only a single SU detects the PU existence, it also presents a high false
declaration, high Q f , since the SU may send the wrong detection result to the fusion center.
The second rule, AND rule, declares the channel status as unavailable once all of SUs detect
the existence of PU. Even if the AND fusion rule addresses the issue of false declaration of
the PU state when the PU does not exist, the correct declaration when the PU exists is also
low, i.e., low Qd. The third rule, the majority rule, address the issues of OR rule and AND
rule by declaring the channel status as unavailable once K SUs detect the PU existence.
However, it still cannot achieve the satisfied spectrum sensing performance under low
SNR due to path loss and high strength of shadowing effect.

For the majority fusion rule, the number of SUs is considered as the critical factor
that affects the performance of the cooperative spectrum sensing. In [42], an improved
weight cooperative spectrum sensing (IMA) is proposed by adapting the cooperative
threshold on the optimal number of SUs and determines the cooperative decision statistic
based on the SUs reliability. The ratio PU detection of each SU as compared to the PU
detection of the fusion center is determined as the SU reliability. The optimal number
of SUs [43,44] is calculated with the objective to minimize the error rate of cooperative
spectrum sensing including Q f and the cooperative missed detection probability (Qm)
where Qm is determined as the wrong declaration when the PU exists. Therefore, the IMA
method improves the Qd of the majority rule while it presents low Q f . In [45], modified
majority rule is proposed by determining the PU state on KR reliable SU. In [46], the number
of considered SUs according to the majority rule is proposed by taking the energy of the
SUs into account with threshold adapting according to the SUs energy. The reliability of the
modified majority rule is considered by analytic hierarchy process (AHP) [47–49] where
the past PU detection and the distance between SUs and the PU is the factor to determine
the SU reliability. It can be noticed that the reliability of the SU and the optimal number of
SU have a great impact on the performance of majority rule and its modified versions. With
an efficient cooperative scheme and reliable information from SUs, the fusion center can
determine the PU state efficiently. On the other hand, the machine learning algorithms are
implemented for cooperative spectrum sensing. In [50], the machine learning algorithms
are implemented into cooperative spectrum sensing function and therefore the performance
of these techniques is investigated. In [51], the learning-based algorithm is proposed to
learn the PU behavior using Q-learning. The algorithm learns the PU behavior using
local information from SUs. However, the learning based cooperative spectrum sensing
techniques require prior information to learn the behavior of PU to generate the cooperative
sensing model.
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In this paper, a novel modified majority rule, adaptive multi-criteria thresholding
algorithm (AMT), is proposed by considering the reliability of SUs on multi-criteria and
adapting the cooperative spectrum sensing threshold on the optimal number of SUs as
corresponding to the reliability weight. Currently, several multi-criteria ranking methods
are proposed, e.g., analytic hierarchy process (AHP), technique for order of preference by
similarity to ideal solution (TOPSIS) [52], Vise Kriterijumsa Optimizacija I Kompromisno
Resenje (VIKOR) [52], complex proportional assessment (COPRAS) [52] and preference
ranking organization method for enrichment of evaluations II (PROMETHEE II) [52]. These
methods perform decision-making under different frameworks. AHP determines the rank
of alternatives in a hierarchical manner where the main criteria and alternative weight are
determined by using a pairwise-comparison. TOPSIS and VIKOR determine the rank of
alternatives by determining the distance of each alternative according to the ideal positive
and negative solutions where the distance of TOPSIS is based on the Euclidean solution
while VIKOR is based on linear normalization. COPRAS ranks the alternatives according
to maximizing and minimizing criteria through the summation of weighted normalized
values. PROMETHEE II determines the ranking on the outranked relationship mechanism.

Although AHP is considered as the conventional multi-criteria ranking method, it
presents a robustness and flexibility to perform the performance decision under complex
constrains. For other methods, the main criteria weighting is considered as a main issue
since it is difficult to assign the weight to each criterion individually. For AHP, the main
criteria are compared in a pairwise mechanism, therefore, it is easy to determine the
importance between criteria. Even if the number of criteria and alternatives are the limit of
AHP, in this paper, our proposed technique, AMT, does not suffer from the limitation since
only three main criteria are taken into account with 10 alternatives (SUs). Moreover, AMT
benefits from the pairwise comparison mechanism, therefore the ranking weights can be
determined effectively.

The contribution of this paper is three-fold. First, the new reliable weight calculation is
proposed by utilizing AHP under three major criteria-collective detection rates, collective
false detection rate and estimated SNR of detected signal. Therefore, the reliability weight of
SUs is generated effectively. Therefore, AMT determines the channel availability according
to the reliable SUs. Then, it can achieve the highest Qd as compared to others hard
cooperative spectrum sensing and maintains a low Q f as stated by IEEE802.22 protocol
where Q f should be less than 0.1. Second, we propose a new adaptive cooperative threshold
scheme which adapts on the optimal number of SUs and their reliability weights. Therefore,
AMT is flexible to the number of SUs since it adapts the decision weight on the optimal
number of SUs according to the reliable SUs. Third, the shadowing issue is addressed since
the information from unreliable SUs is neglected from the decision process.

This paper is organized as follows: the cooperative spectrum sensing including prob-
lem statements and existing cooperative spectrum sensing techniques are briefly introduced
in Section 2. In Section 3, the proposed technique adaptive multicriteria thresholding algo-
rithm (AMT) is described in detail. Then, the simulation results are depicted and discussed
in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related Works

In this section, we will discuss our problem statement and describe three conventional
cooperative spectrum sensing rules including AND, OR and majority rule.

2.1. Problem Statement

In wireless communication environments, many factors such as the noise uncertainty,
shadowing and path loss decrease the performance of non-cooperative spectrum sensing.
Since the location of SUs are different, therefore, for some SUs, the received signal from
the PU may be degraded via transmission path due to obstacles such as buildings. This
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phenomenon is called the shadowing effect (σ) that degrades the quality of the received
signal. The mathematic model of the shadowing effect (σ) [17] can be written as

σ = 0.1 ln(10)σdB (1)

where σdB is log-normal shadowing in dB. The channel gain can be modeled log-normal
shadowing variable ex where x is a zero-mean Gaussian random variable with variance
σ2 [17].

On the other hand, the received signal from the PU suffers from the signal’s propaga-
tion distance. This is known as path loss effect [12–14] where the mathematical model is
expressed as:

PL ≡ Cd−ℵ (2)

where PL is path loss, d is distance between PU and SU, C is loss constant and ℵ is path
loss exponent.

The hypothesis models of the received signal [4] are given by:

x =

{
η when PU absents [H0]
h ∗ (PL·s) + η when PU presents [H1]

(3)

where x is the received signal of SU, η is additive white Gaussian noise, s is the signal of
PU and h is gain of channel.

In general, the energy detection is considered as the local spectrum sensing of each SU,
therefore the local probability of detection (Pd) and local probability of false alarm (Pf ) [4]
are given as:

Pd = Q

[√
Nm

2

(
λ

ση2 − (SNR)− 1
)]

(4)

Pf = Q

[(
λ

ση2 − 1
)√

Nm

2

]
(5)

where λ is the decision threshold of the energy detection, ση
2 is variance of additive white

Gaussian noise and Nm is the signal of the sample.

2.2. Cooperative Spectrum Sensing

To combat the shadowing effect, cooperative spectrum sensing (CSS) schemes are
proposed. In CSS network, the PU is sensed in a cooperative manner by a number of SUs
where the SU shares its detection result to others. For the master/slave mode of ad hoc
networks, the fusion center is determined as the master node that senses the PU existence
via the gathered detection results from SUs. Then, the final declaration of PU status is
performed by the fusion center. There are three traditional fusion rules including OR, AND
and majority rule [37–40]. It should be mentioned that Q f is the probability of false alarm
and Qd is the probability of detection of cooperative scheme.

2.2.1. OR Rule

The fusion center declares the status of channel as occupied when only a single SU
detects the existence of the PU. Then, the Q f and Qd [37–40] can be written as:

Q f = 1−
(

1− Pf

)N
(6)

Qd = 1− (1− Pd)
N (7)

where N is the number of the SU.
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2.2.2. AND Rule

After the fusion center gathers all SUs detection results, it declares the channel status
as occupied when all SUs detect the PU. Then, the Q f and Qd [37–40] is given as:

Q f =
(

Pf

)N
(8)

Qd = (Pd)
N (9)

2.2.3. Majority Rule

For majority rule, the fusion center declares the channel status as occupied when at
least k from N SUs detect the PU. Then, the Q f and Qd [37–40] is given as:

Q f =
N

∑
l=k

(
N
l

)(
Pf

)l(
1− Pf

)N−l
(10)

Qd =
N

∑
l=k

(
N
l

)
(Pd)

l(1− Pd)
N−l (11)

2.2.4. Improved Weight Algorithm

The improved weight cooperative spectrum sensing (IMA) [42] is the modified version
of the traditional majority rule. To improve the performance of the majority rule, the
reliability of the information taken from the SUs and the optimal number of SUs are taken
into account. By determining the total error spectrum sensing rate, the optimal number of
SU (nopt) is obtained and can be expressed as

nopt= min (N,
N

1 + β
) (12)

where

β =
ln

Pf
1−Pm

ln Pm
1−P f

(13)

where Pm is the local probability of missed detection of each SU.
Moreover, the reliability weight determined by the ratio of PU detection of each SU as

compared to the fusion center is taken into account of binary decisions from SUs. Then, the
decision statistic of IMA is compared to the IMA threshold which is given by:

λIMA =
(nopt

N

)
(14)

If the cooperative decision statistic of IMA is greater than λIMA, the PU state will
be declared as existent. Otherwise, the PU state will be declared as not existent. The
cooperative decision statistic of IMA is determined by the linear combination between the
weight vector and the local decision vector where the weight vector is according to the
collective probability of detection and the local decision vector is the local decision from
each SUs.

2.2.5. Adaptive Majority Rule

Adaptive majority rule [45] is the alternative method of the majority rule which
determines the reliability of SUs through the multi-criteria ranking method, analytic
hierarchy process (AHP) [49–51]. For the adaptive majority rule, two metrics are taken into
account—past PU detection and the distance between SUs and the PU. Then, the reliability
score of each SU is computed through the combination of eigen-decomposition vector of
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actual values of sub-criteria, i.e., past PU detection of each SU and the distance between
the SU and PU, corresponding to the eigen-decomposition vector of main criteria.

Once the reliable SUs are considered, the only SUs with KR highest reliability score
are determined. To declare the existence state of PU, at least K

2 of SUs with KR highest
reliability score must present the binary 1 of its local detection.

3. Proposed Algorithm: Adaptive Multicriteria Thresholding

In this section, adaptive multicriteria thresholding algorithm (AMT) is proposed
to improve the reliable weight efficient utilizing analytic hierarchy process (AHP). The
framework of AMT algorithm consists of two critical modules—reliability weight (Wcrs)
calculation and adaptive AMT thresholding. By taking the advantage of the cooperative
spectrum sensing from only reliable users with efficient reliable weight, the issue of shadow
PU under low signal-to-noise ratio (SNR) can be addressed. The framework of AMT
algorithm is shown in Algorithm 1.

Algorithm 1. PU state declaration.

1: Input Estimated SNR, Collective Pd and Collective Pf of SUs
2: Output PU state [does not exist, exists]
3: Calculate main reliability weight {MCcrs};
4: Calculate reliability score of CR users {SCcrs};
5: Determine weight of reliability of CR users {Wcrs} by calculating {SCcrs}
6: according to {MR}
7: Calculate optimal N;
8: // Calculate threshold
9: Select KR most reliable SUs with KR highest Wcrs= [w crs,1, wcrs,2, . . . , wcrs,KR ]

10: λAMT ←
(

nAMT
KR

)
∑KR

i=1 wcrs,i

11: // Calculate AMT decision threshold (λAMT)
12: // Normalize weight of reliability of KR SUs (RW = [RW 1, RW2, . . . , RWKR ])
13: for j ∈ KR SUs
14: RW j =

wcrs,j

∑n
i=1 wcrs,i

15: end
16: // Calculate AMT decision statistic
17: DAMT= RWT ∗ CKR // CKR is binary decision from SUs.
18: if DAMT ≥ λAMT
19: return channel status← 1;
20: else
21: channel status← 0;
22: end

First, by using AHP method, the main criteria (MCcrs= [mc 1, mc2, mc3]) is determined
through three factors including collective detection rate, collective false detection rate and
estimated SNR of detected signal. It should be mentioned that the collective detection rate
is determined as the correct detection of each SU as compared to the detection status of the
fusion center. On the other hand, collective false detection considered as a wrong detection
of each SU as compared to the detection status of the fusion center.

Second, the reliability weight of SUs (Wcrs= [w crs,1, wcrs,2, . . . , wcrs,n]) is computed by
computing the sub-criteria weight of each SU (SCcrs= [sc 1, sc2, . . . , scn]) corresponding to
MCcrs, and only SUs with the highest KR reliability weight are selected. Third, the AMT
decision threshold (λAMT) and AMT decision statistic (DAMT) are computed based on
the optimal number of SU and normalized reliable weight (RW). Finally, the PU state is
determined by comparing DAMT to λAMT.



Energies 2021, 14, 2259 8 of 16

3.1. Reliability Weight Calculation

In this subsection, the reliability weight calculation is described in detail together
with the mathematical models. To determine the reliability weight, the AHP method with
three vital performance of SU—collective detection rate, collective false detection rate and
estimated SNR of detected signal—is determined.

1. Construct the structure of reliability weight calculation based on AHP method as
depicted in Figure 2.

2. Construct the pairwise comparison matrix (A) [49] by pairwise comparing each main
criterion to others. Then, the A can be expressed as

A =

 1 a12 a13
a21 1 a23
a31 a32 1

 (15)

where a12 is the weight of pairwise comparison of collective detection rate to a
collective false detection rate, a13 is the weight of pairwise comparison of collective
detection rate to the estimated SNR of detected signal and a23 is the weight of pairwise
comparison of collective false detection rate to the estimated SNR of detected signal.
It should be noted that a21 = 1/a12, a31 = 1/a13 and a32 = 1/a23.

3. Calculate main reliability weight (MCcrs) by normalizing the calculated eigen-vector
of A.

4. Perform procedure 1 to 3 for the sub-criteria of each criterion, then SCcrs is obtained.
5. Determine the reliability weight of SUs (Wcrs) by computing SCcrs as corresponding

to MCcrs.
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3.2. Adaptive AMT Thresholding

In this sub-section, the AMT decision threshold (λAMT) and AMT decision statistic
(DAMT) are determined. Firstly, the optimal number of SU for AMT (nAMT) is determined.
As stated in [43,44], the optimal number can be determined through the probability of false
alarm (Q f ) and the missed detection probability (Qm) of the majority rule where Qm can be
given as:

Qm= Prob{H0|H 1}= 1−
KR

∑
l=n

(
KR
l

)
Pl

d(1− Pd)
KR−l (16)

Using (10) and (16), nAMT can be computed with an objective to minimize the error
detection rate (Qm + Q f ). Given that G is a function of the subtraction between Q f and Qd
where Qd is in the term, Qm can be given as:

Qd= Prob{H1|H 1} =
KR

∑
l=n

(
KR
l

)
PKR−l

m (1− P m)
l (17)
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where Pm is the local probability of missed detection of each SU.
Then, G is given as:

G(n) =
KR

∑
l=n

(
KR
l

)[
Pl

f

(
1− Pf

)KR−l
− PKR−l

m (1− P m)
l
]

(18)

To obtain nAMT, ∂G(n)
∂n is 0. Then

∂G(n)
∂n

≈ G(n + 1)− G(n) (19)

0 =

(
KR
n

)[
(1− Pm)

nPKR−n
m − Pn

f

(
1− P f

)KR−n
]

(20)

where Pf is the local probability of false alarm of each SU.

Pn
f

(
1− P f

)KR−n
= (1− Pm)

nPKR−n
m (21)

Given that

αAMT =
ln

Pf
1−Pm

ln Pm
1−P f

(22)

Then,

nAMT ≈
KR

1 + αAMT
(23)

It should be noted that the traditional majority rule set αAMT to 1, then nAMT is N/2.
In our method, we determine the detection results from the KR of SUs that presents the
summation of Wcrs to 75%. Therefore, λAMT can be expressed as

λAMT =

(
nAMT

KR

) KR

∑
i=1

wcrs,i (24)

It should be mentioned that the value of Wcrs affects the tradeoff between Qd and Q f .
If the Wcrs is set to 100%, then all SUs are taken into account. On the other hand, if the
Wcrs is set lower than 50%, a small number are taken into account which may present a
high Q f . Therefore, the Wcrs is selected as 75% which is averaged from 100% and 50%.
Then, the issue of the detection tradeoff can be addressed.

The decision statistic of AMT (DAMT) can be expressed as:

DAMT = WT
crs ∈ KR

C KR (25)

where C KR is the decision binary from the SUs that is the member of KR highest reliability
weight of SUs (Wcrs).

Finally, the PU state can be determined as:

PU state =

{
not exist : DAMT < λAMT
exist : DAMT ≥ λAMT

(26)

4. Simulation Results

In this section, we simulate the performance of five cooperative spectrum sensing
techniques—AND, OR, majority rule, improved weight algorithm (IMA) and adaptive
majority rule—as compared to the proposed technique—adaptive multicriteria threshold-
ing algorithm (AMT) under shadowing effect. The energy detection is considered as the
local spectrum sensing of each unlicensed user (SU). The simulated network consists of 1
licensed user (PU) and 10 SUs (N). To evaluate the performance under shadowing effect,
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25% of SUs are encountered by the shadowing where the strength is set to be 0 to 5 dB.
The PU signal, wireless microphone, is contaminated by additive white Gaussian noise
(AWGN) [53], where the noise power is set to be −96 dBm as stated in [54,55] and the
signal-to-noise ratio (SNR) decreases on the path loss effect [12–14]. Then, the distance
between PU and SUs is ranged from 10 to 500 meters (m). Then, the SNR of wireless
microphone signal decreases to−23.46 dB at 500 m. To evaluate the effect of SU’s reliability,
the distance of each SU is different from others in the range of 25% randomly.

In this evaluation, the two cooperative spectrum sensing performance metrics are
considered including the probability of detection (Qd) and probability of false alarm (Q f ).
Moreover, we evaluate the robustness of cooperative spectrum sensing to shadowing effect
from the percentage of shadowing robustness (PB) which is given as:

PB = 100 −
(∣∣Base Qd − Shadowing i dB Qd

∣∣
Base Qd

)
×100 (27)

where Base Qd is the Qd when shadowing is 0 dB and Shadowing i dB is Qd when shadow-
ing is i dB.

We investigate the performance of each cooperative spectrum sensing technique under
different strengths of shadowing effect. As shown in Figure 3, the OR rule presents a high
Qd for all distances. It can be noticed that the performance of detection of OR rule when
shadowing is not taken into account is the highest as compared to the performance when
shadowing is considered. As the cooperative spectrum sensing advantages, the detection
performance decreases gradually when the strength of shadowing increases. Nevertheless,
as depicted in Figure 4, the false detection performance, Q f , of OR rule is noticeably high
while other techniques present low Q f . Therefore, the OR rule cannot achieve the required
performance of spectrum sensing where Qd should be as high as 0.9 and Q f should be as
low as 0.1 [55].
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On the other hand, the other principle cooperative spectrum sensing technique, the
AND rule, presents low Q f when PU does not actually exist. However, due to its detection
strategy, the detection performance of the AND rule suffers from low SNR due to path loss
and shadowing effect as shown in Figure 5a. It can be seen that the AND rule achieves
spectrum sensing requirement at shadowing 0 dB when the distance is lower than 150 m.
Moreover, it achieves the requirement at a lower distance when the shadowing strength
increases. Since a PU detection from the two principal strategies, OR and AND rule,
cannot achieve the sensing performance on both metrics (Qd and Q f ), the majority rule is
encouraged to be used as the cooperative spectrum sensing. As shown in Figure 5b, the
detection performance of the majority rule can achieve the spectrum sensing requirement
when the distance is lower than 250 m.

To improve the performance of traditional majority rule, the reliability of SU is taken
into account. As depicted in Figure 5c, the adaptive majority rule presents high Qd when
distance is lower than 250 m. It improves the robustness of shadowing performance of the
majority rule since the adaptive majority rule. On the other hand, as shown in Figure 5d,
IMA algorithm aims to minimize total error rate by computing the optimal required number
of SUs and takes the reliability factor into account. As a result, IMA achieves high Qd for 1
to 3 dB of shadowing strength at 250 m which outperforms the detection performance of
traditional majority and the adaptive majority rule. As depicted in the table, IMA algorithm
shows a robustness to shadowing. As depicted in Figure 5e, by improving the performance
of reliability weight computing, our proposed cooperative spectrum sensing, AMT, presents
Qd higher 0.9 for all shadowing strengths at 250 m. Table 1 presents the percentage of
shadowing robustness (PB) at 1 to 5 dB of four techniques as a function of distance at 250.
The PB results show that AMT gives the highest percentage of shadowing robustness (PB).
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Table 1. The percentage of shadowing robustness (PB) for the shadowing at 1 to 5 dB as a function of
distance at 250 m.

Methods 1 dB 2 dB 3 dB 4 dB 5 dB

Majority 73.59% 72.08% 70.02% 69.54% 69.66%
Adaptive
Majority 75.18% 73.55% 72.19% 71.51% 71.07%

IMA 91.77% 91.12% 90.58% 90.10% 89.70%
AMT 93.94% 93.82% 93.32% 92.75% 92.91%



Energies 2021, 14, 2259 13 of 16

Then, we compare the robustness to shadowing effect through the proposed factor
which is given in (27). As depicted in Figure 6, at 250 m, AMT presents the highest
percentage of shadowing robustness for all strengths of shadowing effect. It can be noticed
that the AMT and IMA algorithms present a percentage of shadowing robustness higher
than 90% for all shadowing strengths since the optimal number of SUs is considered. On
the other hand, by taking only reliability through only detection performance of local SU,
the adaptive majority rule cannot satisfy the cooperative spectrum sensing as AMT and
IMA algorithm.

Energies 2021, 14, x FOR PEER REVIEW 13 of 17 
 

 

percentage of shadowing robustness (PB) at 1 to 5 dB of four techniques as a function of 

distance at 250. The PB results show that AMT gives the highest percentage of shadowing 

robustness (PB). 

Table 1. The percentage of shadowing robustness (PB) for the shadowing at 1 to 5 dB as a function of distance at 250 m. 

Methods 1 dB 2 dB 3 dB 4 dB 5 dB 

Majority 73.59% 72.08% 70.02% 69.54% 69.66% 

Adaptive Majority 75.18% 73.55% 72.19% 71.51% 71.07% 

IMA 91.77% 91.12% 90.58% 90.10% 89.70% 

AMT 93.94% 93.82% 93.32% 92.75% 92.91% 

Then, we compare the robustness to shadowing effect through the proposed factor 

which is given in (27). As depicted in Figure 6, at 250 m, AMT presents the highest per-

centage of shadowing robustness for all strengths of shadowing effect. It can be noticed 

that the AMT and IMA algorithms present a percentage of shadowing robustness higher 

than 90% for all shadowing strengths since the optimal number of SUs is considered. On 

the other hand, by taking only reliability through only detection performance of local SU, 

the adaptive majority rule cannot satisfy the cooperative spectrum sensing as AMT and 

IMA algorithm. 

 

Figure 6. Comparison of the percentage of shadowing robustness at 250 m. 

From the simulation results, by taking the reliability of SUs into account, the adaptive 

majority rule, IMA and AMT algorithm improve the detection performance of the three 

traditional techniques—OR, AND and majority rule. Since the optimal number of SU is 

taken into account, both IMA and AMT outperform the performance of the adaptive ma-

jority rule. It can be seen that the threshold of IMA is according to the ratio between the 

optimal number of SU (nopt) and the actual number of SU (N). The decision statistic of IMA 

can be determined as the linear combination between the weight vector and the local de-

cision vector where the weight vector is according to the collective probability of detection 

and the local decision vector is the local decision from each SU. Although IMA determines 

the reliability of SUs on a single constrain and then it determines the channel availability 

according to the decision threshold, the IMA still takes the unreliable SUs into account 

which makes the detection performance suffer. 

On the other hand, AMT determines the optimal number of SUs according to the 

highest reliable SUs where the reliability weights are calculated through analytic hierar-

chy process (AHP) under three major performance metrics of spectrum sensing—collec-

tive detection rate, collective false detection rate and estimated SNR of detected signal. 

Figure 6. Comparison of the percentage of shadowing robustness at 250 m.

From the simulation results, by taking the reliability of SUs into account, the adaptive
majority rule, IMA and AMT algorithm improve the detection performance of the three
traditional techniques—OR, AND and majority rule. Since the optimal number of SU
is taken into account, both IMA and AMT outperform the performance of the adaptive
majority rule. It can be seen that the threshold of IMA is according to the ratio between
the optimal number of SU (nopt) and the actual number of SU (N). The decision statistic
of IMA can be determined as the linear combination between the weight vector and the
local decision vector where the weight vector is according to the collective probability of
detection and the local decision vector is the local decision from each SU. Although IMA
determines the reliability of SUs on a single constrain and then it determines the channel
availability according to the decision threshold, the IMA still takes the unreliable SUs into
account which makes the detection performance suffer.

On the other hand, AMT determines the optimal number of SUs according to the
highest reliable SUs where the reliability weights are calculated through analytic hierarchy
process (AHP) under three major performance metrics of spectrum sensing—collective
detection rate, collective false detection rate and estimated SNR of detected signal. There-
fore, the reliability of SUs can be determined comprehensively. Then, the unreliable SUs
can be determined and can be neglected from the channel availability detection process.
Therefore, the performance of AMT outperforms the detection performance of IMA and
AMT presents the best shadowing robustness performance.

In addition, the rank reversal phenomenon is the critical issue of multi-criteria ranking
methods which reverses the ranking of decision alternatives when a new alternative is
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taken into account or one of the alternatives is removed from the account. However,
the environment of the ad-hoc network is determined where each SU node suffers from
shadowing effect, path-loss effect and AWGN noise differently, therefore, the profile of the
local SU differs from others. Moreover, the number decision alternative is static and there
is no adding or removing the alternatives from the account. Then, the rank reversal does
not affect the performance of the AMT under an ad-hoc network.

However, the limitation of the proposed algorithm is according to the simplest local
spectrum sensing technique where the energy detection is considered. Therefore, the
reliable detection from the local user is limited by the distance between the node and
the primary user transmitter. If the alternative local spectrum sensing is considered, the
performance of the proposed technique may be improved.

5. Conclusions

By performing the cooperative spectrum sensing from the intrinsic information of
unlicensed users (SUs), the performance of the three principle cooperative spectrum sensing
techniques—OR, AND and majority rule—degrades under shadowing effect since the local
information from SUs may be unreliable. To overcome the performance of these principal
techniques, the reliability of unlicensed users (SUs) is taken into account by adaptive
majority rule and improved weight algorithm (IMA). However, the performance of these
two techniques is not robust to the shadowing effect since the reliability of SUs is not
considered comprehensively. In this paper, we propose a new cooperative spectrum
sensing, adaptive multi-criteria thresholding (AMT), to address the shadowing issue of
existing cooperative spectrum sensing techniques by exploiting the analytic hierarchy
process (AHP). Once collective correct detection, collective false detection and estimated
SNR of PU signal are taken into account, the reliability of SU can be determined efficiently.
Moreover, the proposed decision threshold is determined by the number of reliable SUs
and optimal number of SUs, therefore AMT presents the highest shadowing robustness
performance as compared to others.

It could be mentioned that the proposed algorithm is evaluated only on a specific
number of PUs. In the future work, we will evaluate the performance of the proposed
technique with a various number of PUs. Moreover, the algorithm is based on the static
PU whose location is fixed. Then, the only three considered criteria may not satisfy the
spectrum sensing performance since the PU is considered as a mobile node. In this paper,
we considered only one multi-criteria decision-making method. Then, we will take the
mobile node environment with the criteria for the mobile node into account. In addition,
the algorithm of multi-criteria decision making will be modified to address the mobile
node issues.

Since the rank reversal can occur in practical environments in the form of duplicate
profiles of alternatives, the case of duplicate profile may occur when the number of SU
increases. Therefore, in the future work, we evaluate the performance of AMT when
the number of SUs increases and investigate the effect of rank reversal. Moreover, the
alternative solution will be presented to address the issue.
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