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Abstract: With the tight coupling of multi-energy systems, accurate multiple-load forecasting will
be the primary premise for the optimal operation of integrated energy systems. Therefore, this
paper proposes a Copula correlation analysis combined with deep bidirectional long and short-term
memory neural network forecasting model. First, Copula correlation analysis is used to conduct
correlation analysis on multiple loads and various influencing factors. The influencing factors that
have a great correlation with multiple loads were screened out as the input feature set of the model
to eliminate the influence of interfering factors. Then, a deep bidirectional long and short-term
memory neural network was constructed. Combined with the input feature set screened by the
Copula correlation analysis method, the useful information contained in the historical data was more
comprehensively learned from the forward and backward directions for training and forecasting.
Through the actual calculation example analysis and comparison with other models, the forecasting
accuracy of the method presented in this paper was improved to a certain extent.

Keywords: multiple-load forecasting; deep bidirectional long and short-term memory; Copula;
correlation analysis; integrated energy system

1. Introduction

With the continuous improvement of user demands for energy quality, power grids
must maintain dynamic balance in real time [1]. In recent years, the extensive populariza-
tion of intelligent terminal collection equipment (Terminal data collection equipment, such
as smart meters) provides a good foundation for load forecasting. With the application of
energy management systems, accurate load forecasting will help realize real-time dispatch
of the power grid and optimize the operating cost of the system [2].

The traditional multi-energy system operates independently, which artificially sepa-
rates the coupling between different energy forms, resulting in low operating efficiency [3].
Integrated energy systems (IES) have been widely used because of their good benefits
in many aspects. The internal coupling of various energy conversion equipment greatly
improves the multi-energy system’s flexibility and economy [4]. Therefore, it is necessary
to consider the complex coupling relationship among multiple loads in load forecasting.

Existing load forecasting methods are mainly divided into traditional methods and ma-
chine learning methods, and deep learning methods with better performance are derived
from machine learning methods [5]. Traditional forecasting methods, such as Kalman
filter [6], differential integrated moving average autoregressive model [7], and multi-
ple linear regression [8], are only applicable to small-scale data and require relatively
high data stability. Traditional machine-learning methods mainly include support vector
regression [9,10], random forest [11], etc. Reference [9] proposed an integrated support
vector regression forecasting method based on the secondary sampling strategy, which
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improved the diversity of each support vector regression model through the secondary
sampling strategy and proposed a group optimization method based on the integrated
support vector regression. Although the traditional machine-learning methods have some
improvement compared with the traditional methods, they cannot remember long-time
series information, and the forecasting accuracy is limited.

Some scholars put forward deep learning methods. Among them, the most widely
used in the long and short-term memory (LSTM) neural network [12]. Some variants of
LSTM neural networks also have some applications. Reference [13] first used the attention
mechanism for feature selection and then used recurrent gated unit for forecasting. In addi-
tion, there are some deep learning forecasting methods. In [14], the convolutional neural
network model was used to forecast electric vehicles’ charging load. Reference [15] built an
ensemble-learning model based on a deep belief network and carried out load forecasting.

Most of the existing research focuses on electric-load forecasting. However, IES is
coupled with loads of various energy forms, so how to improve the accuracy of multiple-
load forecasting is very important. Reference [3] built a multitask learning forecasting
model with LSTM as the core and simulated the coupling characteristics among multiple
loads through the hard sharing mechanism of internal neurons in multitask learning.
Reference [16] first used the clustering method and Pearson’s correlation coefficient method
to reconstruct historical load data and then used a convolutional neural network for feature
extraction. Finally, LSTM neural network was used for forecasting.

At present, some studies have discussed the correlation between loads and influencing
factors, and the commonly used analysis method is Pearson’s correlation analysis. For
example, Pearson’s correlation coefficient method was used in [16,17] to analyze the
correlation among multiple loads. However, Pearson’s correlation coefficient method
can only analyze the linear correlation between variables and cannot give the nonlinear
relationship between the multiple loads in IES and between the multiple loads and the
influencing factors.

To solve these problems, this paper proposes an IES multiple-load forecasting model
based on the Copula correlation analysis and deep bidirectional long and short-term
memory (DBiLSTM) neural network. Considering that not all the influencing factors in
the feature set of weather and calendar rules can improve the accuracy of load forecasting,
First, the nonlinear correlation between the influencing factors in the feature set and the
multiple loads are analyzed by Copula, and the weakly correlated influencing factors are
eliminated to construct a new input feature set. Then, based on LSTM neural network,
DBiLSTM neural network is constructed to learn the historical load data from the direction
of both forward and backward directions simultaneously so as to learn more information
contained in the historical load sequence. Based on this, a multiple-load forecasting model
is built. An actual example is analyzed and compared with other models to verify the
effectiveness of the proposed model.

2. Copula Theory Analysis

Because the multiple internal loads of IES are easily affected by weather and calendar
rules, weather and calendar rules are often required to be taken as part of the model input
in load forecasting to improve the forecasting accuracy. However, not all factors can play
a role in improving the accuracy of load forecasting. Since some influencing factors are
weakly correlated with multiple loads, taking these factors into account in load forecasting
may reduce forecasting accuracy. To analyze the correlation between multiple loads and the
influencing factors of weather and calendar rules, it is necessary to carry out quantitative
analysis to construct an appropriate input feature set for the forecasting model.

The traditional Pearson’s correlation analysis method can only analyze the linear
relationship between different variables [18], and it is unable to accurately describe the
nonlinear relationship between IES multiple loads and influencing factors of weather and
calendar rules. Therefore, Copula is used in this paper for quantitative correlation analysis.
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Sklar theorem shows that the joint distribution function of multidimensional variables
can be represented by a Copula function that connects all its one-dimensional edge distri-
bution functions. If the edge distribution function is continuous, then this Copula function
is unique.

The electric load and temperature can be taken as an example. Assuming that the
electric load sequence is u, the temperature sequence is v, the joint distribution function of
the electric load sequence and the temperature sequence is F(u, v), and the corresponding
edge distribution function is Fu(u) and Fv(v) respectively, then it can be known from Sklar
theorem that there exists a Copula function C(·), which correlates the joint distribution
function with the corresponding edge distribution function:

F(u, v) = C[Fu(u), Fv(v)] (1)

After the edge distribution function of electric load and temperature is obtained, the
joint distribution function and joint probability density function can be obtained through
the Copula function. Then the correlation calculation and analysis can be carried out.

There are two kinds of common Copula functions: elliptical Copula and Archimedean
Copula. Since only the elliptical Copula function and Frank-Copula functions in the
Archimedean Copula function can describe the negative correlation between variables [19],
the Frank-Copula function is selected for analysis in this paper. Its corresponding mathe-
matical expression of the distribution function is:

C(u, v; θ) = −1
θ

ln[1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1
] (2)

where θ is the parameter of the Frank-Copula function, u and v are the electric load and
temperature values, respectively.

Although the joint probability density function among variables can describe the
correlation between variables, it cannot be expressed quantitatively, so it is necessary to
calculate the correlation of the Copula function. Commonly used nonlinear correlation
analysis methods include Spearman and Kendall rank correlation coefficient methods. The
Spearman rank correlation coefficient method has some defects because not all Copula func-
tions exist, so the Kendall rank correlation coefficient method with stronger applicability is
selected for analysis, and its expression is as follows:

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 (3)

where τ represents the result of Kendall correlation analysis. The larger the |τ|, the stronger
the correlation between the variables.

3. Deep Bidirectional Long and Short-Term Memory Neural Network Model
3.1. Long and Short-Term Memory Neural Network

Due to the problems of gradient disappearance and gradient explosion in the tradi-
tional recurrent neural network, LSTM neural network was improved. Its internal structure
is shown in Figure 1, which is mainly divided into three parts: forgetting gate, input gate
and output gate.
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Figure 1. Internal structure diagram of long and short-term memory (LSTM) neural network.

The special memory structure makes LSTM neural network has strong memory ability,
which is suitable for long time-series-load forecasting. The calculation formula of the three
gates of the LSTM neural network is as follows:

• Forgetting gate:
ft = σ(Wf[at−1 xt] + bf) (4)

• Input gate:
it = σ(Wi[at−1 xt] + bi) (5)

gt = tanh(Wg[at−1 xt] + bg) (6)

ct = ct−1 � ft + it � gt (7)

• Output gate:
ot = σ(Wo[at−1 xt] + bo) (8)

at = tanh(ct)� ot (9)

For specific meanings of each variable in Formulas (4)–(9), please refer to [20].

3.2. Deep Bidirectional Long and Short-Term Memory Neural Network

An LSTM neural network makes load forecasting by learning the information con-
tained in load history data. However, the load at the current time is not only related to
the load sequence in the previous period but also related to the load sequence in the later
period due to the characteristics of the continuity of the load time series. Therefore, the
bidirectional long and short-term memory (BiLSTM) neural network is derived from the
LSTM neural network.

A BiLSTM neural network is composed of two independent LSTM neural networks,
forward and backward. During neural network training, multiple historical loads data and
influencing factors selected by Copula correlation analysis together form the input feature
set. This input feature set is input to the forward LSTM neural network in the direction of
time axis order and input to the backward LSTM neural network in the direction of time
axis reverse. The output of each moment is composed of two independent LSTM neural
networks. The output of each moment serves as the next neural network layer’s input and
is transmitted layer-by-layer to form the DBiLSTM neural network, as shown in Figure 2.
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Figure 2. Structure diagram of deep bidirectional long and short-term memory (DBiLSTM) neural network.

4. Construction of Copula-DBiLSTM Model
4.1. Model Input and Output Settings

Given the great influence of weather factors, such as temperature on multiple loads,
and the influence of calendar rules such as hours on multiple loads, the influence factors of
weather and calendar rules were selected as feature sets. This was because, for example,
when the temperature is high, the use of heat load will decrease, and the use of cooling load
will increase. Similarly, because there are many electrical devices for cooling and heating,
the electrical load also has a strong relationship with the temperature. The influencing
factors of calendar rules also correlate with multiple loads, such as the influencing factor of
hours. Since the load curve is a time series, the user’s energy consumption habits show a
strong correlation with time, such as greater energy use during the day and less energy use
at night.

Since not all factors can play a positive role, the Copula correlation analysis method
was used to select effective influencing factors to form the input feature set of the model
and the multiple loads, and the output of the model is the multiple loads.

Considering that the multiple loads of the day to be forecasted have a great correlation
with the historical loads of the previous week, the electric, cooling, and heating loads of the
previous week and various influencing factors selected by Copula were selected as inputs.
The output was the electric, cooling and heating loads of the day to be forecasted.

To remove the influence of different dimensional data of different types and improve
the training ability of the model, the data were normalized. The specific formula was
as follows:

dk∗ =
dk − dmin

dmax − dmin
(10)

where, dk and dk∗ are normalized pre-value and post-value, respectively; dmin and dmax are
the minimum and maximum values in the original data sequence, respectively.

4.2. Copula-DBiLSTM Forecasting Model Framework

The overall framework of the Copula-DBiLSTM multiple-load forecasting model
constructed in this paper is shown in Figure 3. The DBiLSTM neural network made the
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forecasts after model training on the input feature set composed of historical multiple loads
data and influence factors selected by Copula correlation analysis.

Figure 3. Based on the overall framework of Copula-DBiLSTM neural network model.

By calculating the loss function, combined with the optimization algorithm, the
model’s parameters were optimized and updated. Taking the multiple-load forecasting of
electric, cooling, and heating loads as an example, the loss function expression was:

loss =
1
n

n

∑
t=1

[(ye,or(t)− ye,pr(t))
2+(yc,or(t)− yc,pr(t))

2 + (yh,or(t)− yh,pr(t))
2] (11)

where loss is the value of the loss function; n is the number of forecasting points participat-
ing in the calculation of the loss value; ye,or(t), yc,or(t), yh,or(t) are the actual values of the
electric, cooling, and heating loads at time t respectively; ye,pr(t), yc,pr(t), and yh,pr(t) are
the forecasting value of the electric, cooling and heating loads at time t respectively.

In this paper, the mean absolute percentage error (EMAPE), root mean square error
(ERMSE), mean absolute error (EMAE) and mean square error (EMSE) were taken as the
evaluation indexes of the model forecast results. The expression is as follows:

EMAPE =
1
N

N

∑
t=1

∣∣zor(t)− zpr(t)
∣∣

zor(t)
× 100% (12)
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ERMSE =

√√√√√ N
∑

t=1
(zor(t)− zpr(t))

2

N
(13)

EMAE =
1
N

N

∑
t=1

∣∣zor(t)− zpr(t)
∣∣ (14)

EMSE =
1
N

N

∑
t=1

(zor(t)− zpr(t))2 (15)

where N is the number of load points participating in the calculation; zor(t) and zpr(t) are
the real and forecasting values at time t, respectively.

5. Case Analysis
5.1. Experimental Data Introduction

The experimental data came from the data of the United States IES system from
January 2011 to October 2012, with a time resolution of 1 h, including electric, cooling, and
heating loads. The corresponding weather data included temperature, humidity, horizontal
solar radiation, vertical solar radiation, wind speed, dew point [21]. The calendar rules
were months, weeks, days, hours, and holidays. The experimental data were divided into
the training set, validation set, and test set according to 8:1:1.

5.2. Copula Correlation Analysis Results

Many influencing factors must be screened through Copula to determine the appro-
priate input feature set. Figure 4 shows the scatter plot of cooling load and temperature,
and Figure 5 shows the probability density function plot of cooling load and temperature.
As can be seen from the scatter diagram in Figure 4, the diagram points were all distributed
around the 45◦ diagonal, indicating that the cooling load has a great correlation with
temperature. Combined with the Copula density function diagram in Figure 5, it can be
seen that the Copula density function diagram of cooling load and temperature presented
a diagonal distribution of 45◦, with sharp peaks and thick tails at both ends of the diagonal,
indicating that there is a great correlation between cooling load and temperature [18].

Figure 4. Scatter diagram of cooling load and temperature.
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Figure 5. Copula density function diagram of cooling load and temperature.

Although the scatter diagram and the Copula density function diagram above can
provide some diagram features to determine the correlation between the two variables,
they still lack some intuitiveness. Therefore, Table 1 shows the correlation calculation
between the influencing factors of weather and calendar rules and multiple loads by using
the Kendall rank correlation coefficient method in Copula.

Since a certain influencing factor may be positively correlated with electric load and
negatively correlated with heating load, to comprehensively obtain the correlation between
each influencing factor and multiple loads, the definition formula of the average correlation
coefficient value is given as follows:

Corraver,q =
1
3
(|Corre,q|+|Corrc,q|+ |Corrh,q|),q ∈ [1, Q] (16)

where, Corraver,q represents the average correlation coefficient value between the influ-
encing factor q and multiple loads; Corre,q, Corrc,q and Corrh,q respectively represent the
correlation value between the influencing factor q and the electric, cooling and heating
loads, and Q is the total number of influencing factors affecting multiple loads.

Table 1. The correlation value between each factor.

Influencing Factors Electric Load Cooling Load Heating Load Average Correlation Coefficient

Electric load 1.0000 0.3317 −0.3209 0.5509
Cooling load 0.3317 1.0000 −0.7737 0.7018
Heating load −0.3209 −0.7737 1.0000 0.6982
Temperature 0.2778 0.6694 −0.7114 0.5529
Wind speed 0.1239 0.0591 −0.1254 0.1028
Humidity −0.2451 −0.2789 0.4180 0.3140

Direct normal irradiance 0.3651 0.1957 −0.3521 0.3043
Global horizontal irradiance 0.3843 0.2528 −0.4098 0.3490

Dew point 0.0800 0.3778 −0.2717 0.2432
Holidays −0.0481 −0.0261 0.0299 0.0347
Months 0.1714 0.3348 −0.2447 0.2503
Weeks −0.2113 −0.0295 0.0004 0.0804
Days 0.0164 0.0303 −0.0296 0.0254

Hours 0.2823 0.1365 −0.1237 0.1808

According to the correlation calculation results in Table 1, the average correlation
coefficients between wind speed, holidays, weeks, days and multiple loads were all less
than 0.15, which were weakly correlated or even unrelated influencing factors. Given
that these four types of influencing factors may lead to a decline in forecasting accuracy,
these four types of influencing factors were eliminated. The correlations between the
remaining influencing factors and multiple loads were all greater than 0.15, which had a
great correlation with multiple loads. The correlation between temperature and multiple
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loads was the largest, with an average correlation coefficient of 0.5529, which was much
higher than other factors. Therefore, the influence factors whose average correlation value
was greater than 0.15 were combined with the historical data of electric, cooling and heating
loads to form the input feature set of the final model.

As shown in Table 1, there was a strong correlation between electric, cooling and
heating loads, so it was necessary to make joint forecasting, verifying the necessity of the
multiple-load forecasting model proposed in this paper.

5.3. Model Parameter Setting

We set the optimization algorithm of the DBiLSTM neural network to the Adam
optimization algorithm. The learning rate was 0.01, the number of iterations was 150, and
the dropout was set to 0.5 to prevent overfitting. After many experiments, the number
of hidden layers of the neural network was finally selected as 2 layers. The number of
neurons in each hidden layer was 50 and 100, respectively.

5.4. Analysis of Copula-DBiLSTM Forecasting Results

To verify the effectiveness of the Copula-DBiLSTM forecasting model proposed in
this paper, the influence factors of weather and calendar rules were considered. The input
feature set constructed by using Copula correlation (model 1), and the input set constructed
by not using Copula correlation (model 2) were compared. The forecasting results on 21
September 2012 were selected for display. The results are shown in Figure 6 and Table 2.

Figure 6. Comparison of results under different input feature sets.

Table 2. Error comparison under different input feature sets.

Model

EMAPE ERMSE EMAE EMSE

Electric
(%)

Cooling
(%)

Heating
(%)

Electric
(MW)

Cooling
(kTon)

Heating
(mmBTU)

Electric
(MW)

Cooling
(kTon)

Heating
(mmBTU)

Electric
(MW2)

Cooling
(kTon2)

Heating
(mmBTU2)

Model 1 0.89 1.40 1.06 0.179 0.193 0.274 0.142 0.141 0.226 0.032 0.037 0.075
Model 2 1.25 1.95 1.59 0.238 0.253 0.423 0.194 0.191 0.349 0.057 0.064 0.179
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It can be seen that after considering the application of Copula correlation analysis
to select the influencing factors, the forecasting result was better. Combined with the
correlation analysis in Table 1, it could be seen that due to the interference of weakly
correlated or unrelated factors, like wind speed, taking these influencing factors as the
input feature set of the model will reduce the forecasting performance of the model. By
using the Copula correlation analysis method to screen out the influential factors with a
strong correlation with multiple loads as the input feature set of the model, the influence
of interference factors could be removed, which improved the forecasting accuracy of
the model.

5.5. Comparative Analysis of Different Models

The proposed model in this paper was compared with several commonly used models,
including Gaussian process regression (GPR) [22], BP neural network (BP-NN), Copula
combined with LSTM neural network (Copula-LSTM). The results are shown in Figure 7
and Table 3.

Combined with Figure 7 and Table 3, on the whole, the traditional forecasting model
GPR had the worst error indexes. Compared with GPR, the BP-NN model showed some
improvement, but the forecasting accuracy was also limited. Compared with the above
two models, the Copula correlation analysis method combined with the deep learning
LSTM neural network was greatly improved the forecasting accuracy. The error indexes of
electric, cooling and heating loads were only 69.7%, 65.8% and 40.9% of GPR, respectively.
However, the forecasting model proposed in this paper had the best effect, and the error
indexes of electric, cooling and heating loads were only 71.8%, 67.3% and 57.0% of Copula-
LSTM, and 50.0%, 44.3% and 23.3% of GPR, respectively. At the same time, by observing
the remaining three error indicators, we concluded that the forecasting model proposed in
this paper had the best effect, and the forecasting accuracy was higher than other models.

Further analysis shows that:

• GPR was only applicable to small-scale data and required relatively high regularity of
data, so the forecasting effect was the worst;

• Although the forecasting result of BP-NN was better than that of GPR, the performance
of the model was also poor due to the inability to remember the information of long
time-series and the tendency of gradient disappearance or gradient explosion;

• In the Copula-LSTM model, LSTM neural network could improve the problems of the
traditional neural networks, such as gradient disappearance, and its internal structure
had a memory unit, which was very suitable for learning long time series. Therefore,
compared with the above two models, the forecasting accuracy was greatly improved.
However, LSTM neural network only conducted one-way learning on historical data,
so it could not effectively learn more information contained in historical data;

• The model proposed in this paper comprehensively considered the impact of weather
and calendar rules on the multiple loads. Through Copula correlation analysis, the
optimal feature set was selected as the input of the model and combined with the
DBiLSTM neural network. It could learn historical data from both forward and back-
ward directions. The model could learn more useful information, and the forecasting
accuracy showed a certain improvement compared with the above model.
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Figure 7. Comparison of results under different models.

Table 3. Error comparison under different models.

Model

EMAPE ERMSE EMAE EMSE

Electric
(%)

Cooling
(%)

Heating
(%)

Electric
(MW)

Cooling
(kTon)

Heating
(mmBTU)

Electric
(MW)

Cooling
(kTon)

Heating
(mmBTU)

Electric
(MW2)

Cooling
(kTon2)

Heating
(mmBTU2)

Copula-DBiLSTM 0.89 1.40 1.06 0.179 0.193 0.274 0.142 0.141 0.226 0.032 0.037 0.075
GPR 1.78 3.16 4.55 0.417 0.366 1.157 0.310 0.301 1.016 0.174 0.134 1.338

BP-NN 1.64 3.59 3.69 0.353 0.409 1.087 0.283 0.363 0.893 0.124 0.167 1.181
Copula-LSTM 1.24 2.08 1.86 0.233 0.255 0.476 0.190 0.210 0.426 0.054 0.065 0.227

5.6. Comparison of Different Neural Network Structures

To compare the influence of different neural network structures on the prediction
accuracy, the number of hidden layers and the number of neurons of different neural
networks were analyzed experimentally. The results are shown in Tables 4 and 5.

Table 4. Comparison of forecasting results with different hidden layers.

Number of Hidden Layers
EMAPE

Training Time (s)
Electric (%) Cooling (%) Heating (%)

1 1.91 2.35 2.34 536.49
2 0.89 1.40 1.06 706.12
3 1.20 2.05 4.49 994.98
4 1.68 3.62 3.42 1487.32

It can be seen from Tables 4 and 5 that when the neural network had two hidden
layers, and the number of neurons in each hidden layer was 50 and 100, respectively, the
forecasting effect was the best.
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Table 5. Comparison of forecasting results of different numbers of neurons in 2 hidden layers.

Number of Hidden Layers
EMAPE

Training Time (s)
Electric (%) Cooling (%) Heating (%)

32/64 1.64 2.17 2.37 565.38
50/100 0.89 1.40 1.06 706.12
64/128 1.54 1.89 1.99 892.67
100/200 1.79 2.07 2.57 1200.98

The results show that when the structure of the neural network was too simple, it could
not fit the historical data well. At the same time, the increased complexity of the neural
network structure did not fit the data better. This was because more neural network layers
increased more parameters to be optimized, which in turn made the model more difficult to
train, and may have caused “overfitting” phenomena, resulting in the forecasting accuracy
not being improved. In addition, the more hidden layers, the higher were the time costs
of training.

5.7. Comparison of Single Load Forecasting and Multiple Load Forecasting

To illustrate the effectiveness of multiple-load forecasting, a comparative analysis
of single-load and multiple-load forecasting was carried out. The model input did not
consider the other two load factors in single-load forecasting. The results are shown in
Table 6.

As seen in Table 6, the result of single-load forecasting was worse than that of multiple-
load forecasting. In combination with Table 1, it can be seen that there was an obvious
coupling relationship between electric, cooling and heating loads, with a strong correlation.
Taking the other two load factors into consideration in the forecasting could enable the
model to learn more useful information and thus improve the forecasting accuracy.

At the same time, because the multiple-load forecasting model could obtain the
forecasting resulted of multiple loads at one time, compared to the single-load forecasting
that requires three forecasting models to be constructed, the time-consuming cost was
lower. Therefore, in terms of forecasting accuracy and time-consuming cost, multiple-load
forecasting had greater advantages.

Table 6. Error comparison between single-load and multiple-load forecasting.

Model
EMAPE Time

Electric (%) Cooling (%) Heating (%) Training (s) Forecast (s)

Single-load forecasting 1.14 1.96 2.04 2105.08 26.67
Multiple-load forecasting 0.89 1.40 1.06 706.12 9.24

6. Conclusions

In this paper, a Copula-DBiLSTM multiple-load forecasting model was proposed.
The Copula correlation analysis method was used to select the input feature set of the
forecasting model, and the DBILSTM neural network was used to make the forecasting. By
comparing with other models, the following conclusions were drawn:

1. The Copula correlation analysis method was used to screen out the influencing
factors with greater correlation with the multiple loads as the input feature set of the
model, which could construct a suitable input feature set, eliminate the influence of
interference factors, and improve the forecasting accuracy of the model;

2. The DBiLSTM neural network was suitable for long-term sequence forecasting, and
due to its unique bidirectional learning advantage of historical data; it could learn the
useful information contained in historical data more comprehensively;

3. Due to the close coupling of multiple loads in the IES system, the multiple load
forecasting model considered the influence of the other two loads compared with the
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single-load forecasting model so that the model could learn more useful information.
Moreover, the time-costs of a multiple-load forecasting model were lower than that
of a single-load forecasting model because there was no need to forecast all kinds of
loads independently. Hence, it had many advantages.

On the basis of the research in this paper, the author proposes the following directions
that could be continued in the future:

• Due to the close coupling of multiple energy sources within IES, the system was
affected by real-time electricity prices, gas prices and other factors during optimized
operation. At the same time, these price factors will also affect users’ energy consump-
tion habits. Therefore, price factors could be considered in the input feature set to
construct a more suitable input feature set;

• Since the selection of the number of hidden layers and neurons of the neural network
was determined based on several experiments, the subsequent research could find
some methods to optimize these parameters.

• Since the intelligent terminal equipment may produce abnormal data or missing
data in the process of data collection, the identification of abnormal data and the
supplement of missing data before model training is also a direction worthy of fur-
ther research.
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