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Abstract: More and more households are using renewable energy sources, and this will continue as
the world moves towards a clean energy future and new patterns in demands for electricity. This
creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net
demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of
modern LV networks’ demand and renewable energy sources behavior. This article starts with an
investigation into the unique characteristics of householder demand behavior in Jordan, connected
to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand
without considering renewable energy sources, disaggregation demand and the weather conditions
at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting
methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio
Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point
forecasting. Short-term forecasting models have been designed and developed to generate future
scenarios for different disaggregation demand levels from households, small cities, net demands
and PV system output. The results show that the volatile behavior of LV networks connected to the
PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE)
for the ANN-GROM model improved by 41.2% for household demand forecast compared to the
traditional ANN model.

Keywords: load forecasting; LV network; PV system; ARIMAX (Autoregressive Integrated Moving
Average with explanatory variables); ANN; rolling and point forecast; Jordan

1. Introduction

Load forecasting is a significant tool utilized to evaluate power consumption, or future
energy [1,2]. One of the fundamentals to guarantee a secure power system and reduce the
operational costs of power networks is to accurately forecast power demand by employ-
ing different energy sources. Moreover, accurate forecasts have a functional advantage
especially in energy management system issues, for example, peak demand reduction,
load shedding and development of electrical infrastructure, which can be achieved by
offering the required information in order to make proper decisions. Generating and DNO
companies seek to obtain the best market decisions and competitive prices, especially
in the industrial electric power sector, through accurate forecasting models that include
load demand and congruent price [3]. The procedures of electrical load forecasting are
quite complex owing to the instability and potential number of factors, which impact the
forecast model accuracy. Typically, load forecasting models can be realized based on major
factors, for example, economic circumstances, weather factors (humidity, temperature, and
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wind speed), and season [2,4]. The short-term forecasting applications of power systems
are widely adopted in power generation scheduling, economic operations, and power
system stability. The recent upsurge of interest in forecast methodologies and models
was primarily influenced by the need to achieve an accurate load forecast. These fore-
cast models can be broadly classified into: traditional (statistical), artificial intelligence,
and hybrid systems [3,5]. Besides these models, forecast algorithms are also exploited to
enhance the performance of distribution network applications, for instance, renewable
energy systems. In particular, LV networks have the fewest number of clients compared to
the larger client numbers serviced by medium or high voltage substations. Typically, the
impact of the number of customers on the feeder creates unevenness in electricity demand
in a time series, in particular over a short time, such as days or weeks. Typically, short-term
electricity demand is subject to different factors, for example, a greater degree of volatility,
haphazard behavior, customers’ behavior, weather conditions, specific interventions and
further aspects [3—6]. Therefore, this paper aims firstly to analyse household demand, small
cities” demand, power output of the PV system and weather data. Then, the analysis results
will be used to determine optimal forecast model parameters and to develop realistic and
accurate forecast models.

1.1. Literature Review

Recently, both ANN and Autoregressive Integrated Moving Average with explana-
tory variables (ARIMAX) forecasting approaches have been broadly applied in various
applications that have a high stochastic load behavior, for example, demand for electric
vehicles and buildings, and electricity price forecasting [7-9]. Accordingly, the former
ARIMAX approach is widely validated and implemented in the prediction of LV demand
applications because of its simplicity compared to other methods that use a nonlinear
model [10,11]. Unlike the ARIMAX method, the ANN is highly efficient in implementation
for complex nonlinear problems such as rentable energy operation issues and complex
relationships between electrical demand and weather conditions. In the ANN model, there
is no need for explicit functional relationships between variables and demand for LV [12].
However, the ARIMAX and traditional ANN model face many challenges in handling high
uncertainty in household demand and PV generation outputs at LV scale; therefore this
paper proposes a novel forecast technique based on a hybrid of different models.

Accordingly, different studies have adopted these forecast models in the LV network,
e.g., ARIMAX, ANN and ARIMA, in order to anticipate renewable energy generation and
approaches to energy price. Moreover, these models are used to examine the benefits of
anticipating renewable energy sources which create more functional management systems.
For example, Yuan et al. [13] developed ARIMA algorithms to create a profile of wind
speed over one hour on the rotary horizon basis. Nevertheless, the forecasting model in the
summer session showed a lower performance with 11% Mean Absolute Percentage Error
(MAPE) compared to the rest of the year, a reduction of 6% MAPE. This highlights the
importance of analysis of seasonality to obtain certain patterns in the LV that can enhance
the forecast model performance [2,4]. As an example, the ARX model adopted day/year
as an external variable [14] compared to an ANN model in [15] which used the seasonal
input parameter, with daytime/day type as external variables. Moreover, in [13] the study
does not include an external predictor (weather conditions or temperature) that might
aid in diminishing forecast error and increasing energy savings. However, these studies
do not consider the volatile behavior of household demand and PV outputs compared to
large-scale demand. This is a significant impact on the LV level grid in increasing energy
savings, which can be done via renewable energy forecasting. Accordingly, renewable
energy sources are basically driven by weather conditions which increase the challenges
of predicting LV demand using renewable energy sources. One of the important factors
in gaining optimal operation with economic dispatch is an accurate forecast model. In
another study [16], the forecast models were sorted based on further exogenous variables
to enhance the performance of the forecast model. In [16] the author clearly utilized an
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ANN method with a photovoltaic system to predict output power during 25 h. There
is an essential relationship between solar irradiance and the highly volatile nature of
generating cloud cover. In this case, the profiles of day-ahead load are illustrated in [16].
In particular, the feed-forward ANN model must pay regard to a 1-to-4 layer and input
variables (speed of wind, ambient/module temperature, photovoltaic power output, and
daily average solar radiation). The data is processed through two operations, the first of
which is collected within five minutes and then transferred to hourly then daily averages
to produce hourly/daily load forecasts. In [16], the authors introduced the ANN forecast
model for application under unstable weather conditions. The model achieves a higher
accuracy if the performance evaluation is compared against the ARIMA model; this is
due to the major factor of including an applicable nonlinear relationship between external
variables and power in the photovoltaic system. Generally, in this study the number of
neurons that appear in the concealed layers leads to a decline in learning speed, and creates
a gradually worse model performance. Hence traditional optimization techniques such
as steepest descent and the Gauss Newton method are used in the literature [12,15,16]
to solve the learning algorithm and achieve the best performance in ANN. However, a
new ANN forecast model optimized by using the Golden Ratio Optimization Method
(GROM) technique is presented in this work to forecast household and small cities” demand,
incorporating highly volatile renewable energy sources to achieve optimal performance.

In general, LV feeders consist of around 30-50 households [17] and therefore LV
demands have higher degrees of uncertainty than higher or medium voltage systems [6,17].
The demand being considered in this work is that of households and LV feeders with
renewable energy recourses at both levels, which is much more volatile than normal
LV demand. In addition, studies on forecasting renewable energy recourses in building
and LV feeders [17] are sparse in the literature and no studies present a probabilistic
prediction model combined with other forecasts for household demand for renewable
energy resources to generate different forecast scenarios and minimize the impact of
demand uncertainty on the forecast results.

There are two main categories of technique used for multi-household, building and
industrial load demand forecasting: physical approaches such as EnergyPlus, and data-
driven forecast methods such as ANN, Support Vector Machine (SVM) and Bayesian
networks [17]. EnergyPlus and other physical approaches use thermodynamic rules to
calculate and generate the estimation energy profile for a building [18]. However, ther-
modynamic rules require complex parameters for the building and the environmental
conditions, such as the construction details and equipment operation schedules, which are
difficult to obtain [18]. The data-driven forecast methods use the historical load data to
find the relationship between building demand and external variables such as temperature
and wind speed [18]. Grant et al. [19] explored large government building load demand
forecasting using ANN, which achieved good and robust performance with a 3.9% MAPE
compared to a Simple Moving Average (SMA) of 7.7%, linear regression of 17.3% and
Multivariate Adaptive Regression Splines (MARS) of 7.0%. In another paper, Wen et al. [18]
used a deep learning method to forecast the future aggregated and disaggregated load de-
mand of buildings. However, renewable energy resources as a major part of the modern LV
network were not part of the building model in this paper. The current increase in PV sys-
tems in the power network, especially at LV level, poses significant challenges for the DNO
from the power distribution operation point of view [20,21]. Therefore, Wang et al. [22]
proposed a generative adversarial network (GAN) to forecast the hourly load demand
and to model the uncertainties of the load due to the integration of distributed energy
resources at city level. However, the proposed model used aggregated demand at city level,
which is smoother and less volatile than LV feeders or buildings’ 1 demand. For forecasting
LV demand and renewable energy needs, such as photovoltaic power, is a challenging
function, requiring new intelligence techniques [20,21]. Forecasting of PV power in Singa-
pore using an ANN model trained by an Extreme Learning Machine (ELM) is presented
by [20] as an intelligent solution to complex forecast problems. The training of ELM is
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simpler when it does not require iterative tuning which leads to a reduction in training
time compared to a gradient descent training algorithm. Furthermore, for a more efficient
energy management system it is important to take into account the load disaggregation
impact. Recently, different intelligent methods such as Recurrent Neural Network (RNN)
have been used to estimate the power and energy demand of low voltage applications as
load disaggregation [21]. The results in [20,21] showed that there is a significant use of new
optimization models such as the Golden Ratio Optimization Method (GROM) in achieving
accurate forecast models for challenging forecast tasks, such as that for renewable energy.

The research has only discussed and investigated aggregated demand in Jordan at high
voltage [23] or national level [24-27], and to the best of the author’s knowledge there are no
studies discussing low voltage or household demands. In Jordan, the peak demand at high
voltage level shows significant seasonal variations a with two-peak pattern, where the peak
demand mainly occurs during the hot summer and cold winter days due to the increase
in use of air conditioning and electrical heaters [23]. In [25-27], yearly forecast models for
Jordan’s national demand are presented using, for example, Least Squares Method [25],
ANN [26] and ARX [27]. However, these studies did not estimate the hourly demand,
PV output or LV demand and did not investigate relationships between demand and the
different exogenous variables or calendar terms based on the nature of Jordan. Overall,
choosing the external variable that allows for improvement in forecast performance has a
better impact on the system model’s targets and data accessibility. Note that, in most of
the literature, sufficient detail is not included on how external variables have an impact on
renewable energy and household demand in predicting model accuracy. However, these
studies revealed that the input features (external variables) are the most crucial comparison
with the selected model. Typically, this behavior might create challenges in gaining an
accurate model.

1.2. Contributions

Typically, in the literature two factors are chosen on the basis of extensive study
needs and data accessibility in order to select a suitable forecast model parameter for LV
demand. Moreover, this leads to an enhancement of the forecast model’s performance
and diminishes forecast error by various assumptions. For low voltage applications, in
particular for buildings, the researchers presented both external features and parameters
of model forecasting as an important solution to lessen errors and uncertainty in the
performance of the forecast model. Thus, this paper aims to present further contributions,
which are listed as follows:

e A new ANN forecast model optimized by using the Golden Ratio Optimization
Method (GROM) technique to examine household and small cities” demand incorpo-
rating highly volatile renewable energy sources.

e  Developing a realistic stochastic prediction model, which is a hybrid forecast model
consisting of probabilistic and ARIMAX models. This hybrid forecast model and
different rolling and point forecast models are developed in this paper to treat the
stochasticity of LV and PV load profiles, taking into account the impact of uncertainty
intervals on forecasting confidence bounds.

e  This paper presents load forecasting for households and small cities using different
forecasting methods. Smart meter data for ten household and PV systems were col-
lected and used to predict induvial household demand, as presented in Appendix A.
This work has developed forecast models to produce a potential demand profile for
households and the PV system separately, in addition to net demand for up to one-day
ahead. In addition, this research has provided an analysis of a typical household
demand and PV system in Jordan within a real time period, supporting attempts to
bridge the gap in the absence of comprehension demand behaviour data, especially in
Middle Eastern countries like Jordan.
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1.3. Outline of Paper

The remainder of the article is organized as follows: in Section 2, the household and
PV model topology are introduced and the collected data from the proposed models are
analyzed in Section 3. Section 4 describes the methodology of the proposed forecast models.
Section 5 presents and discusses the forecast models’ results. Finally, conclusions and
potential future work are presented in Section 6.

2. Household and PV System Model Topology

In the case of LV applications, a precise forecast model is needed, focusing on com-
prehending electrical demand behaviour and examining interrelatedness among external
variables and demand. In the case of household energy demand and PV behaviour, this
section will analyse and review the data that will be used to develop and evaluate the
forecast models. In addition, this section will investigate the common model connections
among household electrical demand in Jordan and various external variables, for instance,
demand seasonality and temperature. The main outcomes will be used in the next section
of this study to establish and determine the best parameters to create a precise forecast
model. In this work, the main concern is individual LV demand, therefore household
demand with PV has been considered. The measured data were collected at ten induvial
houses located in Jordan, Al-Zarqa. The location of the houses is within a 2 km diameter
from 32°04'27.9” N 36°02'58.9" E, as shown in Figure 1. The houses in this area are typical
and they connected to the same size PV system. The area of the house is approximately
170 m squared, and consists of five rooms, one kitchen, two bathrooms, and balcony. Fur-
thermore, the electrical system is single phase and the main electrical loads are three air
conditioners, fridge, electrical water heater, washing machine, lights and two televisions.

Figure 1. The PV installed at the house, Jordan.

PV System

In order to reduce the electricity bill in the ten houses, each is connected to a PV system,
as shown in Figure 2. The size of the PV system is 4 kW peak, which is the maximum
allowed capacity from the government for household PV systems, and the main parameters
of the PV system are detailed in Table 1. For example, the size of the PV system has been
determined based on the monthly electricity demand during 2019, as shown in Table 2.
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Figure 2. 3D Sketch for the photo-voltaic (PV) panel.
Table 1. Parameters of the PV system.
Content Description Quantity
PV panels (Jinko) cells with 345 watt power, Mono type 12
Inverter 4 kW (ABB) 1
panel area 25 m?
Electrical Wires AC & DC Wires —
. Power Panels
Other electric components Circuit breakers —
Table 2. An example of monthly electricity demand over 2019 for a single house.
Month Consumption kWh Month Consumption kWh
JAN 1089 JUL 1012
FEB 1080 AGU 1050
MAR 574 SEP 784
APR 544 OCT 510
MAY 866 NOV 644
JUN 870 DEC 900

3. Data Analysis

In most cases, the designing of the prediction model did not normally occur at a single
stroke. Accordingly, it is needed to recall former steps as a first procedure, then check the
model during the training levels and both models for parameters and variables. Thus,
it is important to divide the data group into three sets: validation, training, and testing.
Commonly, these sets can be utilized as training model parameters, locating required
patterns in the case of the training set, while the validation set is utilized in the finest
model. A trade-off between reaching precise model parameters and preventing overfitting
is needed to guarantee a suitable data size. The smart meter data for ten households and PV
systems were collected over the period 1st of January 2019 to 30th of November 2020. The
gathered data, at a one hour resolution for household demand, defines real daily demand
and performance at the house, along with a 15 min resolution for the PV system output.
The data set has been collected from the National Electric Power Grid Co (NEPCO) over a
five year period up to the end of November 2020 for a small city in Jordan (Madaba). The
main reason for including this data set is to evaluate forecast models over different level of
electricity consumption. The first 65% of the collected data is employed to develop and
train the forecast models as a training data set, 15% of the collected data is used to validate
the forecast models, and the last 20% of collected data is utilized to assess the forecast
models’ performance [28-31].
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3.1. PV System Data Analysis

In this section, the training data set of PV output is used to understand the PV system'’s
behavior by employing a time series analysis to investigate whether there are any important
patterns or seasonality in the data. This is significant and required in the next section, in
order to concentrate on the analysis of time series by determination patterns (cycles) in PV
output. The PV system data contains a strong weekly and daily periodicity during sunny
days. Figure 3 highlights that all PV output curves within a week (23rd to 29th of August)
have a high degree of daily regularity. Figure 4 presents the ten houses’ PV system output
curves for a typical sunny day. In general, they show a convergent behavior. However, the
deviation between the PV curves, as shown in Figure 4, is mainly related to the deviation
in the panel’s efficiency, panel cleanliness and PV degradation. This deviation between
the household PV system output curves increases uncertainty and difficulties in creating
an accurate forecast model. On the other hand, Figure 5 shows a case of the PV system
output profile for more than one week during the winter season in Jordan. The daily PV
profiles are different from day to day where depending on the weather conditions. For
instance, the maximum power output on 28th of January 2019 was 2.8 kW, but was 1.8 kW
on 30th of January 2019. Besides, it is unclear from Figure 4 that there is an indication of
peak output occurring at one point in the day. The peak PV output on 27th of January
was 2.8 kW at 12:00 p.m., but was 1.7 kW and 2.3 kW on 24th and 30th of January at the
same time, as illustrated by Figure 5. These findings support the fact that the PV output is
extremely volatile in light of the absence of weekly/daily patterns or recurrences of unclear
sky duration.

3.5
— 29/8/2019
— 28/8/2019

27/8/2019
— 26/8/2019
— 25/8/2019

24/8/2019
— 23/8/2019

3.0

2.5

2.0

1.5

PV system output (kW)

1.0

0.5

18:45
18:15
17:45
17:15
16:45
16:15
15:45
15:15
14:45
14:15
13:45
12:15
11:45
11:15
10:45
10:15
9:45
9:15
8:45
8:15
7:45
7:15
6:45
6:15

19:15

Figure 3. An example for a single household PV system output (House 5) over one week with
sunny day.
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PV system output (kW)

2.5
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=
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[

0.5
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= HoUSsE (9)
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Figure 4. The ten household PV system output curves for a typical sunny day (22 August 2019).
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Figure 5. An example for a single household PV system output (House 7) over one week with unclear
(cloudy) weather.

The preceding analysis demonstrates that there is no daily and weekly seasonality in
unclear sky conditions compared to the daily pattern during sunny days. Thus, this section
aims to identify if the behavior of patterns (daily or weekly) can be classified as special
PV output. In this case, the time series points are investigated to find the links (patterns)
between them, which can be collected via the Partial Autocorrelation Function (PACF)
through 200 time lags, as illustrated in Figure 6. The significance of calculating the PACF
is to find any links that can have iteratively taken place. As illustrated in Figure 6, the
plot of PACF has demonstrated the correlations among the PV power output time series
at P (t) for up to 200 (fifteen minutes) lags. In general, the calculation of PACF aids in
finding any links via the two direct variables, irrespective of the impact of all retardation
(lags) times [32-34]. Following lag number 3, a chop-off is manifested as demonstrated
in the PACF plot with another negative impact represented among 10-20 lags. From the
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PACEF plot (for unclear sky days), there is no obvious pattern or seasonality when observing
the distribution of lags, especially when comparing with sunny days that usually exhibit
considerable lags within 48 or 96. The considerable lags in Figure 6, are likely to be due
to random salience and they could be related to the continuity of sunshine more than
to a single time step. The time series examination indicates that the PV power output
unprovided a clear daily or weekly seasonality, leading to more challenges in forecasting
the PV output as a result of the non-smooth performance of power curves. This is mostly
related to weather conditions; therefore, another consideration should be to comprehend
the volatility of the true data.

1 T T T

= e e
~ e} 0
: —
1

Sample partial autocorrelation
(=]
(3]

o el o et
—0.2
—04 . I | |
0 20 40 60 80 100 120 140 160 180 200
Lag

Figure 6. Partial Autocorrelation Function (PACF) plot for household PV output system within
unclear sky days.

3.2. Weather Data

Weather variables such as temperature and wind are usually considered within load
forecasting models [35-37] However, it is not obvious that weather conditions have a
significant role in forecasting renewable energy sources or LV demand. In this paper, the
hourly temperature data has been collected over the training and testing period. In order
to minimize the impact of the non-smooth behavior of the power curve on the forecast
model, especially during unclear sky conditions, this section focuses on the relationship
between weather variables, household demand and PV power output. Figure 7 displays
the 2D histogram of the weather variables, household demand and PV power output data
sets over one week. Every one of the histogram bins (bars) shows the joint distribution
and correlation of the data sets. Figure 7 shows strong correlation between temperature,
demand and PV power output curve. In Figure 7a, the higher frequency for household
demand occurred between (0.5-1) kWh and (12.5-20) temperature. In addition the higher
number of observations for hourly PV power output was (0-0.25) kW when temperature
was equal to (12.5-20) °C. For the PV system, the higher power output (2-2.5) kW occurred
when the temperature was equal to (20-25) °C. This was expected as the rated (designed)
power output of PV is generated when temperature is 25 °C.

The relationship between the hourly demand and temperature, °C, is visualized
through a scatter plot as seen in Figure 8, for Jordan (Madaba). In this figure, it can now be
seen that, for temperatures less and more than 20 °C the demand increases. The increasing
demand rate is slower for temperatures less than 20 °C compared to temperatures above
20 °C. Figure 7 shows evidence for annual demand seasonalities and correlation between
demand and temperature time series. The demand has high values at high and low
temperatures during winter and summer seasons. Demand increases in winter and summer
due to the use of electrical heating and air-conditioning. It is clear then that the temperature
and the demand series are correlated.
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Figure 8. Scatter plot of hourly demand vs. temperature in Jordan (Madaba).
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Table 3 presents the R-squared value for the linear relationship between the hourly
temperature and wind speed and the PV system output. The R? statistical analysis in-
troduces high correlation between temperature and the PV system output and direct
proportionality between these variables, with R? equal to 0.94. In the case of wind speed,
the R? value becomes 0.39 which shows that wind speed has less ability to explain PV
output variability compared to temperature. However, the wind speed, as a natural cool-
ing system for PV panels, helps to increase PV output, which explain the positive linear
relationship between them.

Table 3. R-squared values for the relationship between hourly temperature and wind speed with the

PV system output.
Correlated Variables R?
PV output vs. temperature 94.5%
PV output vs. wind speed 39.3%

3.3. Load Data Analysis

In order to provide an overview of the demand data, investigation of the ten house-
holds data is demonstrated in Table 4, showing demand statistics comprising average
demand, p, and standard deviation, 0. Furthermore, to exhibit the extent of unevenness
at hourly and daily resolutions among both mean and standard deviation where the coef-
ficient variation (CV) is further recognized, a relative standard deviation is presented in
Table 4. The summary for domestic demand is demonstrated in Table 4, where the standard
deviation (o) is for the domestic schedule with 1.4 kWh (hourly demand) and 15.1 kWh
(daily demand). Accordingly, there is a substantial indication of greatly fluctuating and
erratic domestic demand for the mean value of approximately 87.2% (hourly demand)
and 38.3% (daily demand). Moreover, Figure 8 represents a substitute visualisation of the
allocation of domestic demand data. In Figure 9 also, the average hourly demand can be
broadly classified into four groups: (1) from 0 to 0.5 kWh as low demand, (2) from 0.5 to
2 kWh as normal demand, (3) from 2 to 3.5 kWh as high demand, and (4) over 3.5 kWh
as high peak demand. A representation of demand values appearing in tie can be traced
as follows: 20% as low and 19% as high, while 11% occur as high peak, as observed in
Figure 9. In contrast, times with a 50% value represent the average demand consumed
by households.

Table 4. Overall statistical data analysis forhousehold demand.

Household Demand Maximum Minimum
Resolutions u (kWh) L kWh) cv Demand (kWh) Demand (kWh)
Hourly 1.6 1.40 87.2% 6.9 0.0
Daily 37.1 15.1 38.3% 63.7 15.2

The ten houses” demand curves for the same day (working day) are presented in
Figure 10. In general, the household demand curves for the ten houses show similar behav-
ior with two main peaks in the morning and evening, popular behaviour for household
demands [17,23]. However, a wide deviation between the demand curves at the same
time is shown in Figure 4. For example, house (5) achieved morning peak demand equal
to 3 kWh compared to 1.9 kWh for house (10) at 8:00 and 2.7 kWh for house 2 at 10:00.
This deviation is mainly related to the deviation in householders’ behavior in consuming
electrical energy. This deviation at individual energy user level increases the uncertainty
and the difficulties of creating an accurate forecast model.
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Figure 10. Distribution and classification of hourly household demand.
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On the other hand, for the aggregated demand profiles, as in the data collected from
Madaba city, the load profile is usually smoother and more predictable with an annual
seasonality pattern [17,23]. A detailed demand analysis for this level of aggregated demand
is presented and discussed in [23]. Therefore, the following analysis aims to investigate
the cycle or pattern on a daily and hourly basis which was not discussed in [23]. Figure 11
presents the total demand patterns related to the days of the week at Madaba city. It is clear
that the total daily demand percentage is similar over all weekdays but not on Sunday,
with a highest demand percentage of 17.1% from total weekly demand. In Jordan and the
Middle East, Sunday is the first working day in the week and the weekend (non-working
days) is on Friday and Saturday. In general, there is no obvious pattern of daily distribution

over the week while total demand values are similar.
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Figure 11. Cluster analysis for total daily demand at Madaba city depending on days of the week.

3.3.1. Composition

Table 5 presents the R-squared value for the relationship between the current demand
L (t) and the lagged demand L (t — i). The highest R? value was 0.89, which shows a high
correlation between the current and previous hour’s demand. This correlation can be used
as main input for the forecast model, however, it will require updating of the measurements
in every time step. The R? increased gradually from 0.22 to 0.89 in line with the decrease in
the (i) value. This means the linear model will be less able to explain demand variability
when depending on the high (i) lag value and this correlation will not be an effective
relationship in forecasting load. However, the R? value for the previous day’s demand at
the same time shows a positive, strong correlation, with value equal to 0.45.

Table 5. R-squared values for the relationship between current and lagged demand at Madaba city.

Correlated Variables R?
() vs. L (£~ 1) 89.5%
L(t)vs. L (t—2) 76.7%
L(t)vs. L (t—3) 59.3%
L (t) vs. L (t— 4) 22.9%
L () vs. L (t — 24) 45.6%

3.3.2. Time Series Analysis

The MV network demand usually demonstrates a substantial weekly/daily season-
ality, using the time series analysis [38,39]. The current section will examine in detail the
energy usage of a single household through the training data period by demand profiles
to ensure that it follows either pattern or significant seasonality in demand curves. The
former section provided an undetailed examination of demand, which concluded with the
observation that demand values can be further sorted into a distribution with unregularly
proclivities. The following factors will be taken into consideration in determining the type
of cycles or patterns in the case of household demand by using time series analysis:

e Analysis based on daily and weekly patterns, to examine, if applicable therein,
hour/day-day/week-week demand and any formation of cycles.
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e  Analysis of autocorrelation and hourly energy consumption to investigate if there are
any seasonal patterns, especially those not in day/week cycles.

Firstly, the energy consumption profiles were introduced to probe the patterns of
a weekly and daily type. A general analysis of distribution of hourly demand within
week/day patterns is given in Figures 12 and 13. As an example, the hourly demand
over six weeks are explored in Figure 12, where the box plots symbolize demand during
the dataset per every week. It can be seen from the dataset that the location of points
from 0.8 kWh to 1.75 kWh is the median related to the six-week period. Besides this, the
comparative values between the maximum and minimum of the median demonstrate a
rise to 118.7%. Additionally, the value within one week of the Interquartile Range (IQR)
also varies greatly. By way of illustration, the minimum and maximum of the first week
has IQR from 0.9 to 3.2 kWh as against the second week with an IQR from 0.1 to 1.2 kWh
with median 0.8 kWh and 1.75 kWh, respectively. This presents irregular behaviour in
demand without apparent reference to weekly seasonality, nor week-to-week uniformity.

6 kWh

5 kWh

4 kWh

3kWhi i

Demand

2 kWh

1 kWh

0 kWh

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Figure 12. Box plot of hourly household demand over six weeks starting from 1 January 2019.

As seen in Figures 12 and 13, the weekday patterns can be examined by plotting the
hourly demand distribution on the basis of the sort of day. It is shown that the hourly
data set consists of two patterns (categories) as addressed in Section 3.3. The first ranges
from 70% below 2 kWh, while the other ranges from 12% at over 3.5 kWh. This can also
be presented within several demand distributions on every type of day. Nevertheless, the
observations of low demand on six days are greater than the number on Friday which
ranged from 0 to 0.5 kWh. Furthermore, the demand analysis through type of day indicates
that there is no specific day which has an obvious highest or lowest demand value, but
every day has a broad spectrum of demand records. There is no obvious pattern of daily
distribution while the highest and lowest demand values can separated into particular days.
However, low demand values occur highly between 10:00 to 15:00 over the week except for
Saturday and Sunday. This is due to the fact that the single household is normally highly
volatile compared to aggregated demand profiles for LV feeders or MV demand [29,40],
where any small activity in the household can change the load profile behaviour.

Secondly, the behavior of unsteady and erratic household demand against aggregate
LV or MV demands provides challenges in seeking for seasonality models. Therefore, this
section is intended to examine cross-relationships over the training data set period. The
PACF was determined through two-week lags (336-time lags) in order to locate any links
or patterns via the time series points, which can be seen from Figure 14. From the PACF
plot, there are no obvious models or seasonalities for allocation of the considerable delays
(lags) against other aggregated LV demands, that in most cases demonstrate remarkable
lags (24 and multiply). Despite this, early correlation lags were randomly distributed,
without an obvious automatic association performance