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Abstract: Seismic probabilistic safety assessment (PSA) models for nuclear power plants (NPPs) have
many non-rare events whose failure probabilities are proportional to the seismic ground acceleration.
It has been widely accepted that minimal cut sets (MCSs) that are calculated from the seismic PSA
fault tree should be converted into exact solutions, such as binary decision diagrams (BDDs), and
that the accurate seismic core damage frequency (CDF) should be calculated from the exact solutions.
If the seismic CDF is calculated directly from seismic MCSs, it is drastically overestimated. Seismic
single-unit PSA (SUPSA) models have random failures of alternating operation systems that are
combined with seismic failures of components and structures. Similarly, seismic multi-unit PSA
(MUPSA) models have failures of NPPs that undergo alternating operations between full power
and low power and shutdown (LPSD). Their failures for alternating operations are modeled using
fraction or partitioning events in seismic SUPSA and MUPSA fault trees. Since partitioning events
for one system are mutually exclusive, their combinations should be excluded in exact solutions.
However, it is difficult to eliminate the combinations of mutually exclusive events without modifying
PSA tools for generating MCSs from a fault tree and converting MCSs into exact solutions. If the
combinations of mutually exclusive events are not deleted, seismic CDF is underestimated. To avoid
CDF underestimation in seismic SUPSAs and MUPSAs, this paper introduces a process of converting
partitioning events into conditional events, and conditional events are then inserted explicitly inside
a fault tree. With this conversion, accurate CDF can be calculated without modifying PSA tools. That
is, this process does not require any other special operations or tools. It is strongly recommended
that the method in this paper be employed for avoiding CDF underestimation in seismic SUPSAs
and MUPSAs.

Keywords: probabilistic safety assessment (PSA); alternating operation system; underestimation of
core damage frequency (CDF); partitioning events

1. Introduction
1.1. Multi-Unit Probabilistic Safety Assessments

Probabilistic safety assessments (PSAs) that calculate core damage frequency (CDF)
are divided into single-unit PSAs (SUPSAs) and multi-unit PSAs (MUPSAs).

Many SUPSAs for nuclear power plants (NPPs) have been performed since the first
PSA of WASH-1400 [1]. The initial MUPSA studies [2,3] were performed due to the
gradually increasing concern regarding multi-unit nuclear accidents. After the Fukushima
accident in 2011, many studies and reports on MUPSA [4–16] were published. In 2019,
the International Atomic Energy Agency (IAEA) published a technical report [17] as part
of a safety report series that provides comprehensive guidance for performing MUPSA.
One method proposed for seismic MUPSA was converting correlated seismic failures into
seismic common cause failures (CCFs) [18].

In MUPSA [17], multi-unit core damage frequency (MUCDF), site core damage fre-
quency (SCDF), and single-unit core damage frequency (SUCDF) are defined as accident
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frequencies in which at least two NPPs, at least one NPP, and only one NPP are in a core
damage state following an initiating event, respectively.

1.2. Alternating Operation Systems

Figure 1 shows a typical alternating operation system with two pump trains. One train
is in an operational state, and the other train is in a standby state. Each train periodically
switches its operation status between the operational and standby states. NPPs have
alternating operation systems, such as the component cooling water system (CCWS),
essential service water system (ESWS), essential chilled water system (ECWS), and chemical
and volume control system (CVCS).
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Figure 1. Typical alternating operation system.

A Boolean equation for the failures in alternating operation systems can be expressed
as Equation (1). The Boolean equation can be a fault tree or minimal cut sets (MCSs) that
are calculated from the fault tree. In this paper, the operation fractions of X1 and X2 are
defined as partitioning events. If one NPP has S alternating systems and each system has T
partitioning events, the Boolean AND combination number of partitioning events in MCSs
might be up to ST. The other combinations, such as X1X2, are not allowed in MCSs since
they are mutually exclusive.

f(X, B) = X1f1(B) + X2f2(B)

X1 = Fraction of train 1 operation

X2 = Fraction of train 2 operation

{f1(B), f2(B)} = Operation failures during {X1, X2}

(1)

Seismic SUPSA models have random failures of alternating operation systems that are
combined with many seismic failures of components and structures. Furthermore, seismic
MUPSA models have failures of NPPs that undergo alternating operations between full
power and low power and shutdown (LPSD).

An NPP is in full-power operation for 1 or 2 years and in LPSD operation for 1 or 2
months to replace or reload nuclear fuels. That is, NPPs are a kind of alternating operation
system. A Boolean equation to calculate the failures in alternating operation NPPs can be
expressed as Equation (2). In this paper, the operation fractions of X1, X2, and X3 are also
defined as partitioning events.

f(X, B) = X1f1(B) + X2f2(B) + X3f3(B)

X1 = Fraction of full− power operation

X2 = Fraction of LPSD operation with nuclear fuel

X3 = Fraction of LPSD operation without nuclear fuel

{f1(B), f2(B), f3(B)} = Operation failures during {X1, X2, X3}

(2)
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Thus, multiple NPPs in a single nuclear site are considered a group of alternating
operation NPPs. Since the Kori nuclear site in Korea has nine NPPs and each LPSD PSA has
15 plant operating states (POSs), there might be 169 combinations of plant-level partitioning
events in the MCSs of MUPSA.

1.3. Seismic MCS Conversion to Exact Solutions

Probability calculation from MCSs can be categorized as follows: (1) If the MCS size
is small, accurate probability can be calculated by converting MCSs into sum-of-disjoint
products (SDPs) [19,20] or applying the inclusion–exclusion principle (IEP) [21] to MCSs.
(2) If the MCS size is huge, accurate probability can be calculated by converting MCSs
into a binary decision diagram (BDD) [21]. Here, SDP and BDD have Boolean solutions
that have no intersections. (3) Regardless of MCS size, min-cut-upper-bound (MCUB) is
popularly calculated from MCSs as an approximate probability.

Seismic SUPSA and MUPSA models have many non-rare events and complemented
events. It is well known that CDFs are drastically overestimated if CDFs are directly
calculated from MCSs without converting MCSs into exact solutions, such as a BDDs [21],
and calculating CDFs from the exact solutions. That is, MCSs for seismic SUPSA and
MUPSA should be converted into exact solutions, and seismic CDFs should be calculated
from the exact solutions for best-estimate risk calculation. Thus, to calculate accurate
seismic CDFs (SUCDF, MUCDF, and SCDF), (1) MCSs are calculated from the fault tree, (2)
MCSs are converted to a BDD, and (3) accurate CDFs are calculated from the BDD by a
dedicated tool [21]. Instead of MCS conversion to exact solutions, the probability p(f(X, B))
in Equations (1) and (2) can be calculated by applying the inclusion–exclusion equation
(see Equation (5)) [19] to MCSs if the MCS is small.

The author of this paper developed the Advanced Cutset Upper Bound Estimator
(ACUBE) tool [21] for the US Electric Power Research Institute (EPRI), which converts
MCSs into a BDD and calculates the probability from the BDD. It has been actively used as
a quantification standard for seismic PSA in the United States.

Efficient BDD algorithms [22–24] were developed to convert a fault tree or MCSs into
a BDD that has Boolean solutions in the form of nested Shannon decomposition [25]. A
great effort was made to develop practical BDD algorithms [26,27] that can solve huge fault
trees in PSA.

Probability calculations with simple MCSs are illustrated in Table 1. Most PSA tools
calculate probabilities in Case 1. If X and Y are partitioning events, these events satisfy the
relations of /X = Y, /Y = X, XY = 0, and X + Y = 1. According to these relations, SDP and
BDD probabilities should be p(B) as in Case 2. In this way, partitioning event combinations
should be deleted during the probability calculation. However, the deletion of partitioning
event combinations is impossible without modifying PSA tools.
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Table 1. Probability calculations with simple minimal cut sets (MCSs).

Case 1 Case 2

MCSs BX + BY
{A, X, Y} = basic events

BX + BY
{A} = basic event
{X, Y} = partitioning events
/X = Y, /Y = X, XY = 0, and X + Y = 1

SDP BX + B/XY BX + BY = B

BDD B(X + /XY) B(X + Y) = B

MCUB 1 − (1 − p(BX))(1 − p(BY)) Not applicable

Probability by IEP p(BX) + p(BY) − p(BXY) p(BX) + p(BY) = p(B)

Probability by SDP p(BX) + p(B/XY) p(BX) + p(BY) = p(B)

Probability by BDD p(B)(p(X) + p(/X)p(Y)) p(B)
(a) SDP is calculated by BX + BY = BX + /(BX)BY = BX + (/B + B/X)BY = BX + B/XY. (b) SDP and BDD have
Boolean solutions that have no intersections. (c) IEP, SDP, and BDD probabilities in Case 1 are identical. (d) IEP,
SDP, and BDD probabilities in Case 1 are smaller than those in Case 2. SDP: sum-of-disjoint product; BDD: binary
decision diagram; MCUB: min-cut-upper-bound; IEP: inclusion–exclusion principle.

1.4. Objectives of This Study

Seismic SUPSA models have random failures of alternating operation systems that
are combined with many non-rare seismic failures. Furthermore, seismic MUPSA models
have failures of NPPs that undergo alternating operations between full power and LPSD.

If combinations of mutually exclusive partitioning events are not eliminated in exact so-
lutions, such as a BDD of MCSs, CDFs can be drastically underestimated (see Sections 2–6).
It is impossible to eliminate intersections of mutually exclusive events without modifying
tools for generating MCSs from fault trees and converting MCSs into exact solutions. This
CDF underestimation is prohibited for regulatory purposes. For this reason, it is necessary
to develop a new fault tree modeling method to avoid CDF underestimation and accurately
calculate CDFs.

This paper is the first to report on this CDF underestimation problem caused by
partitioning events, and subsequently, this work proposes a simple solution to avoid CDF
underestimation that converts partitioning events into conditional events in fault trees.

2. Exclusive Modeling of One Group of Partitioning Events

If a system has n trains that are alternatively operated one by one or an NPP undergoes
n full-power and LPSD operations periodically, a Boolean equation to calculate system
failure can be expressed as Equation (3).

f(X, B) = X1f1(B) + X2f2(B) + · · ·+ Xnfn(B) (3)

where X has n partitioning events and fi(B) can be a complex Boolean equation that consists
of random failure events B. The fault tree in Equation (3) is a typical case. Usual fault trees
can have Boolean AND combinations of Xi’s, and these Boolean AND combinations should
be deleted in MCSs since they are mutually exclusive.

The partitioning events are mutually exclusive events that satisfy the following equa-
tions in Equation (4). They can be depicted by the Venn diagram in Figure 2 that has no
intersections of mutually exclusive partitioning events.

XiXj = 0, i 6= j
n

∑
i=1

Xi = 1
(4)

Here, 0 and 1 denote empty and union sets, respectively.
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If members of X are not mutually exclusive, p(f(X, B)) can be calculated by the
inclusion–exclusion equation [19] in Equation (5).

p(f(X, B)) = p(X1f1(B)) + p(X2f2(B)) + · · ·

+(−1)1[p(X1X2f1(B)f2(B)) + p(X1X3f1(B)f3(B)) + · · ·]
+(−1)2[p(X1X2X3f1(B)f2(B)f3(B)) + p(X1X2X4f1(B)f2(B)f4(B)) + · · ·]

+ . . .

+(−1)n−1p(X1X2X3 . . . Xnf1(B)f2(B)f3(B) . . . fn(B))

(5)

However, since X1, X2, . . . are mutually exclusive events, Equation (5) should be

p(f(X, B)) = p(X1)p(f1(B)) + p(X2)p(f2(B)) + · · ·+ p(Xn)p(fn(B)). (6)

The probability in Equation (5) is much smaller than that in Equation (6). That is, if
Boolean AND combinations of mutually exclusive partitioning events in a single group are
not eliminated in the inclusion–exclusion equation or in the exact solutions, such as a BDD,
the system failure probability or CDF would be underestimated. However, it is impossible
to eliminate mutually exclusive event combinations without modifying calculation tools.
Therefore, there is a great need to explicitly model the partitioning events in fault trees
instead of revising such tools. This is an objective of this paper.

To accomplish this objective, partitioning events are expressed as shown in Equation (7).
They can be confirmed by reflecting the terms on the right-hand side in Equation (7) into
the Venn diagram in Figure 2.

X2 = /X1X2

X3 = /X1/X2X3

Xn = /X1/X2 . . . /Xn−1Xn

(7)
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Here, the probabilities of Equation (7) can be expressed by employing the conditional
probabilities as

p(X2) = p(/X1X2) = p(/X1)p(X2|/X1)

p(X3) = p(/X1/X2X3) = p(/X1)p(/X2|/X1)p(X3|/X1/X2)

p(Xn) = p(/X1/X2 . . . /Xn−1Xn) = p(/X1)p(/X2|/X1) . . . p(Xn|/X1/X2 . . . /Xn−1).

(8)

Equation (8) shows that partitioning events are not independent events, since

p(X2) 6= p(X2|/X1)

p(X3) 6= p(X3|/X1/X2)

p(Xn) 6= p(Xn|/X1/X2 . . . /Xn−1).

(9)

In this paper, conditional events are intentionally defined as in Equation (10) to
explicitly model partitioning events with explicit events Xc inside a fault tree.

Xc
1 ≡ X1

Xc
2 ≡ X2|/X1

Xc
3 ≡ X3|/X1/X2

Xc
n ≡ Xn|/X1/X2 . . . /Xn−1

(10)

Then, probabilities of conditional events can be easily derived from the Venn diagram
in Figure 2.

p(Xc
1) = p(X1)

p(Xc
2) =

p(X2)

∑n
i=2 p(Xi)

, p(/Xc
2) = 1− p(X2)

∑n
i=2 p(Xi)

p(Xc
3) =

p(X3)

∑n
i=3 p(Xi)

, p(/Xc
3) = 1− p(X3)

∑n
i=3 p(Xi)

p(Xc
n) = 1

(11)

Using the conditional events in Equations (10) and (11), partitioning events and their
probabilities can be expressed as in Equations (12) and (13).

X2 = /Xc
1Xc

2

X3 = /Xc
1/Xc

2Xc
3

Xn = /Xc
1/Xc

2 . . . /Xc
n−1Xc

n

(12)

p(X2) = p(/Xc
1)p(X

c
2)

p(X3) = p(/Xc
1)p(/Xc

2)p(X
c
3)

p(Xn) = p(/Xc
1)p(/Xc

2) . . . p
(
/Xc

n−1
)
p(Xc

n)

(13)

Finally, f(X, B) in Equation (3) can be converted to Equation (14). Please note that
the terms on the right-hand side in Equation (14) are explicitly mutually exclusive since
Xc

i /Xc
i = 0.
When converting MCSs of f(X, B) into exact solutions, any combination of the terms

on the right-hand side in Equation (14) becomes an empty set since Xc
i /Xc

i = 0. This is a
strength of the method proposed in this paper.

f(X, B) = Xc
1f1(B) + /Xc

1Xc
2f2(B) + · · ·+ /Xc

1/Xc
2 . . . /Xc

n−1Xc
nfn(B) (14)

The Boolean equations in Equations (3) and (14) are identical. It should be noted that the
partitioning events in Equation (3) can be modeled in the fault tree using conditional events
as in Equation (14). If a fault tree has Boolean AND combinations of partitioning events
and they are converted into conditional events, the MCS generation tool from the fault tree
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automatically deletes these AND combinations (e.g., X2X3 = (/Xc
1Xc

2)(/Xc
1/Xc

2Xc
3) = 0)

Furthermore, the MCS conversion tool to exact solutions automatically deletes similar
combinations of conditional events. With this modeling, the underestimation of CDF can
be avoided.

3. Exclusive Modeling of Multiple Group Partitioning Events

A system or NPP can have multiple groups of partitioning events as in Equation (15).
Here, X, Y, and Z are the first, second, and third groups of partitioning events, respectively.
B has regular basic events.

f(X, B) = X1f1(B) + X2f2(B) + · · ·
g(Y, B) = Y1g1(B) + Y2g2(B) + · · ·
h(Y, B) = Z1h1(B) + Z2h2(B) + · · ·

(15)

The partitioning events satisfy the following equations. This can be shown by using
the Venn diagram in Figure 2.

XiXj = YiYj = ZiZj = 0, i 6= j

∑
i

Xi = ∑
j

Yj = ∑
k

Zk = 1 (16)

Similarly to the conversion in Section 3, all terms on the right-hand in Equation (15) can
be exclusively converted to Equation (17). Please note that the terms on the right-hand side
in Equation (17) are explicitly mutually exclusive. When calculating probabilities of f(X, B),
g(Y, B), h(Y, B), f(X, B)g(Y, B)h(Z, B), and (X, B) + g(Y, B) + h(Z, B), combinations that
have Xc

i /Xc
i , Yc

j /Yc
j , or Zc

k/Zc
k are automatically deleted since they have explicitly mutually

exclusive event combinations. This is a strength of the new method presented in this paper.

f(X, B) = Xc
1f1(B) + /Xc

1Xc
2f2(B) + · · ·

g(Y, B) = Yc
1g1(B) + /Yc

1Yc
2g2(B) + · · ·

h(Y, B) = Zc
1h1(B) + /Zc

1Zc
2h2(B) + · · ·

(17)

4. Application to a Simple System

The new method was applied to the simple Boolean equation in Equation (18). Proba-
bilities of partitioning events and regular basic events are shown in Equation (19).

f(X, B) = X1B1 + X2B2 + X3B3 (18)

p(X1) = 0.5, p(X2) = 0.3, p(X3) = 0.2

p(B1) = p(B2) = p(B3) = 0.9
(19)

The probability of a Boolean equation f(X, B) in Equation (18) can be calculated by
the inclusion–exclusion equation [19] as in Equation (20). To avoid the underestimated
p(f(X, B)) in Equation (20), the fourth to seventh terms on the right-hand side in Equation
(20) should be deleted since they have partitioning event combinations. If an NPP has
many alternating operation systems, the fault tree for this NPP would have multiple group
partitioning events. In this case, it is difficult to find and delete complex combinations
of partitioning events. Furthermore, there is no dedicated tool to delete these complex
combinations of partitioning events.

p(f(X, B)) = p(X1B1) + p(X2B2) + p(X3B3)

−p(X1X2B1B2)− p(X1X3B1B3)− p(X2X3B2B3)

+p(X1X2X3B1B1B3) = 0.67077

(20)
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To explicitly avoid the underestimation of the probability of f(X, B), Equation (18) can
be converted into Equation (21), which is similar to Equation (14). Here, the conditional
events and their probabilities are shown via Equations (22) and (23).

f(X, B) = Xc
1B1 + /Xc

1Xc
2B2 + /Xc

1/Xc
2Xc

3B3 (21)

where the conditional events are defined as

Xc
1 ≡ X1

Xc
2 ≡ X2|/X1

Xc
3 ≡ X3|/X1/X2

(22)

and their probabilities are

p(Xc
1) = p(X1) = 0.5

p(Xc
2) =

p(X2)

p(X2) + p(X3)
=

0.3
0.3 + 0.2

= 0.6

p(Xc
3) = 1

(23)

The accurate probability of f(X, B) can be calculated by Equation (24) without employ-
ing any other techniques or dedicated PSA tools. This is a great strength of the method
proposed in this paper.

p(f(X, B)) = p(Xc
1B1) + p(/Xc

1Xc
2B2) + p(/Xc

1/Xc
2Xc

3B3)

= 0.5 × 0.9 + 0.5 × 0.6 × 0.9 + 0.5 × 0.4 × 1.0 × 0.9 = 0.9
(24)

5. Application to Simple NPPs

If one NPP U1 or U2 has three operating states (FP, LPSD with nuclear fuel, and
LPSD without nuclear fuel), Boolean equations for MUCDF and SCDF can be expressed
as in Equation (25), and their fault trees are depicted in Figure 3. Here, %I is a seismic
initiating event that has a frequency unit. Since no nuclear fuel is loaded in NPPs during
the operation period of X3 or Y3, core damage is impossible. Therefore, f3(B) and g3(B)
are empty sets.

MUCDF = %I× U1× U2

SCDF = %I× (U1 + U2)

U1 = X1f1(B) + X2f2(B) + X3f3(B)

U2 = Y1g1(B) + Y2g2(B) + Y3g3(B)

f3(B) = g3(B) = 0

(25)

where
XiXj = YiYj = 0, i 6= j

X1 + X2 + X3 = Y1 + Y2 + Y3 = 1
(26)
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Figure 3. Multi-unit core damage frequency (MUCDF) and site core damage frequency (SCDF) fault
trees with partitioning events.

To avoid MUCDF underestimation, Equation (25) can be converted into Equation (27)
by replacing partitioning events of X1, X2, Y1, and Y2 with conditional events of Xc

1,/Xc
1Xc

2,
Yc

1, and/Yc
1Yc

2, respectively. That is, the fault tree in Figure 3 can be converted to the fault
tree in Figure 4.

MUCDF = %I× U1×U2

SCDF = %I× (U1 + U2)

U1 = Xc
1f1(B) + /Xc

1Xc
2f2(B)

U2 = Yc
1g1(B) + /Yc

1Yc
2g2(B)

(27)
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Figure 4. MUCDF and SCDF fault trees with explicit conditional events.

After generating MCSs from the original fault tree in Figure 3 and converting each
MCS to a BDD, the underestimated MUCDF is calculated from the BDD in Figure 5. On
the other hand, if a similar process is applied to the revised fault tree in Figure 4, the
BDD in Figure 6 is created. During this process, the combinations of mutually exclusive
partitioning events are automatically deleted since Xc

i /Xc
i = Yc

j /Yc
j = 0.
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Figure 6. BDD for MUCDF with explicit conditional events.

Sensitivity studies for MUCDF and SCDF were performed with the fault trees in
Figures 3 and 4 by increasing basic event probabilities from 0.01 to 0.99 with the fixed
initiating event frequency and partitioning event probabilities in Equation (28).

p(%I) = 0.1

{p(X1), p(X2), p(X3)} = {p(Y1), p(Y2), p(Y3)} = {0.9, 0.05, 0.05}{
p
(

XC
1

)
, p(Xc

2), p(Xc
3)
}

=
{

p(Yc
1), p(Yc

2), p
(

YC
3

)}
= {0.9, 0.5, 1.0}

(28)

MCSs are calculated from the MUCDF and SCDF fault trees in Figures 3 and 4, MCSs
are converted into a BDD, and then MUCDF and SCDF are calculated from the BDD. The
underestimated and accurate CDFs are compared in Table 2. If partitioning events are
ignored, both MUCDF and SCDF are underestimated in all calculations, and SCDF is much
more underestimated than MUCDF.
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Table 2. Comparison of MUCDFs and SCDFs.

MUCDF Comparison

p(A) = p(B) = . . . = p(G) 0.01 0.10 0.50 0.90 0.99

MUCDF from Figure 3a 8.190 × 10−4 8.198 × 10−3 4.364 × 10−2 7.914 × 10−2 (e) 8.187 × 10−2

MUCDF from Figure 4b 9.025 × 10−4 9.033 × 10−3 4.795 × 10−2 8.715 × 10−2 (f) 9.021 × 10−2

Underestimation error %
(abs((b) − (a))/(b) × 100) 9.25% 9.24% 8.98% 9.19% 9.25%

SCDF Comparison

p(A) = p(B) = . . . = p(G) 0.01 0.10 0.50 0.90 0.99

SCDF from Figure 3c 1.010 × 10−3 1.160 × 10−2 7.005 × 10−2 9.849 × 10−2 9.909 × 10−2

SCDF from Figure 4d 1.919 × 10−3 2.071 × 10−2 1.188 × 10−1 1.864 × 10−1 1.900 × 10−1

Underestimation error %
(abs((d) − (c))/(d) × 100) 47.37% 43.97% 41.01% 47.16% 47.83%

(e) specific MUCDF in Figure 5. (f) specific MUCDF in Figure 6.

6. Conclusions

There are several systems undergoing alternating operations in NPPs, and each NPP
alternates between full power and LPSD. Therefore, complex Boolean AND combinations
of mutually exclusive partitioning events should be eliminated when generating MCSs
from a fault tree and converting MCSs into exact solutions.

For the correct probability calculation of a fault tree that has partitioning events, a
proper modeling method of these events was proposed in Section 3, and the strength and
simplicity of this modeling method were demonstrated by the applications in Sections 4
and 5. If MCSs for seismic SUPSA and MUPSA are generated and converted into exact
solutions without deleting combinations of mutually exclusive partitioning events, final
CDFs (SUCDF, MUCDF, and SCDF) can be underestimated. Unfortunately, it is impossible
to eliminate mutually exclusive event combinations without modifying PSA tools for
generating MCSs from a fault tree and converting MCSs into a BDD.

Therefore, there is a great need to explicitly model the partitioning events in fault trees
instead of revising PSA tools. This paper is the first to report on this problem and provide
a solution to avoid CDF underestimation. If the partitioning events are modeled with
conditional events in the seismic SUPSA and MUPSA fault trees with the method in this
paper, accurate CDF calculation is possible using the existing PSA tools. This is the strength
of the proposed method. The use of the method in this paper is strongly recommended for
avoiding CDF underestimation in seismic SUPSA and MUPSA.

The failures of alternating operation systems are frequently modeled in internal, flood-
ing, and fire event SUPSAs. Therefore, for calculating accurate CDF, it is also recommended
that the modeling method of partitioning events in this paper be applied to any SUPSAs
where the failures of alternating operation systems are modeled.
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