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Abstract: Lithium-ion (Li-ion) batteries play a substantial role in portable consumer electronics,
electric vehicles and large power energy storage systems. For Li-ion batteries, developing an optimal
charging algorithm that simultaneously takes rises in charging time and charging temperature into
account is essential. In this paper, a model predictive control-based charging algorithm is proposed.
This study uses the Thevenin equivalent circuit battery and transforms it into the state-space equation
to develop the model predictive controller. The usage of such models in the battery optimal control
context has an edge due to its low computational cost, enabling the realization of the proposed
technique using a low-cost Digital Signal Processor (DSP). Compared with the widely employed
constant current-constant voltage charging method, the proposed charging technique can improve
the charging time and the average temperature by 3.25% and 0.76%, respectively.

Keywords: model predictive control; equivalent circuit model; lithium-ion battery

1. Introduction

As portable electronics and electric vehicles flourish, the importance of secondary
batteries has gradually increased. Among the secondary batteries, the lithium-ion (Li-ion)
battery has become the mainstream due to its features of a high energy density, long cycle
life, and having no memory effect. Due to the reduction in the Li-ion battery’s cost, it has
been widely applied to portable consumer electronics, electric vehicles, and large power
energy storage systems. A good charging method is essential to Li-ion batteries for it is
related to many factors, such as charging efficiency of the battery, charging temperature
rise, charging time, and cycle life. All factors need to be taken into consideration while
conduct battery charging; it is imperative to develop the optimal charging technology.
Currently, the constant current-constant voltage (CC-CV) charging technique is the most
commonly used charging method. It firstly charges the Li-ion battery with the constant
current; when the battery voltage reaches the upper limit voltage (e.g., 4.2 V), it switches
to a constant voltage to charge the battery until the charging current drops to the preset
cutoff condition (e.g., 0.02 C). However, the CC-CV charging method has the problem of
higher temperature rise and a longer charging time. As a result, the literature has proposed
different charging methods aiming to solve the problems of a long charging time, low
charging efficiency, and charging temperature rise in the CC-CV method at present. In
terms of the modified CC-CV-based charging method, open-circuit voltage and charging
current are inputted into a fuzzy controller to improve the CV mode of the CC-CV charging
method in [1], allowing more charged capacity in the same charging time. A double-loop
control method is adopted in [2], allowing a charging curve similar to those created from
the CC-CV method to be realized; this does not require measuring the charging current,
which can lower the realization cost. In [3], a phase-locked loop control method is proposed,
allowing a charging performance similar to the CC-CV charging method to be achieved
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by taking phase error as a command and sending it to the current source to generate
an appropriate charging current. Intending to improve the drawbacks of [3] in terms
of the constant voltage charging, ref. [4] proposed a current pumped battery charging
method; the current pump was used to charge in constant current mode; the impulse
current was used to charge in constant voltage mode. As experimental results indicate,
its charging time is comparable with conventional CC-CVs; it also has an outstanding
performance in charging efficiency. In [5], the rise in charging temperature and its rate of
change were taken as the input of fuzzy controller and the charging current was taken
as the fuzzy controller’s output, and the experimental results show that the charging
efficiency and the charging temperature rise can both be improved. On the other hand,
the pulse charging method conducts charging by adjusting the pulse width and the pulse
frequency. For instance, ref. [6,7] change the current amplitude, pulse width, and rest
periods between pulses, diversifying the charging methods. Ref. [8] and [9] achieve the
highest charging current by changing the constant voltage pulse frequency and the duty
cycle of the constant voltage pulse, respectively. Ref. [10] proposed an adaptive pulse
charging method to enhance the charging speed and efficiency. Ref. [11] combines model
predictive control and a second-order RC model to realize the following two charging
methods—pulse-amplitude-modulated and pulse-width-modulated methods.

The multistage constant current (MSCC) charging method charges the battery by
utilizing different amplitudes of constant current. According to the literature, it can
increase the cycle life, achieving high charging efficiency and attaining a short charging
time. Currently, the MSCC charging method sets two methods as the conditions for
switching stages: judging state of charge (SOC), and upper limit of terminal voltage [12–19].
Regarding the MSCC, which takes the terminal voltage as the stage switching condition,
many works proposed methods that use soft computing or the design of experiments
technique to find the optimal charging profile (OCP). These methods include the orthogonal
array [12], Taguchi method [13,14], particle swarm optimization [15], and ant colony
optimization methods [16], etc. However, the mentioned methods all require lots of
experimental time to find the OCP and also fail to charge the SOC to 100%. On the
other hand, SOC is guaranteed to be charged to 100% with SOC as the stage switching
condition; for instance, [17] adopts the orthogonal array to acquire the OCP, while [18]
uses the Taguchi method to acquire the OCP and utilizes ASGSMO to estimate the SOC.
Compared with the conventional CC-CV charging method, these methods can improve the
charging efficiency, charging time, and temperature rise. However, plenty of experiments
are still required in these methods to find the OCP; moreover, the SOC estimation is still a
challenging problem.

Since battery charging can be regarded as an optimization problem with linear con-
straints, different constraint control approaches such as control barrier functions (CBFs),
explicit reference governor (ERG), and model predictive control (MPC) can be utilized to
solve such kind of problems. CBFs use optimization-based controllers to explicitly combine
barrier functions with control Lyapunov functions, which allows for the unification of
safety and stability in the context of an optimization-based controller [20]. ERG ensures
constraint-handling capabilities by manipulating the rate of variations applied. In this way,
the transient dynamics are guaranteed to remain within the boundaries. These schemes
have less computational stress at the expense of reduced performance [21]. On the other
hand, MPC is regarded as the most used optimization-based methodology for charging
of Li-ion batteries. MPC is especially suitable for controlling multivariable nonlinear sys-
tems while taking the objective function and constraints on both inputs and states into
consideration. Hence, MPC is adopted in this study to achieve the optimal charging of
Li-ion batteries. In the context of Li-ion battery charging, MPC is capable of shortening the
charging time while satisfying temperature and voltage constraints simultaneously [22–30].
In [22], a rapid charging framework that is derived from MPC is proposed. The future
SOC is predicted by the utilization of the RC model. Additionally, a lumped-parameter
thermal model and a neural network (NN) trained by real experimental data are applied
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to the prediction of the future temperature in simulations and experiments, respectively.
A genetic algorithm (GA) is subsequently applied to find the optimal charging sequence
under a specified fitness function, which is composed of two objectives: minimizing the
charging duration as well as the increase in temperature. The approach proposed in [23]
adopts a modified form of the MPC algorithm catering for direct feed-through signals
with a view to modeling near-instantaneous battery ohmic resistance. The implementation
adopts a second-order equivalent circuit discrete-time state-space model on the basis of
actual cell parameters; the control methodology is used to calculate a fast charging profile
that complies with input, output, and state constraints. In [24], an MPC scheme based on a
linearized version of the P2D model is proposed in order to track a SOC reference value
while taking into account the system’s aging dynamics as well as temperature and voltage
constraints. Simulations indicate the effectiveness of the approach. Additionally, the tuning
of the control parameters allows controlled operation with different tradeoffs between
charging time and battery lifetime boosts. In [25], an algorithm for optimal charging of a
valve-regulated lead-acid (VRLA) battery stack based on MPC is proposed. The proposed
technique can charge the battery stack as fast as possible without violating the constraints
on the charging current, the battery voltage and the battery temperature, representing
the main target of the proposed algorithm. In order to manage battery charging which
use an MPC approach, a novel algorithm is proposed in ref. [26]. On the basis of a fully
coupled electrothermal model, a fast charging strategy is constructed as a linear-time-
varying model predictive control problem. Constraints are directly imposed to prevent
the battery from overcharging and overheating. As a means to enable the state-feedback
control, unmeasurable battery internal states, which include SOC and core temperature,
are estimated via a nonlinear observer. Simulation results indicate that the proposed ap-
proach can optimally balance both time and temperature increases. A new methodology
for battery charging control, enabling an optimal tradeoff between the charging time and
battery state-of-health (SOH), is proposed in ref. [27]. The optimal fast charging problem
is constructed in the framework of tracking MPC. This explicitly considers the tracking
performance for provided SOC and SOH references, and directly addresses constraints
imposed on input current and battery internal state. Ref. [28] develops a minimal capacity
fade MPC framework, helping in Li-ion batteries’ identification and realization of optimum
charge–discharge cycles. In [29], a sensitivity-based MPC (sMPC) is demonstrated for
optimally charging the battery pack while taking voltage and temperature limits on each
cell into consideration; this model, adopted by sMPC, can be realized by linearizing the
dynamics along a nominal trajectory, which are updated over time. In [30], reduced order
electrochemical life models are developed and validated against experimental data that
were collected at different currents and temperatures and subsequently used to find out
optimal temperatures, which provided charging currents regarding degradation rates.
Optimal charging current at different SOCs has been evidenced using nonlinear MPC
and then the optimal temperature has been determined from the relationship obtained by
the models. All the results show that MPC is well-suited to the dynamics of the battery
charging problem. Table 1 lists the comparison of the mentioned MPC-based charging
methods; as Table 1 indicates, the proposed MPC methods in the literature all used more
complicated battery models and/or advanced optimization solvers. Therefore, they can
only be realized by PC rather than a low-cost microcontroller unit (MCU). Furthermore,
most of the literature did not offer experimental results. This paper is organized as follows:
The battery model and the MPC-based charging strategy are formulated in Section 2. The
identification and of battery parameters, the battery experimental setup, proposed MPC-
based charging algorithm and battery charger are presented in Section 3. Section 4 presents
the experimental results. Finally, Section 5 concludes this paper.
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Table 1. Comparison of model predictive control (MPC) charging methods proposed in the literature.

Ref. Utilized Model Optimization Method Realization Platform Experimentally
Validated?

[22] ECM and thermal model based
on neural network Genetic algorithm PC Yes

[23] ECM (1RC model) Solve pseudo minimum-time
problem PC No

[24] Linearized P2D model Solve quadratic program PC/MATLAB No

[25] Hybrid electrical (2RC) and
temperature model

Solve quadratically
constrained quadratic program PC/MATLAB Yes

[26] Electrical-thermal model and
AEKF for SOC estimation

Minimize the difference
between SOC and optimal
SOC trajectory

PC/MATLAB No

[27] Reduced-order PDE model
Minimize the difference
between SOC/SOH and
optimal SOC/SOH trajectory

PC/MATLAB No

[28] Simple lumped PDE model Solve quadratic program PC/MATLAB No

[29] Single-particle model (PDE) Solve sensitivity-based MPC
quadratic program PC/MATLAB No

[30] Reduced-order electrochemical
life model

Two offline optimizations and
one online optimization PC/MATLAB No

This study combines the Thevenin equivalent circuit battery and transforms it into
a state-space equation to develop the MPC. The usage of such models in the battery
optimal control context has an edge in terms of low computational cost, allowing for
real-time implementation. Once the quadratically constrained quadratic program is solved,
the optimal charging current can be acquired. Compared with the other methods in the
literature, which need the optimal SOC and/or SOH trajectory, this study only utilizes OCV
as the control target of MPC; therefore, it further decreases the complexity of the proposed
method. In order to boost the charging performance, the temperature limit weight is added
in the constraints to decrease the charging temperature rise in this study. The application of
the renowned ECM and MPC to the optimal charging of Li-ion battery stands as the main
contribution of this work, which takes safety constraints such as temperature and voltage
limits into account. To the best of the authors’ knowledge, this is the first time that such
a method is implemented in a low-cost MCU instead of PC. As the experimental results
indicate, compared with the conventional CC-CV charging method, the proposed method
can effectively improve the average and maximum charging temperatures as well as the
charging time.

2. Descriptions of the Proposed MPC Strategy
2.1. Battery Modeling

The commonly used battery models can be divided into equivalent circuit models and
electrochemical models; the equivalent circuit model is composed of resistances, capacitors,
and inductances with the advantages of simplicity and high computing efficiency; the
electrochemical model uses the partial differential equation to establish the models of
the electrolytic solution and two electrodes models with a view to analyzing the more
complicated internal parameters, which require more precision in the models. In order to
simplify the complexity of MPC so that it can be realized by a low-cost MCU, this study
adopts the equivalent circuit model. As Figure 1 illustrates, the Thevenin equivalent circuit
model utilized in this paper is comprised of a battery equivalent capacitor (Ceq), shunt
equivalent resistance (Rp), shunt equivalent capacitor (Cp), and series equivalent resistance
(Ro). Aiming to combine the battery equivalent model into the model predictive control,
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Vocv was selected as the output state variable; the charging current i was selected as the
input state variable. According to Kirchhoff’s law, V1 can be expressed as Equation (1); Ts
represents the sampling time [23,31–34].

V1(k + 1) = a1 ×V1(k) + b1 × i(k)
a1 = e−Ts/(Rp×Cp)

b1 = Rp × (1− e−Ts/(Rp×Cp))

(1)

In order to indicate the capacitors’ voltage change in batteries, Vocv can be written as
Equation (2).

VOCV(k + 1) = VOCV(k) +
1

Ceq
× i(k)× Ts (2)

Figure 1. The utilized Thevenin equivalent circuit model.

2.2. State-Space Representation of Li-Ion Battery Equivalent Circuit Model

The MPC is mainly realized based on plants’ mathematical models [35]. With the aim
of allowing the mathematical models to be applied in the control systems, the equivalent
circuit models were devised as state-space models. Equations (3) and (4) show the gen-
eralized state-space equation; u is the input variable; y stands for the process output; Xm
represents the state variable vector with dimension n; Am is the state matrix; Bm is the input
matrix; Cm is the output matrix; Dm is the feed-forward matrix.

xm(k + 1) = Amxm(k) + Bmu(k) (3)

y(k) = Cmxm(k) + Dmu(k) (4)

Equations (1)–(4) can be discretized into a discrete state-space form, as Equations (5)
and (6) demonstrate.

x(k+1)︷ ︸︸ ︷ 4V1(k + 1)
4VOCV(k + 1)

VOCV(k + 1)

 =

A︷ ︸︸ ︷ a1 0 0
0 1 0
0 1 1


x(k)︷ ︸︸ ︷ 4V1(k)

4VOCV(k)
VOCV(k)

+

B︷ ︸︸ ︷ b1
Ts × 1/Ceq
Ts × 1/Ceq

[4i(k)] (5)



Energies 2021, 14, 2238 6 of 18

y(k)︷ ︸︸ ︷
[VOCV(k)] =

C︷ ︸︸ ︷[
0 0 1

]
x(k)︷ ︸︸ ︷ 4V1(k)

4VOCV(k)
VOCV(k)

 (6)

2.3. Cost Function of the Proposed MPC

The reference value and cost function are defined as Equations (7) and (8), respectively.
The first item in the cost function represents the deviation between the reference value and
the predicted output; the ∆U in the second item is used to limit the rate of change in the
input U; Rs is the diagonal matrix, Rs = rw × INc × Nc (rw > 0), and rw is the weight; when
the weight is smaller, a higher rate of change ∆U is allowed.

RT
s =

NP︷ ︸︸ ︷[
1 1 · · · 1

]
r(ki) (7)

J = (Rs −Y)T(Rs −Y) + ∆UT
_
R∆U (8)

2.4. Derivation of the Proposed MPC Charging Algorithm

According to Section 2.1, it is notable that MPC can predict the future states with
the state-space equation and current information. Subsequently, to obtain the optimal
predicted input, the following will introduce how to find the optimal solution through
the optimizer.

First of all, assuming the sampling time is ki, and ki > 0, the state variable x(ki) can
be obtained by measuring the plants’ current information; the definition of the input
parameter is shown in Equation (9), and Nc represents the control length.

4 i(ki),4i(ki + 1), · · · ,4i(ki + NC − 1) (9)

With the current x(ki) information, the state variable of Np sampling time can be
predicted; Np is the prediction length; the predicted state variable of the plant is shown
in Equation (10). x(ki + m|ki) stands for the prediction of the state variables of m steps in
the future at the sampling time of ki; the control length should be lesser than the predicted
length, Np.

x(ki + 1|ki ), x(ki + 2|ki ), · · · , x(ki + m|ki ), · · · , x(ki + NP|ki ) (10)

The predicted state variable can be calculated through the predicted input parameter,
as Equation (11) presents.

x(ki + 1|ki ) = Ax(ki) + B4 i(ki)
x(ki + 2|ki ) = Ax(ki + 1|ki ) + B4 i(ki + 1)

= A2x(ki) + AB4 i(ki) + B4 i(ki + 1)
...

x(ki + NP|ki ) = ANP x(ki) + ANP−1B4 u(ki) + ANP−2B4 u(ki + 1)
+ . . . + ANP−NC B4 u(ki + NC − 1)

(11)

The predicted output variable in Equation (12) can be calculated through the predicted
state variable in Equation (9).
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y(ki + 1|ki ) = CAx(ki) + CB4 i(ki)
y(ki + 2|ki ) = CA2x(ki) + CAB4 i(ki) + CB4 i(ki + 1)
y(ki + 3|ki ) = CA3x(ki) + CA2B4 i(ki) + CAB4 i(ki + 1)

+CB4 i(ki + 2)
...

y(ki + NP|ki ) = CANP x(ki) + CANP−1B4 i(ki) + CANP−2B4 i(ki + 1)
+ . . . + CANP−NC B4 i(ki + NC − 1)

(12)

A new output and input vector were defined, as demonstrated in Equation (13) and
Equation (14). In terms of the single-input single-output (SISO) system, the dimensions
of vector Y and ∆U are Np and Nc, respectively; Equations (11)–(14) were merged into
Equation (15).

Y = [y(ki + 1|ki )y(ki + 2|ki )y(ki + 3|ki ) . . . y(ki + NP|ki )]
T (13)

∆I = [4i(ki)4 i(ki + 1)4 i(ki + 2) . . .4 i(ki + NC − 1)]T (14)

Y = Fx(ki) + φ∆I

F =


CA
CA2

CA3

...
CANP

; φ =


CB 0 0 · · · 0

CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
CANP−1B CANP−2B CANP−3B · · · CANP−NC B


(15)

For the purpose of calculating the ∆I that can minimize the cost function, Equation (15)
can be substituted into Equation (8) to obtain Equation (16); then, Equation (16) can be
partially differentiated with respect to ∆I, as in Equation (17). The minimum value of the
cost function occurs when Equation (17) is equal to zero; therefore, the optimal predicted
value ∆I can be obtained as Equation (18). Lastly, the obtained ∆U from Equation (18) can
be utilized to calculate the next state’s input, as Equation (19) presents.

J = (Rs − Fx(ki))
T(Rs − Fx(ki))− 2∆ITφT(Rs − Fx(ki)) + ∆IT(φTφ +

_
R)∆I (16)

∂J
∂∆I

= −2φT(Rs − Fx(ki)) + 2(φTφ +
_
R)∆I (17)

∆I = (φTφ +
_
R)
−1

φT(Rs − Fx(ki)) (18)

I(k + 1) = I(k) + ∆I (19)

2.5. Constraints

0 ≤ i(k + 1) ≤ imax − ∆T ∗WT (20)

As a means to reduce the charging temperature rise, the constraints shown in Equation (20)
were added into the model predictive control. By having this restriction, the proposed al-
gorithm can change the upper limit of the charging current according to the temperature
rises during the charging process, which allows the temperature rise to be improved. In this
equation, ∆T is the temperature rise and WT is the weight of the temperature rise.

3. Realization of the Proposed MPC Charger
3.1. Identification of Parameters of the Utilized Li-Ion Battery

This study utilized AC Impedance analysis (ACZ) to obtain the internal parameter
values of the equivalent circuit models. ACZ uses small amplitude AC sinusoid waveform
voltage or current to perturb and analyze the battery chemical reactions under differ-
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ent conditions. In response, the AC impedance values of the battery in different states
can be obtained, and curve fitting was conducted on these data to acquire the battery’s
circuit parameters.

The test battery selected in this study is the UR18650ZY Li-ion battery launched
by SANYO Company, and its specifications are shown in Table 2. In this study, the
multifunctional potentiostat VSP-300 from Bio-Logic Corp. was used for ACZ analysis. The
block diagram and the flowchart of the ACZ experiments are illustrated in Figures 2 and 3,
respectively. In this study, ACZ was measured once every 1% of the SOC. After the
measurement, the Nyquist impedance diagrams of different SOCs could be obtained; then,
the Z-Fit impedance fitting tool function in EC-Lab was utilized to perform parameter
fitting. An illustration of the Z-Fit parameter fitting tool is shown in Figure 4. As Figure 4
illustrates, this study selected the Thevenin equivalent circuit model composed of two
resistances and one capacitor to perform parameter fitting. The Z-Fit tool used the selected
optimization method to perform curve fitting for the selected measurement points by
selecting the curve range to be fitted. The fitting method chosen in this study is the
randomized Simplex method and the maximum number of iterations was set to 4000.
Figures 5–7 show the fitted results obtained by Z-fit tool; afterward, polynomial equations
were utilized to conduct curve fitting on the acquired data of open-circuit voltage (OCV),
Ro, Rp, and Cp. The fitted results of OCV, Ro, Rp, and Cp are shown in Equations (21)–(24),
and the related equation coefficients are listed in Table 3.

SOC = a×Voc
4 + b×Voc

3 + c×Voc
2 + d×Voc + e (21)

RO = a× SOC4 + b× SOC3 + c× SOC2 + d× SOC + e (22)

Rp = a× SOC4 + b× SOC3 + c× SOC2 + d× SOC + e (23)

CP = a× SOC4 + b× SOC3 + c× SOC2 + d× SOC + e (24)

Table 2. UR18650ZY specification table [36].

SANYO UR18650ZY Lithium-Ion Battery

Rated Capacity 2600 mAh
Minimum Rated Capacity 2500 mAh

Rated Voltage 3.7 V
Cutoff Voltage 3 V
Specification 18.4 mm—diameter, 65 mm—height

Standard Charging Condition CC-CV, 1250 mA, 4.2 V
Weight 43.5 g

Charging Temperature 0~40 ◦C
Discharging Temperature −20~60 ◦C

Table 3. The obtained curve fitting coefficients.

a b c d e

OCV −482.5 6886 −3.659 × 104 8.592 × 104 −7.526 × 104

RO 9.695 × 10−11 −2.908 × 10−8 3.528 × 10−6 −0.0002139 0.04876
RP 5.61 × 10−9 −1.35 × 10−6 0.0001153 −0.004163 0.07031
CP −1.988 × 10−9 −1.392 × 10−6 0.0004701 −0.04417 2.056
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Figure 2. Block diagram of the AC Impedance analysis (ACZ) experiments.

Figure 3. Flowchart of the ACZ experiments.
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Figure 4. Illustration of the Z-Fit parameter fitting tool.

Figure 5. Relationship between series equivalent resistance (Ro), shunt equivalent resistance (Rp) and
equivalent resistance (Req) and state of charge (SOC).
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3.2. The Proposed MPC Charger

This study realized a digital battery charger prototyping circuit to conduct the exper-
iments on the 6-series-1-parallel battery set composed of six SANYO UR18650ZY Li-ion
batteries; the power stage of the realized charger adopts the synchronous buck converter;
its specifications are shown in Table 4. The low-cost TMS320F280049 microcontroller pro-
duced by Texas Instruments (TI) was adopted in this paper. All experiments in this study
were carried out by placing the battery in an isothermal chamber at 25 ◦C. Figure 8 displays
the block diagram of the proposed MPC charger.

Figure 6. Relationship between shunt equivalent capacitor (Cp) and SOC.

Figure 7. Relationship between open circuit voltage (Vocv) and state-of charge (SOC).
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Figure 8. Block diagram of the proposed model predictive control (MPC) charger.

Table 4. Specification of the utilized synchronous buck converter.

Input voltage (Vin) 72 V
Output voltage (Vout) 25.2 V
Output power (Pout) 100 W

Efficiency (η) >90%
Switching frequency (fs) 100k Hz

Output voltage ripple (∆Vo/Vo) <1%
Output current ripple (∆Io/Io) <10%

Figure 9 illustrates the flowchart of the realized MPC charging method in this study;
the utilized parameters are shown in Table 5. First, the charging current (I), rate of change
in temperature (DT), and terminal voltage (VT) are measured; then, the present battery SOC
through the Coulomb integral method is obtained. Next, the appropriate series resistance
(Ro), shunt capacitor (Cp), and shunt resistance (Rp) based on the current SOC are obtained.
With the new series resistance (Ro), shunt capacitor (Cp), and shunt resistance (Rp), the A,
B, and C matrixes in Equations (9) and (10) can be updated. Afterward, Equations (22)
and (23) are used to calculate the charging current of the next step; then, whether the
battery voltage exceeds the upper limit (4.2 V) through the equivalent circuit model is
determined. If not, the next step’s charging current should keep being calculating until the
battery voltage equals the upper limit voltage; then, the constant voltage mode is changed
to charge until the current is less than the battery’s fully charged condition (I < 0.05 C);
then, charging stops.

Table 5. Parameters of the implemented MPC.

Ts NP NC rw WT Imax

1 s 10 4 1 0.5 3 A
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Figure 9. Flowchart of the proposed MPC charging algorithm.

4. Experimental Results

Figure 10 shows the photo of the realized digital MPC charger proposed by this
study; this prototyping circuit will then be used to perform the experiments and compare
the charging time, charging efficiency, average temperature rise, and the maximum tem-
perature rise of different charging methods. The CV segment in the proposed charging
algorithm is the same as the one of the conventional CC-CV charging method; both use
a constant voltage (4.2 V) to charge the battery until the battery charging current is less
than or equal to the set condition (0.05 C) as the end charging condition. Therefore, this
study only compares the temperature rise data in the CC part. The experimental results
of the proposed charging method and the different CC-CV charging methods are shown
in Table 6; the voltage, current, and the temperature rise waveforms are illustrated in
Figures 11–13.
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Figure 10. Picture of the proposed MPC charger.

From Figure 11, since the charging constraint of the Li-ion battery is that OCV cannot
surpass the upper limit voltage (4.2 V), compared with the conventional CC-CV charging
method, the proposed charging method adopts the Li-ion battery equivalent circuit model
to compute whether the battery OCV exceeds the upper limit voltage in the charging
process. Therefore, its CC stage can last for a longer time to accelerate its charging speed.

The experimental results are summarized in Table 7. From Table 7, compared with
the 1.0 C CC-CV charging method, the proposed charging method can reduce the average
temperature rise and the maximum temperature rise by 0.76% and 3.87%, respectively. It
also improves the charging time by 3.25%. The proposed MPC charging technique can at-
tain lower maximum temperature rise and shorter charging time with comparable average
temperature rise compared to the 1.0 C CC-CV charging method. In order to further verify
the efficacy of the proposed charging method, this study also implemented the 1.05 C
CC-CV charging method. As Table 7 shows, compared with the 1.05 C CC-CV charging
method, the proposed method improves the charging time, the maximum temperature
rise, and the average temperature rise by 0.13%, 18.69%, and 15.03%, respectively. To
further validate the effectiveness of the proposed MPC charger, a comparison between
the realized scheme and other MPC charging algorithms presented in the literature is
provided in Table 8. From Table 8, the proposed MPC charger has the lowest computa-
tional complexity as well as the lowest realization cost at the expense of a slightly reduced
performance. To sum up, the proposed MPC charging method can obtain a much lower
temperature rise and charging time compared with 1.05 C CC-CV charging method. In
other words, the proposed method can achieve the goal of reducing the temperature rise
at a similar charging speed, thereby achieving the purpose of extending the cycle life of
the Li-ion battery.
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Figure 11. Comparison of the charging voltages of different charging methods.

Figure 12. Comparison of the charging currents of different charging methods.

Figure 13. Comparison of the temperature rise waveforms of different charging methods.
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Table 6. Experimental results of different charging methods.

MPC 1 C
CC-CV

1.05 C
CC-CV

Average Temperature Rise * (◦C) 1.30 1.31 1.53
Maximum Temperature Rise * (◦C) 1.74 1.81 2.14

Charging Time (Sec) 6126 6332 6134
Efficiency (%) 99.62 99.65 99.59%

* considering only the CC stage.

Table 7. Improvement of the proposed method over different CC-CV methods.

1 C
CC-CV

1.05 C
CC-CV

Average Temperature Rise (%) 0.76% 15.03%
Maximum Temperature Rise (%) 3.87% 18.69%

Charging Time (%) 3.25% 0.13%

Table 8. Comparison of different MPC-based charging techniques.

Ref Complexity of
MPC Solver

Model
Complexity

Computation
Time

Additional
Requirement

Hardware
Realization Performance

proposed method Low Low Fast - Yes Suboptimal
[22] Medium Medium Medium GA, NN No Optimal
[24] Low High Medium - No Optimal
[26] High Medium Slow Extended Kalman Filter No Optimal
[29] Medium High Slow - No Optimal

5. Conclusions

This study devised a model predictive control-based Li-ion battery charging algorithm;
the proposed MPC charger calculates the charging current suitable for the current SOC
by utilizing the battery equivalent circuit model and model predictive control. Compared
with the conventional 1.0 C CC-CV charging method, the charging time, the maximum
temperature rise, and the average temperature rise can be improved by 3.25%, 3.87%,
and 0.76%. As the experimental results indicate, the charging method proposed by this
study can improve the charging temperature rise and charging speed of Li-ion batteries. It
should be noted that the proposed method implements only the CC part of the charging
algorithm using MPC; the CV stage can also be realized by taking into account the voltage
constraints in the optimization problem, which will be considered in future works. The
method proposed by this study has advantages as follows:

1. The optimal charging current can be calculated by the model predictive control,
thereby achieving the optimal effect.

2. Compared with the conventional CC-CV charging method, the model predictive
charging method can effectively improve the charging temperature rise, charging
speed, and charging efficiency.

3. In comparison with the MPC method proposed in the literature, the model and
constraint used in the proposed method are much more straightforward; thus, it is
suitable for being realized by a low-cost MCU.
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