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Abstract: The proliferation of distributed renewable energy resources (RESs) poses major challenges
to the operation of microgrids due to uncertainty. Traditional online scheduling approaches relying
on accurate forecasts become difficult to implement due to the increase of uncertain RESs. Although
several data-driven methods have been proposed recently to overcome the challenge, they generally
suffer from a scalability issue due to the limited ability to optimize high-dimensional continuous
control variables. To address these issues, we propose a data-driven online scheduling method for
microgrid energy optimization based on continuous-control deep reinforcement learning (DRL).
We formulate the online scheduling problem as a Markov decision process (MDP). The objective
is to minimize the operating cost of the microgrid considering the uncertainty of RESs generation,
load demand, and electricity prices. To learn the optimal scheduling strategy, a Gated Recurrent
Unit (GRU)-based network is designed to extract temporal features of uncertainty and generate
the optimal scheduling decisions in an end-to-end manner. To optimize the policy with high-
dimensional and continuous actions, proximal policy optimization (PPO) is employed to train the
neural network-based policy in a data-driven fashion. The proposed method does not require
any forecasting information on the uncertainty or a prior knowledge of the physical model of the
microgrid. Simulation results using realistic power system data of California Independent System
Operator (CAISO) demonstrate the effectiveness of the proposed method.

Keywords: microgrid energy management; data driven modeling; proximal policy optimization;
recurrent neural network

1. Introduction

Microgrids have been widely adopted and deployed in modern power systems to
improve energy efficiency and power supply security by integrating distributed energy
resources [1]. According to statistics by BNResearch [2], there have been 6610 microgrid
projects globally representing 31.7 GW of planned and installed power capacity by March
2020. The rapid deployment of microgrids brings many advantageous features, such as
reducing long-distance transmission losses, decreasing the cost of the energy mix, and
providing a new paradigm of energy infrastructure for future smart cities [3]. However,
due to some special features in these small, self-governing systems, energy management of
microgrids faces several major challenges. High proportional RES combined with stochastic
load can lead to significant power variations and make it difficult to produce accurate
generation schedules based on data forecasts. Moreover, microgrids contain various
heterogeneous resources, such as energy storage systems (ESS) and dependent response
resources, which cannot be dispatched according to the conventional unit-commitment
and economic dispatch methods.

To overcome these challenges, extensive model-based online scheduling approaches
have been proposed in the literature. For example, in [4], a rolling horizon optimization
method based on mixed integer linear programming is proposed for energy management
of a battery energy storage system. In [5], a model predictive control (MPC) method is
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proposed to optimize the operation of a renewable hydrogen-based microgrid with hybrid
storage. In [6], an MPC based strategy combining two-stage stochastic programming con-
sidering the uncertainty of RES generation, system load, and electricity prices is designed.
In [7], a chance-constrained MPC method is proposed and integrated into a hierarchical
stochastic energy management system for operation management of interconnected mi-
crogrids. In [8], an MPC-based optimal energy management system is designed for the
economic re-scheduling of a network of interconnected microgrids under failure conditions.
In [9], a two-stage stochastic MPC strategy is developed to manage the local operation
of individual microgrid in multi-microgrid systems. Besides, heuristic algorithms have
also been used to solve the microgrid scheduling problem to avoid local optimum. For
example, in [10], a non-dominated sorting genetic algorithm (GA) is developed to optimize
the real-time energy management of a cyber physical multi-source energy system. In [11], a
hierarchical GA optimization method is applied to a fuzzy logic-based energy management
system considering the time-of-use energy price.

Although these methods have been successfully applied in the aforementioned and
many other studies, they generally rely on an accurate forecast of the uncertainty, an explicit
physical model of the microgrid system, and an efficient solver for the optimization model.
Hence, to construct a model-based method, one needs specific domain knowledge on
forecasting techniques, modeling methods, and solution algorithms. This may increase the
implementation difficulty in real-world applications. In addition, to design an optimization
model, precise system parameters and accurate forecasting information of uncertainty
are necessary. These prerequisites may not be satisfied in some real-world scenarios,
and the performance may deteriorate due to imprecise model parameters or inaccurate
forecasts. It is worth mentioning that, although heuristic algorithms (e.g., [10,11]) are
less dependent on physical models, they still require accurate forecasts to derive optimal
scheduling decisions.

To reduce the dependency on accurate forecasting information and an explicit model,
learning-based methods have been proposed in recent years. For instance, in [12], a batch
RL algorithm is developed to optimize the ESS charging schedules in a microgrid. In [13],
a Bayesian RL method and a dual-iterative Q-learning algorithm are applied for optimal
operation of battery banks in multi-agent residential energy management system. In [14],
an approximate dynamic programming (ADP) method is proposed for optimal control of
ESSs considering the uncertainty of RES generation. In [15], an ADP-based algorithm is
developed to learn the optimal energy management strategy of a grid-connected micro-
grid. In [16], an ADP method is used to integrate the ESS scheduling into conventional
economic dispatch task for real-time microgrid energy management. In [17], an ADP-
based stochastic nonlinear optimization approach is proposed for the real-time operation
of the microgrid under uncertainties. In [18], a RL-based bi-level energy management
system is proposed for optimal scheduling of networked microgrids under incomplete
information. These methods generally use a linear or a simple nonlinear approximator
to learn the value/action–value function and train the approximator through temporal
difference learning.

Although these methods reduce the dependency on accurate forecasting information
or an explicit physical model, the limited approximation capability hinders their application
in real-world microgrid environments, which exhibit serious nonlinearity and uncertainty.
With the development of deep learning technologies, many researchers have made efforts
to develop DRL-based approaches for real-time energy scheduling of microgrids by taking
advantage of the nonlinear representation capability of deep neural networks (DNNs).
For example, in [19], a deep Q-learning (DQN) method is employed to solve the battery
energy management problem and a convolutional neural network is designed to learn
the optimal charging schedules using historical electricity prices. In [20], a constrained
policy optimization method is used to learn the optimal electric vehicle (EV) charging
strategy from historical electricity prices and user’s commute behavior. In [21], a double
dueling DQN algorithm is adopted to learn the optimal battery control policy in a smart
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energy network. In [22], a DQN-based method is developed to solve the real-time energy
management of microgrids considering the uncertainties of load demand, RES generation
and electricity prices. In [23], a DRL algorithm using Monte Carlo Tree Search method is
designed for online scheduling of a residential microgrid. In [24], a double-DQN based
distributed operation strategy is proposed to optimize the online energy management of
a community battery system in a microgrid considering uncertainty. In [25], an intelli-
gent multi-microgrid energy management system is developed based on a model-free RL
approach. A DNN is trained using the RL approach to manage the aggregated power ex-
change of the multi-microgrid system with the distribution system. In [26], DQN is applied
to learn an optimal scheduling policy based on a convolutional neural network (CNN) for
the operation of an isolated microgrid considering the penalty of non-served power.

However, the aforementioned methods can only handle discrete control actions and
are not suitable for continuous ones. Therefore, to apply these methods to learn continuous
control policies, the actions have to be discretized. Consequently, when the number of
controllable devices increases or the granularity of the discretization becomes small, the
number of actions will increase exponentially, which can make the problem intractable
to solve. In addition, since the control actions for ESSs and distributed generators (DGs)
are generally continuous in realistic microgrids, the performance of these methods may
deteriorate due to the discretization of the action space. In the latest research [27], deep
deterministic policy gradient (DDPG) has been applied to deal with continuous control
variables in optimal scheduling of a microgrid. However, the scheme proposed in [27]
still relies on accurate forecasts of future renewable generation and system load to make
scheduling decisions.

In this paper, we propose a novel online scheduling method for microgrid energy
management based on a continuous-control DRL algorithm. To reduce the dependency
on accurate forecasts or an explicit physical model, we propose a data-driven formulation
method based on MDP. To address the uncertainty of RES generation, system load, and
electricity prices, we adopt a GRU network to extract their temporal features from his-
torical data [28]. GRU is a variant of long shor-term memory (LSTM), which is effective
in modeling long-term dependencies of sequential data. LSTM has been successfully ap-
plied in many applications of power and renewable energy systems, such as wind speed
forecasting [29–32]. Compared to LSTM, GRU can achieve comparable performance with
a simpler architecture and fewer tensor computations [33]. Based on the features extracted
by GRU, a deep neural network architecture is designed to learn the optimal control policy
in an end-to-end manner. The designed policy network can directly generate scheduling
decisions without using any forecasting information or solving complex optimization
models. To learn the optimal policy with continuous actions, a continuously-controlled
DRL algorithm based on PPO [34] is employed to train the neural network based policy.
Compared to the existing work, the main contributions of this work are summarized
as follows:

• To reduce the dependency on accurate forecasting information or an explicit physical
model, we propose a data-driven formulation method for online energy scheduling of
a microgrid based on MDP. This formulation enables us to optimize the scheduling
decisions without having accurate forecasts of the uncertainty or knowing precise
system model of the microgrid.

• To avoid solving complex optimization problems during online scheduling, we design
a GRU-based neural network to learn the optimal policy in an end-to-end fashion.
During online execution of the scheduling policy, the neural network can directly
produce scheduling decisions based on historical data and current state without
predicting the uncertainty or solving complex optimization models.

• To effectively learn the optimal scheduling policy for our problem with continuously-
controlled devices, we employ the PPO algorithm to train the GRU-based policy net-
work. The PPO-based method is effective for optimizing high-dimensional continuous-
control actions and practical for real-world microgrid environments.
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The rest of the paper is organized as follows. Section 2 formulates the problem. Section 3
presents the designed neural network and the DRL-based solution. Case studies are pre-
sented in Section 4. Section 5 draws the conclusions.

2. MDP Formulation of Online Energy Scheduling in Microgrids

Consider a microgrid with a set of DGs denoted by D = {1, 2, . . . , D}, a set of ESSs
denoted by B = {1, 2, . . . , B}, a set of RESs denoted by R = {1, 2, . . . , R}, and a set of
controllable loads denoted by L = {1, 2, . . . , L}. We assume that the microgrid operates in
a grid-connected mode and participates in the real-time electricity market. We divide the
intra-day operation into T time slots, indexed by {1, 2, . . . , T}, and the interval of two time
slots is ∆t.

We formulate the online scheduling of a microgrid as an MDP with an unknown
system model. The MDP is represented by a 5-tuple (S ,A,Pa,Ra, γ), where S is a set of
the system states,A is a set of feasible actions, Pa : S ×A×S → [0, 1] is the state transition
probability, Ra : S ×A → R is the reward function, and γ ∈ [0, 1) is the discount factor.
In the following subsections, we present the states, actions, rewards, and objective of the
MDP model in detail.

2.1. States

The state includes two kinds of information: (1) the historical data about the uncer-
tainties, including the net load of the microgrid system and the electricity prices; and (2)
the energy of the ESSs at the current time slot t. Thus, the state st is defined by

st = [PL(t− T), . . . , PL(t− 1), ρ(t− T), . . . , ρ(t− 1), EESS
1 (t), . . . , EESS

B (t)]T , (1)

where PL(t− T), . . . , PL(t− 1) are the net load in the past T time slots; ρ(t− T), . . . , ρ(t− 1)
are the electricity prices in the past T time slots; and EESS

1 (t), . . . , EESS
B (t) are the energy

stored in the ESSs at the beginning of the time slot t.
The net load PL(τ) in any time slot τ ∈ [t− T, t− 1] is calculated by

PL(τ) = PUL(τ) + ∑
l∈L

PCL
l (τ)− ∑

r∈R
PRES

r (τ) (2)

where PUL(τ) denotes the total power demand of the microgrid in time slot τ, PCL
l (τ) is

the power consumption of the lth controllable load in time slot τ, and PRES
r (τ) denotes the

power generation of the rth RES unit.

2.2. Actions

The controllable devices in a microgrid include dispatchable DGs, controllable loads,
and ESSs. Thus, the action is defined by

at = [PDG
1 (t), ..., PDG

D (t), PCL
1 (t), ..., PCL

L (t), PESS
1 (t), ..., PESS

B (t)]T , (3)

where PDG
1 (t), . . . , PDG

D (t) are the output power of the dispatchable DGs in time slot t;
PCL

1 (t), . . . , PCL
L (t) are the power consumption of the controllable loads in time slot t; and

PESS
1 (t), . . . , PESS

B (t) are the charging/discharging power of the ESSs in time slot t.
The feasible set of the action at in time slot t is defined by At = ADG

t ∪AESS
t ∪ACL

t ,
where

ADG
t = ∪d∈D{PDG

d (t)|PDG
d ≤ PDG

d (t) ≤ PDG
d }

ACL
t = ∪l∈L{PCL

l (t)|PCL
l ≤ PCL

l (t) ≤ PCL
l }

AESS
t = ∪b∈B{PESS

b (t)|PESS
b,t ≤ PESS

b (t) ≤ PESS
b,t }.

(4)
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Here, PDG
d and PDG

d represent the minimum and maximum output power of the DG

d, respectively; PCL
l and PCL

l denote the minimum and maximum power demand of the

controllable load l ∈ L; and PESS
b,t and PESS

b,t denote the maximum discharging or charging
power of the ESS b ∈ B in time slot t.

It is notable that maximum discharging or charging power PESS
b,t and PESS

b,t are time-
variant due to the capacity constraint of the ESS. The maximum discharging or charging
power can be calculated according to

PESS
b,t = −min[(EESS

b (t)− EESS
b )ηdch

b /∆t, PESS
b ]

PESS
b,t = min[(EESS

b − EESS
b (t))/ηch

b ∆t, PESS
b ]

(5)

where PESS
b is the rated power of the ESS b; EESS

b (t) denotes the energy stored in the ESS at

the beginning of the time slot t; EESS
b , and EESS

b are the allowable minimum and maximum
energy stored in the ESS, respectively; and ηch

b and ηdch
b are the charging and discharging

efficiency, respectively.

2.3. Rewards

To minimize the operational cost of the microgrid and guarantee the power balance be-
tween supply and demand, we define the reward rt in time slot t as the negative operational
cost plus a penalty term:

rt = −
[

∑
d∈D

CDG
d (t) + ∑

l∈L
CCL

l (t) + CG(t)

]
−ω ·max(|PG(t)| − PG, 0) (6)

where CDG
d (t) denotes the fuel cost of the DG d in time slot t, CCL

l (t) denotes the curtailment
cost of CL l in time slot t, CG(t) represents the transaction cost with the utility grid, and
max(|PG(t)| − PG, 0) is the penalty term.

The fuel cost of the DG d in time slot t is calculated by a quadratic function of the
output power PDG

d (t) [15]:

CDG
d (t) = [ad

(
PDG

d (t)
)2

+ bdPDG
d (t) + cd]∆t, (7)

where ad, bd, and cd are the cost coefficients of the DG d.
The curtailment cost of the controllable load l is calculated by the following quadratic

function [35]

CCL
l (t) = βl

(
PCL

l − PCL
l (t)

)2
(8)

where βl is a positive coefficient, reflecting the customer’s sensitivity to load curtailment.
The transaction cost with the utility grid is calculated by,

CG(t) =

{
ρ(t) · PG(t)∆t, if PG(t) ≥ 0
αρ(t) · PG(t)∆t, otherwise.

(9)

where Pg(t) denotes the power exchanged with the main grid in time slot t. In our study,
the microgrid participates in the real-time electricity market and is charged with the real-
time locational marginal price (LMP). To encourage local utilization of RESs, we assume
that the selling prices are lower than the purchasing prices, i.e., αρ(t), where 0 < α < 1 is
a discount.

The penalty term max(|PG(t)| − PG, 0) measures the power imbalance between sup-
ply and demand. The penalty term is greater than 0 when the absolute value of the
power imported from the utility grid or the power exported to the utility grid exceeds the
maximum capacity, i.e., |PG(t)| ≥ PG.
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2.4. Objective Function

We aim to find a scheduling policy π(at|st) : st → at to maximize the total expected
rewards over the scheduling horizon T. Thus, the objective is defined as

max
π∈Π

J(π) = Eτ∼π

[
T−1

∑
t=0

γt · rt

]
(10)

where Eτ∼π [·] denotes the expected value over the trajectory τ = (s0, a0, s1, . . . , aT−1, sT);
τ ∼ π is shorthand for indicating that the distribution over the trajectory τ depends on the
policy π: at ∼ π(·|st), st+1 ∼ Pa(·|st, at), and Pa(·|st, at) is the state transition probability
given at at the state st; γ ∈ [0, 1) is the discount factor, which determines how much we care
about rewards in the distant future relative to those in the immediate future; and rt ∈ R is
the reward received at the time slot t, which is defined in Equation (6), representing the
negative of the operational cost of the microgrid and the penalty for power imbalance.

3. Deep Reinforcement Learning Solution Based on Proximal Policy Optimization

The MDP formulation of the microgrid real-time energy scheduling problem has
multiple continuous actions. This problem is challenging for many DRL algorithms because
of the large and continuous action space. To solve this issue, we employ the PPO algorithm,
which has been successful at solving high-dimensional continuous control problems [34,36].
Besides, we design a deep neural network to learn the optimal policy, which can directly
output the scheduling decisions based on the microgrid states and the historical data of
the uncertainties.

3.1. Proximal Policy Optimization Algorithm

For the MDP formulation, we aim to find the optimal control policy π(at|st) maxi-
mizing the objective J(π). However, this problem is difficult to solve because the policy
π(at|st) is a function of state st. To approach this problem, we consider a parameterized
policy πθ(a|s), which depends on the parameter vector θ. Now, instead of directly opti-
mizing the policy π(at|st), we are interested in optimizing the parameter θ∗ in the space Θ
such that

θ∗ = arg max
θ∈Θ

J(θ), (11)

where we replace J(π) with J(θ) because we are considering a parameterized policy πθ(a|s).
In the following, we replace all functions of notation π with functions of θ for brevity.

PPO is an efficient local policy search method for MDP problems. In traditional local
policy search methods, such as trust-region policy optimization (TRPO) [37], the policy
parameter θ is iteratively updated by optimizing a surrogate function of the objective J(θ)
in the neighborhood of the most recent iterate θi

max
θ∈Θ

Es∼ρ,a∼πθ

[
πθ(a|s)
πθi (a|s) Aθi (s, a)

]
s.t. Dmax

KL (θi||θ) ≤ δ

(12)

where ρ denotes the discounted expected distribution of the state s, Aθi (s, a) represents
the advantage function, and Dmax

KL (θi||θ) = maxs DKL(πθi (·|s)||πθ(·|s)) is the maximum
KL divergence with respect to s. The KL-divergence Dmax

KL (θi||θ) defines the searching
area in the neighborhood of θi. However, this method is a second-order algorithm and is
computationally expensive. This is because it requires calculating the inverse of a Hessian
matrix to estimate the KL-Divergence Dmax

KL (θi||θ) and solving the nonlinear constrained
optimization problem (12).
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To improve the computational efficiency, PPO converts this problem to a unconstrained
optimization problem by heuristically restricting the likelihood ratio

r(θ) =
πθ(a|s)
πθi (a|s) (13)

as a penalty in the objective instead of confining the KL-Divergence Dmax
KL (θi||θ) in the

constraint. Specifically, PPO updates the parameter θ by iteratively solving the following

θi+1 = arg max
θ∈Θ

Lθi (θ)

Lθi (θ) =Et
[
min

(
rt(θ)Ât

θi , CLIP(rt(θ), 1− ε, 1 + ε)Ât
θi

)]
.

(14)

where CLIP(rt(θ), 1− ε, 1 + ε) means clipping the likelihood ratio rt(θ) by the boundaries
1− ε and 1 + ε and ε is a hyperparameter. Ât

θi is an estimator of the advantage function
Aθi (s, a), which can be calculated by [38]:

Ât
θi = δt + (λγ)δt+1 + · · ·+ (λγ)T−t−1δT−1

δt = rt + Vθi (st)−Vθi (st+1).
(15)

where λ ∈ [0, 1] is the generalized advantage estimation parameter, γ ∈ [0, 1) is the
discount factor, and Vθi (st) = Est ,at ,st+1,...[∑∞

l=0 γlrt+l ] denotes the value function under the
policy πθi .

Note that the PPO policy update rule (14) can be solved by using a first-order gradient
descent algorithm. This means that we no longer need to estimate the KL divergence or
solve a nonlinear constrained optimization problem. Thus, the PPO algorithm is more
computationally efficient than TRPO.

3.2. Design of the Policy and Value Network

In our study, we use a deep neural network to learn the policy πθ(at|st) as well as the
value function Vθ(st). Note that the neural network is designed in an end-to-end fashion,
which means that we do not require any hand-crafted features. The overall architecture
of the designed network is illustrated in Figure 1. The network consists of three parts: a
gated recurrent network, a feed-forward network, and an output layer. The gated recurrent
network is used to extract time-series features from historical data on the net load and
electricity prices. The feed-forward network concatenates the time-series features as well
as the current system state and outputs high-level features. The output layer is used to
predict the state value and generate control decisions. Next, we explain the overall design
in details.

Knowing the future trend of the uncertainties, i.e., the system net load and electricity
prices, is crucial to the learning of the policy and the value function. Since the load and
electricity prices generally fluctuate in a quasi-periodic way, it is reasonable to infer the
future trend from their past realizations. In our study, we employ GRU [39] to extract the
future trend features.

GRU is a variant of long-short term memory (LSTM), which is effective in modeling
long-term dependencies of sequential data [28]. Compared to traditional recurrent neural
networks (RNNs), LSTM networks utilize gates and the cell state to extract and carry
relevant information throughout the processing of sequential data. This mechanism makes
it possible to preserve information from very early time steps and build connection to
one extracted from later time steps. Therefore, LSTM networks are very suitable for time-
series data modeling. However, LSTM networks are more computationally complex than
traditional RNNs are.

GRU improves the LSTM model by removing the cell state and uses the hidden state
to carry information. Compared to LSTM, GRU has fewer gates and tensor operations;
therefore, GRU can be trained slightly more quickly than LSTM. GRU networks have also
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been successfully applied in many smart grid applications, such as load forecasting [40]
and wind power prediction [41].

GRU

GRU

…
 …

 

…
 …
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…

 …
 

Features Fully connected network

Mean

Sampling

Inputs: net load and electricity prices over the 
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Output layer
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Control

GRU

Energy in the ESSs at time slot :

GRU Recurrent network

…
 

…
 

Figure 1. The architecture of the designed policy and value network. The overall network includes three parts: (1) the GRU
network, which takes as inputs the net load and electricity prices of the past T time slots and outputs features about their
future trends; (2) the feed-forward network, which concatenates the features extracted by GRU and the energy of ESSs at
time slot t; and (3) the output layer outputs the approximated value function and the control policy.

In our design, the GRU network takes as inputs the net load and electricity prices of the
past T time slots and outputs the features about their future trends. The features extracted
by the GRU and the energy in all ESSs, EESS

1 (t), . . . , EESS
B (t), are then concatenated together

as a vector, which is inputted into the feed-forward network. The feed-forward network
transforms the inputs into high-level features by passing them through two hidden layers
of 128 rectified linear unit (ReLU) neurons:

fl = max(Wl fl−1 + bl , 0), l = 1, 2 (16)

where fl is the output feature of the lth layer and Wl and bl are the weights and biases of
the lth layer, respectively.

The output layer uses the features extracted by the feed-forward network to ap-
proximate the policy and the value function. Specifically, since the control variables are
continuous in our formulation, we define the stochastic policy by the normal distribution
πθ(a|s) ∼ N (µ, Σ), where the mean µ and covariance Σ are approximated by:

µ = Wµ fL + bµ,

Diag(Σ) = bσ,
(17)

where fL, L = 2 denotes the latent features extracted by the feed-forward network. Wµ, bµ,
bσ are the weights and biases of the output layer, respectively. Note that the covariance
Σ is defined as a diagonal matrix and only the elements of the principal diagonal are
approximated. When executing the policy, actions are sampled according to the normal
distribution approximated by the neural network.

In addition, the value function is approximated by

Vθ(s) = Wo fL + bo (18)

where Wo and bo are the weights and biases of the output layer with respect to the
value function.
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3.3. Practical Implementation

In the practical implementation, we train the overall network based on a sample-
based procedure. Specifically, at iteration i, we simulate the policy πθi in a microgrid
simulation environment for a certain amount of time steps, e.g. N × T. We record the
simulation trajectory τ = {s0, a0, r0, . . . , sT}1,...,N . Then, we use the trajectory data to
calculate the sampled values of the advantage function according to Equation (15) and the
sample probability πθi (at|st). Then, we optimize the parameter vector θ by maximizing
the augmented PPO objective:

Lθi (θ) = Lθi (θ) + κ1Et(Vθ(st)−Vtarg
t )2 + κ2EtS[πθ ](st) (19)

where the term (Vθ(st)−Vtarg
t )2 is the square error of the approximate value function and

the term EtS[πθ ](st) represents the entropy bonus, which ensures sufficient exploration,
as suggested by Volodymyr [42]. κ1 and κ2 are coefficients. The pseudo-code of the PPO
algorithm is summarized in Algorithm 1.

Algorithm 1 The PPO algorithm for microgrid real-time scheduling

Initialize network parameter θ0.
for i = 1, 2, . . . do

for n = 1, 2, . . . , N do
Initialize the microgrid state s0
for t = 0, 1, . . . , T − 1 do

Select action at according to the policy πθi (at|st)
Check safety of at and simulate the environment
Store transition (st, at, rt) in τ

end for
Calculate Ât

θi and Vtarg
t for t = 0, 1, . . . T − 1

end for
Set θi

0 := θi

for k = 0, 1, . . . , K− 1 do
Optimizing Lθi

k
(θ) with minibatch size M ≤ NT

Set θi
k+1 := arg maxθ Lθi

k
(θ)

Set θi+1 := θi
K

end for
end for

4. Case Studies
4.1. Experimental Setup

We evaluate the proposed method in the CIGRE benchmark microgrid system [43]
(Figure 2). The microgrid contains two dispatchable DGs with capacities of 30 and 40 kW;
one battery ESS with a capacity of 500 kWh and a maximum charging/discharging power of
100 kW; three solar panel generators and two wind turbines with a capacity of 10 kW each;
two controllable loads; and some uncontrollable loads. The maximum exchange power
between the microgrid and utility grid is 300 kW. Other parameters of the controllable
devices are summarized in Table 1.

To simulate the uncertainties, we use realistic power system data from CAISO [44].
The data include wind and solar generation, load demand, and electricity prices with a
period of one year in 2019 and a resolution of 1 h. To consider the weekly load profile or
seasonal change of weather, we use the first three weeks of each month as the training
set and the remaining data as the testing set. To encourage local utilization of RESs, we
assume the selling prices are 20% lower than the purchasing prices.
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Residential 
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Feeder
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250kW
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Panel

10kW Solar Panel

Figure 2. The architecture of CIGRE low-voltage Microgrid.

Table 1. Parameters of the controllable devices in the microgrid.

DG1
PDG

1 PDG
1 a1 b1 c1

0 kW 30 kW 0.0001$/kW2h 0.0716$/kWh 0.04615$/h

DG2
PDG

2 PDG
2 a2 b2 c2

0 kW 40 kW 0.0001$/kW2h 0.0504$/kWh 0.11011$/h

ESS
EESS

1 EESS
1 PESS

1 ηch
1 ηdch

1

50 kWh 500 kWh 100 kW 0.98 0.98

CL1
PCL

1 PCL
1 β1 – –

0 kW 20 kW 0.003$/kW2h – –

CL2
PCL

2 PCL
2 β2 – –

0 kW 15 kW 0.004$/kW2h – –

For the policy and value network, we use 24 GRUs to extract a 128-dimension feature
vector from the past 24 h’ net loads and electricity prices. This feature vector is concatenated
with the energy of the ESS at time interval t as the input of the feed-forward neural network.
The feed-forward neural network has two hidden layers of 128 ReLU neurons. The output
layer outputs a five-dimensional vector, which approximates the means µ of the stochastic
policy πθ(a|s) ∼ N (µ, Σ). The neural network weights are randomly initialized by using
the orthogonal initialization technique and updated by the Adam optimization [45] during
the training process. Other parameters used in the algorithm are summarized in Table 2.
The microgrid environment is established by using the power system simulation package
PYPOWER [46] and the DRL environment package GYM. The algorithm was coded in
Python using the neural network Toolbox 2.2.0 Tensorflow and RL Toolbox Baselines-tf2.
The program was run in the Ubuntu system on an 8-core i7-6700K CPU.
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Table 2. Parameters of the PPO-based method for the Online Energy Scheduling Problem.

Hyperparameter Value

# of steps in one episode (T) 24
# of episodes in each iteration (N) 100

# of iterates (I) 1000
# of epochs (K) 10

Discount factor (γ) 0.995
Adam stepsize 0.001

Minibatch size (M) 64
GAE parameter (λ) 0.95

Penalty coefficient (ω) 5
Vf coefficient (κ1) 0.5

Entropy coefficient (κ2) 0.01

4.2. Comparison with Commonly Used Online Scheduling Methods

To validate the proposed approach, we train the GRU-based network model using the
training set and then evaluate the well-trained model on the testing set. To demonstrate
the advantages of the proposed approach, we compare it with three commonly used online
scheduling methods: (1) MPC; (2) ADP; and (3) GA. (1) MPC is a widely used model-based
online scheduling method [5–9], which addresses the uncertainty via rolling/receding
horizon optimization. At each time step, a multi-timestep optimization model is solved
based on real-time forecasts over a prediction horizon. Then, the optimal solution at the
first time step is implemented as the present scheduling decisions. In the experiment,
the window size is set to 8 and the forecasting data are generated by adding the actual
value to a forecasting error. The forecasting error is sampled from a normal distribution
N(0; δ2), where the standard deviation is set to be 15% of the actual value of the uncertainty.
(2) ADP is commonly-used RL approach [15–17], which models the online scheduling
problem as a dynamic programming. To overcome the “curse of dimensionality”, ADP
uses an approximate value function (AVF) to solve the Bellman equation to derive the near-
optimal online scheduling decisions. In the experiment, we use an M× T lookup table [17]
to approximate the value function, where M is the size of the reduced state space. To
avoid an extremely large lookup table, we use the method in [17] to reduce the state space.
Specifically, we exclude the historical electricity price and net load from the state st, and
discretize the remaining continuous state variables, i.e., st = [ρ(t− 1), PL(t− 1), EESS

1 (t)],
into M = 10× 10× 10 = 1000 distinct states. The temporal difference error algorithm is
used to update the table. (3) GA is a heuristic optimization method, which has been used
to solve microgrid scheduling problems [10,11]. To apply GA to the online scheduling of a
microgrid, we combine it with MPC by implementing a rolling horizon optimization. In the
experiment, the sliding window and the forecasting data are set to be the same as those used
in MPC. Different from MPC; however, we solve the multi-timestep optimization model
at each time step by using GA instead of the commercial optimization solver Gurobi [47].
The parameter setting of the GA algorithm is as follows: population size, 100; mutation
probability, 0.1; crossover rate, 0.5; parents portion, 0.3; and number of generations, 500.

We compare the proposed approach with the commonly used methods in the
following aspects:

(a) Total operating cost: The testing set contains 113 testing days and the operating
cost of each testing day is calculated according to

F =
T−1

∑
t=0

[
∑

d∈D
CDG

d (t) + ∑
l∈L

CCL
l (t) + CG(t)

]
(20)
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where CDG
d (t), CCL

l (t), and CG(t) are defined in Equations (7)–(9), respectively.
Figure 3a compares the cumulative operating costs on 113 testing days obtained by

ADP, GA, MPC, and the proposed approach (PPO). It can be observed that the proposed
approach obtains the best total operating cost, i.e., $29,699.41, which is 7.32% lower than
that of GA ($32,046.74), 12.10% lower than that of ADP ($33,788.01), and 1.877% lower
than that of MPC ($30,267.73). Among these methods, ADP performs the worst. This is
because the discretization of the state space limits its ability to accurately approximate
the value function, resulting in sub-optimal scheduling decisions. GA and MPC both
perform better than ADP since they use real-time forecasting information to adjust the
scheduling decisions. However, GA does not perform as well as MPC does. This is because
the commercial solver Gurobi used in MPC can find the global optimum (duality gap is
0). In addition, MPC performs almost as well as PPO does, but its performance is affected
by the prediction error, and thus inferior to that of the proposed approach. Furthermore,
compared to these methods, the proposed approach does not need any forecasts on the
uncertainty or efforts on solving an optimization model.
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Figure 3. Comparison of MPC, ADP, GA, and the proposed approach on 113 testing days. (a) Cumu-
lative operating costs; (b) Optimization Error.

(b) Optimization error: The optimization error is defined as the performance gap
between an online scheduling approach and “Theoretical Optimum”. The Theoretical
Optimum assumes that the uncertainty can be accurately predicted. Using the accurate
prediction, the Theoretical Optimum models the problem as a mixed integer quadratic
programming (MIQP) and solves for the optimal solution via Gurobi. The optimization
error is calculated by

ERRonline =
Fonline − FTO

FTO × 100% (21)

where Fonline and FTO represent the daily operating cost (20) obtained by the online schedul-
ing approaches (MPC, ADP, GA, and PPO) and the Theoretical Optimum, respectively.

Since the Theoretical Optimum uses perfect forecasting information, the optimization
error can reflect the robustness of an online scheduling algorithm against uncertainty.
Figure 3b compares the distribution of the optimization errors on the 113 testing days.
It can be observed in the boxplot (Figure 3b) that, compared to MPC, ADP, and GA, the
proposed approach (PPO) obtains the smallest optimization error in terms of first quartile
(Q1), median, third quartile (Q2), and maximum. Moreover, the optimization errors of the
proposed approach are more tightly grouped and have fewer outliers. This means that the
proposed approach is less susceptible to the uncertainty on different testing days than the
benchmarks are. This result demonstrates the superiority of the proposed approach over
MPC, ADP, and GA in robustness.
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(c) Online execution time: Table 3 compares the computation time at each time step
during the online execution of each scheduling algorithm. It can be observed that the online
execution time of ADP, GA, and MPC is much more than that of the proposed approach.
This is because ADP, GA, and MPC all need to solve an optimization model during online
scheduling whereas the proposed approach can directly generate the scheduling decision
by the well-trained neural network. Among the commonly used methods, GA takes the
most time, whereas ADP takes the least one. This is expected because ADP only needs
to solve a one-step optimization problem but GA and MPC have to solve a multi-period
optimization model. Besides, GA generally requires a population of candidate solutions to
evolve many generations; therefore it takes more time than MPC does.

It is worth mentioning that the proposed approach needs about 11.5 h to train the
GRU-based network. However, the training process can be performed offline. Once the
offline training process is finished, we can implement it online to directly generate real-time
scheduling decisions without forecasting the uncertainty or solving a complex optimization
problem. The online execution time only takes about 0.5 ms on average.

Table 3. Computation time at each time step during the online execution.

Method ADP GA MPC PPO

Time 57.71 ± 13.85 ms 9317.29 ± 1912.83 ms 228.68 ± 116.20 ms 0.50 ± 0.11 ms

4.3. Comparison with DQN

DQN is a well-known DRL approach, which has been used to solve the online schedul-
ing problem in the latest research [22,24,26]. However, DQN can only handle discrete
actions and suffers some limitations in solving our problem with continuously controlled
devices, such as DGs, ESS, and controllable loads. To demonstrate the advantage of the pro-
posed approach on handling continuous actions, we compare it with DQN. To apply DQN,
we discretize the actions (PDG

1 , PDG
2 , PESS

1 , PCL
1 , PCL

2 ) into 2× 2× 2× 2× 2 = 32 choices,

which consist of {PDG
1 , PDG

1 } ∪ {PDG
2 , PDG

2 } ∪ {PESS
1,t , PESS

1,t } ∪ {PCL
1 , PCL

1 } ∪ {PCL
2 , PCL

2 }. It is
notable that, when the discretization granularity gets small, the number of actions increases
exponentially, e.g., 4× 4× 4× 4× 4 = 1024.

The training and testing performances are compared in Figures 4 and 5, respectively.
One observation from the comparison results is that the proposed method outperforms
DQN during both the training and the testing processes. For the training performance,
as shown in Figure 4a, the proposed method achieves the highest reward around −250,
whereas DQN only obtains a reward of −290 with 32 actions and −340 with 1024 actions.
In addition, as shown in Figure 4b, the proposed method effectively restricts the imbalance
power to a very small level below 1, whereas DQN causes a large imbalance in the range
of 2.5 to 15. This means that DQN cannot guarantee that the power balance constraint is
adequately satisfied. For the testing performance, as shown in Figure 5a, the proposed
approach reduces the total operating cost by 17.13% and 31.12%, respectively, compared
to the DQN methods with 32 actions and 1024 actions, respectively. Moreover, Figure 5b
shows that, on some testing days, the DQN methods can cause very large power imbalance,
which is rarely seen in the proposed approach. These comparison results demonstrate the
advantage of the proposed method over the DQN method.
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Figure 4. Training performance of DQN and the proposed approach (PPO). (a) Mean and 95%
confidence interval of episode rewards over five random runs; (b) Mean and 95% confidence interval
of imbalance power over five random runs.
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Figure 5. Testing performance of DQN and the proposed approach (PPO). (a) Cumulative operating
costs on 113 testing days; (b) Total imbalance power on each testing day.

Another observation is that, for the DQN method, when the number of discretized
actions increases (from 32 to 1024), the training and testing performance degrades. This is
because, when the number of actions is large, it becomes difficult for the DQN method to
balance between exploring novel actions that are not previously selected and exploiting
actions that have worked well so far. Therefore, although discretizing the action space
with a finer granularity gives a better approximation to the original continuous action
space, it increases difficulties in the training process of the DQN-based method. However,
the proposed method can directly handle continuously-controlled RL problems without
discretization, and thus it is more suitable and practical for the online scheduling problem
of microgrids.

4.4. Comparison with Other Continuously-Controlled DRL Methods

To further demonstrate the advantage of the proposed approach, we also compare
with another two continuously-controlled DRL methods, DDPG and TRPO. The training
and testing performances are compared in Figures 6 and 7, respectively.

From the comparison results, we can observe that, although DDPG and TRPO can
also handle continuous actions, the proposed approach outperforms them with a large
margin, in terms of both the training and the testing performance. For example, compared
to DDPG and TRPO, the proposed approach reduces the total operating cost on the testing
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set by 24.24% and 19.24%, respectively. Besides, the proposed approach can effectively
manage the power supply and demand balance, whereas DDPG and TRPO fail to do so,
resulting in some power imbalance in both the training and testing stages.

In terms of learning speed, DDPG shows a faster learning speed at the beginning of
the training. This is because DDPG is an off-policy method, which can reuse past data
samples to accelerate training. However, DDPG suffers from the stabilization issue due to
the interplay between the deterministic actor network and the Q-function [36]. This issue
clearly shows up in Figure 6, in which the performance of DDPG improves quickly at the
beginning of the training but then deteriorates as the training goes from episodes 10k to
30k. In addition, the learning speed of TRPO is slower than that of the proposed approach
and DDPG because TRPO requires numerous samples to estimate the KL-divergence
Dmax

KL (θi||θ) at each iteration. These comparison results demonstrate the advantages of the
proposed approach over DDPG and TRPO in terms of learning speed, stability, and the
final performance.
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Figure 6. Training performance of DDPG, TRPO, and the proposed approach (PPO). (a) Mean and
95% confidence interval of episode reward over five random runs; (b) Mean and 95% confidence
interval of imbalance power over five random runs.
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Figure 7. Testing performance of DDPG, TRPO, and the proposed approach (PPO). (a) Cumulative
operating costs on 113 testing days; (b) Total imbalance power on each testing day.

4.5. Scheduling Results

To validate the effectiveness of the decisions made by the proposed approach, the
scheduling results on seven consecutive testing days are presented in Figure 8, which
includes the charging/discharging power and state-of-charge (SOC) pattern of the battery,
the power output of the DGs, the exchanged power between the microgrid and utility grid,
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and the power curtailment of the CLs. Figure 8b shows that the proposed method has
successfully learned to charge the battery when the electricity prices are low and discharge
it when the prices are at the peaks. In addition, Figure 8c shows that DG 1 is scheduled
to operate with its maximum power output during peak-price hours in order to reduce
the energy cost and stop operating when the prices are off the peaks. In addition, DG
2 is scheduled to operate with its maximum power most of the time because its cost is
lower than that of buying from the utility grid. For both of the controllable loads, as shown
in Figure 8d, when the prices are at the peaks, the power consumption is fully curtailed to
reduce the operational cost. These results indicate that the proposed approach is effective
in learning a cost-saving strategy to efficiently operate the microgrid.
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Figure 8. Online scheduling decisions made by the proposed algorithm on seven consecutive test
days. (a) Hourly electricity prices and net load; (b) Charging-discharging power and SOC pattern of
the battery; (c) Power output of the DGs and the power exchange between the microgrid and utility
grid; (d) Power curtailment of controllable loads.

5. Conclusions

We proposed a continuous-control DRL-based method for online energy scheduling
of a microgrid. We formulated the online energy scheduling problem as an MDP with an
unknown system model. To learn the optimal scheduling policy, we designed a GRU-based
neural network to extract time-series features from historical data of the uncertainty. The
GRU-based network can also directly output continuous scheduling decisions based on
the microgrid state information and the extracted time-series features. Since the problem
contains high-dimensional continuous control actions, the PPO algorithm was employed
to train the neural network. We showed that the proposed method can learn a superior
control policy for the online energy scheduling problem without requiring an accurate
forecast model or prior knowledge of the physical model. Simulation results demonstrate
that the proposed approach outperforms state-of-the-art DRL-based methods, including
DDPG, TRPO, and DQN. Besides, the proposed method achieved a final performance in
close proximity to the one obtained by the MIQP method under perfect information.
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The following abbreviations are used in this manuscript:

ADP Approximate dynamic programming
CAISO California Independent System Operator
CL Controllable load
DQN Deep Q-network
DDPG Deep deterministic policy gradient
DRL Deep reinforcement learning
DG Distributed Generator
ESS Energy Storage System
GA Genetic Algorithm
GRU Gated Recurrent Unit
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LMP Locational marginal price
MDP Markov decision process
MIQP Mixed Integer Quadratic Programming
MPC Model Predictive Control
PPO Proximal policy optimization
SOC State of Charge
TRPO Trust region policy optimization
RES Renewable energy resources
ReLU Rectified linear unit
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