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Abstract: We propose a machine learning-based methodology which makes use of ensemble methods
with the aims (i) of treating missing data in time series with irregular observation times and detecting
anomalies in the observed time behavior; (ii) of defining suitable models of the system dynamics.
We applied this methodology to US wholesale electricity price time series that are characterized by
missing data, high and stochastic volatility, jumps and pronounced spikes. For missing data, we
provide a repair approach based on the missForest algorithm, an imputation algorithm which is
completely agnostic about the data distribution. To identify anomalies, i.e., turbulent movements of
power prices in which jumps and spikes are observed, we took into account the no-gap reconstructed
electricity price time series, and then we detected anomalous regions using the isolation forest
algorithm, an anomaly detection method that isolates anomalies instead of profiling normal data
points as in the most common techniques. After removing anomalies, the additional gaps will be
newly filled by the missForest imputation algorithm. In this way, a complete and clean time series
describing the stable dynamics of power prices can be obtained. The decoupling between the stable
motion and the turbulent motion allows us to define suitable jump-diffusion models of power prices
and to provide an estimation procedure that uses the full information contained in both the stable
and the turbulent dynamics.

Keywords: power prices; spikes; jump-diffusion dynamics; mean-reversion; machine learning;
missForest; isolation forest; anomaly detection

1. Introduction

Time series are occasionally observed at irregular observation times. Such irregu-
lar samples may occur naturally in climate research [1], in astronomy [2], in heart rate
analysis [3] and even in financial time series [4]. The typical method applied to deal with
irregular samples is to ignore them and literally close up the gaps. However, a missing
values imputation (or gap filling) strategy can be informative and could provide funda-
mental knowledge for the subsequent stochastic analysis [5]. This is particularly true for
financial time series. In such a case, although price time series are typically non stationary,
log-return time series, computed as the difference in log-prices between two subsequent ob-
servations, have better behavior [6]. In the presence of missing data, log-returns computed
over different time intervals may have different informative content. In fact, information
affecting the dynamics of power prices can be released while the market is closed [7,8].
Moreover, we could encounter difficulties if we want to detect seasonality in market prices
or compare markets with different closure day patterns.

In this paper, we will focus on the electricity prices of US power markets. US electricity
price time series show irregular sampling (lack of daily data points) as a result of weekends,
holidays and other missing data due to market specific reasons.

Existing methods for analyzing irregular time series can be categorized into three
main directions [9]: (i) the repair approach in which missing observations are recovered via

Energies 2021, 14, 2084. https://doi.org/10.3390/en14082084 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7096-0774
https://doi.org/10.3390/en14082084
https://doi.org/10.3390/en14082084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14082084
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14082084?type=check_update&version=1


Energies 2021, 14, 2084 2 of 17

smoothing or imputation [10–14]—also implemented, especially in recent years, by machine
learning methods [15–18]; (ii) the generalization of spectral analysis tools [19,20], such as
wavelets [21–24]; (iii) kernel methods [25,26]. In this paper, we deal with a repair approach
which uses an input preparation step based on machine learning. We work out this
problem first by using a regular sampling grid layer over the original time series, and then
by computing a value for each of new sampled point from the available samples, in order
to have an equidistant missing-data problem [5]. For such an imputation process, we chose
the missForest algorithm [27] that is completely agnostic about the data distribution. We
verified that using this machine learning strategy for gap-filling, data quality did improve
in a very efficient manner, especially compared to traditional methods. Therefore, being
predominantly data-driven by design, we could rely just on training data and using very
few parameters to reconstruct complete time series. Once the filling process of the observed
power price time series is completed, the anomaly detection problem is addressed.

“An anomaly is an observation which deviates so much from the other observations as
to arouse suspicions that it was generated by a different mechanism” [28]. Electricity price
time series are prone to have anomalies: they can occur as a consequences of excess demand,
power outages, communication failures, activation of circuit breakers at substations, meter
malfunctions and other reasons [29,30]. The liberalization process of the electricity sector
has significantly increased the price volatility [31]. Looking at the time series of electricity
prices, we can see some very erratic behavior. Power prices show, in fact, variable and
unpredictable behavior with high and stochastic volatility; jumps and pronounced spikes;
and a strong mean-reversion component, responsible for reducing prices after a jump
or a spike has occurred [32]. Specifically, electricity price time series are characterized
by normal stable periods in which they fluctuate around a long-run mean and turbulent
price movements in which the dynamics are affected by jumps and short-lived spikes of
large magnitude. This complex dynamics produces non-normal empirical distributions of
log-returns with high volatility values and non-zero skewness and high kurtosis values [33].

In this paper we provide a general methodology to detect the stable price dynamics
and decouple them from the turbulent dynamics in which jumps and spikes, i.e., anomalous
price movements, occur. Our starting point is to consider the reconstructed no-gap time
series, filled by the missForest algorithm, as affected by anomalies that we are going to
identify and remove. The anomaly identification process is carried out on the filled original
time series of electricity prices by using the isolation forest (or iForest) algorithm [34],
an anomaly detection method that isolates anomalies instead of profiling normal data
points, as in the most common techniques [35]. Using this unsupervised method, we
can detect abrupt changes or novelty in prices time series without using a “universal”
definition, considering that we cannot provide a “standard” reference for anomaly in
electricity prices time series. As for the lack of “good” (non-anomalous) benchmark time
series, we prefer an agnostic approach. Moreover, since we want to reduce to the minimum
the impact of parameter setting on the anomaly detection process, iForest is a particularly
suitable algorithm for this purpose [36–38]. Once identified, anomalies can be removed
from the dynamics. At the end of this process, the additional gaps created by removing
the anomalous regions of the dynamics will be newly filled by the missForest imputation
algorithm. In this way, we obtain: (i) a complete and clean time series describing the stable
dynamics of power prices; (ii) a separation between the stable dynamics and the turbulent
dynamics to feed the stochastic analysis with. This is the first contribution of the present
paper to the literature.

Several models have been proposed in the literature to describe the dynamics of power
prices observed in real markets. Since the seminal paper by Lucia and Schwartz [39], the lit-
erature on this topic has grown exponentially. Mean-reverting jump-diffusion processes
have been proposed [40,41] to account for the jumpy and spiky behavior of power prices.
Regime-switching processes [42] have also been used with the aim of modeling the stable
dynamics and the turbulent dynamics of power prices separately [43–45]. Compared to
more complex regime-switching models, jump-diffusion models offer a good compromise
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between mathematical tractability and the physical description of the price dynamics. Their
use can be considered as the simplest modeling methodology to describe non-Gaussian
processes with stochastic volatility. However, the estimation procedure of jump-diffusion
models on market data require some care in order to take into account in a proper way
the various components of the dynamics [32]. When estimating a jump-diffusion model,
the main difficulty is to determine which price variations are caused by jumps and which
ones are caused by the diffusion component of the process. The easiest and most common
way to deal with this problem is to fix a threshold according to which price variations
are considered to be caused by jumps and spikes [44]. In this case, the threshold must be
set according to some well defined (but arbitrary) criteria [46]. An alternative approach
is to estimate the jump-diffusion model by maximum likelihood without filtering jumps
first [40]. However, this technique allows one to reproduce the standard deviation of
log-returns well but underestimates kurtosis [45]. The use of iForest algorithm is suitable
for overcoming these difficulties. The decoupling of the price dynamics between the stable
motion and the turbulent motion obtained by the machine learning techniques proposed
in this paper, allows us to provide a suitable estimation procedure for both the diffusion
component and the jump component of the model that makes use of the full information
contained in both the stable and the turbulent dynamics. The estimation results show an
interesting agreement with market data. This is the second contribution to the literature.

To our knowledge, this is the first study in which unsupervised machine learning
techniques have been employed to detect jumps and spikes in power price time series,
thereby allowing the possibility of accurately describing the observed dynamics using the
jump-diffusion models. The workflow of the whole methodology is depicted in Figure 1.

Preprocessing

Original
time series

Gap
filling

Anomaly
detection,
removing
and filling

Modeling of
power prices

Figure 1. A block diagram of the whole methodology’s workflow. Time series passing through a
preprocessing block containing the gap filling (Section 2.1), anomaly detection, removing and filling
(Section 2.2) phases. Thereafter, the following modeling of power prices (Section 3) was fed with the
preprocessed time series.

The proposed approach has several advantages and potential applications. Specifically,
our methodology offers the possibility to improve the data quality by using a data-driven
approach, i.e., an unsupervised technique having as few parameters as possible, for the
imputation of missing data and for the detections of anomalies in the dynamics [47–49].
Moreover, accurately modeling electricity price dynamics using simple models which can
be easily calibrated on high quality data is essential for all the power market players [31].
The jump-diffusion model proposed in this paper is a short-term model and the short-term
modeling of electricity prices is a central topic for both traders and producers in their
attempts to hedge financial risk due to the unpredictability of power prices [50] by using
power derivatives as well [51]. In this regard, having good short-term models of electricity
prices capturing the first four central moments of log-return empirical distributions is of
crucial importance for pricing power derivatives [52]. Moreover, modeling power prices
over longer time horizons, ranging from a few years to decades, is strategically important
for energy companies, in their efforts toward evaluating investments in capacity expansion
and generating new technologies, and for policy makers involved in the energy planning
decision making processes. In this regard, the proposed methodology can be employed as
a long-term forecasting approach that allows us to derive the long-run behavior of power
prices from their short-term dynamics. In the presence of a mean-reverting component,
in fact, the probability distributions of power prices tend toward stationary long-run
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probability distributions [53]. In this way, the proposed approach also develops a robust
link between the short-term and the long-term behavior of electricity prices.

The paper is organized as follows. Section 2 discusses the data processing method-
ology. Section 3 illustrates in some detail the mean-reverting jump-diffusion model used
to describe the dynamics of power prices and the estimation procedure. Section 4 con-
cludes. A comparison between the use of the missForest algorithm for gap filling purposes
and a more traditional approach based on moving average techniques is provided in
Appendix A.

2. The Data Processing Methodology

This section is devoted to discussing the data processing methodology. It is composed
by two subsections in which we illustrate in detail all the steps of our procedure, namely, the
filling process of the original wholesale time series of daily electricity prices, the anomaly
detection process and the reconstruction of the stable motion time series.

2.1. Gap Filling

In our analysis we will consider daily electricity prices computed as weighted averages
of the 24 hourly market prices. They are expressed in nominal dollars per megawatt-
hour ($/MWh). Let us, therefore, denote by p(t) the daily price at time t of 1 MWh of
electricity and by M the number of observations of the original power price time series,
one observation for each business day in which market data are available. We introduce,
therefore, the following sets:

pobs = {p(t̄1), p(t̄2), · · · , p(t̄M)} (1)

Tobs = {t̄1, t̄2, · · · , t̄M} (2)

where the set pobs contains the original power price time series and Tobs is the original time
grid composed by M daily positions. Then, we use a complete daily grid that includes,
in addition to business days, weekends, holidays and all the other days with missing
market data—hereinafter, market-closure days. In this way we expand the cardinality of
both sets from M to N = M + C, by introducing C additional elements corresponding to
the number of market-closure days. We set, therefore,

p = {p(t1), p(t2), · · · , p(tN)} (3)

T = {t1, t2, · · · , tN} (4)

T being the complete set of daily ordered time grid positions. This operation produces a
set of missing observations in correspondence with market-closure days. Hence we can
split the data points into two subsets, namely, the observation set, pobs, and a set of missing
values, pmis, given by the set difference,

pmis = p \ pobs, (5)

defined on the time set difference

Tmis = T \Tobs. (6)

Now, to address the missing data problem in order to fill the gaps represented by
the subset pmis, we adopted an iterative imputation scheme based on the random forest
technique [54]. In particular, we used the missForest algorithm [27] to fit a random forest
model by taking the time series values belonging to pobs as the outcome variables and the
time values belonging to the set Tobs as the input variables. After the fit, the missing values
were imputed using prediction values from the fitted random forest algorithm, thereby
determining the whole set p, i.e., the filled time series.
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Our dataset consists of daily time series of electricity prices observed in four US
power markets in the period 1 January 2001 to 24 March 2020. Two power markets,
namely, SP15 and Palo Verde (PV), are located in the US Southwest region: respectively,
in Southern California (SP15) and in the Southwest (PV). The remaining two, namely,
PJM and Nepool (NE) power markets, are located in the US Northeast region. Data are
freely downloadable at www.eia.gov/electricity/wholesale (accessed on 27 March 2020).
Figure 2 shows, as an example, the original time series (in blue) and the parts filled (in red)
by the missForest algorithm on a complete daily grid for the 4-month period of September
2014 to December 2014.
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Figure 2. The original time series (in blue) and the parts filled (in red) by the missForest algorithm on a complete daily grid.
The figure shows the 4-month period of September 2014 to December 2014. x-axis: calendar time; y-axis: electricity price. (a)
SP15; (b) Palo Verde; (c) PJM; (d) Nepool.

Table 1 reports the number of days with missing data computed over the whole period
under investigation, i.e., the period of 1 January 2001 to 24 March 2020. Table 2 depicts
the values of the mean and standard deviation of the original and the filled time series’
empirical distribution.

Table 1. Count of daily grid positions being empty (missing) or not (populated) in the period
1 January 2001 to 24 March 2020. Total grid positions: 7023.

Populated Missing

SP15 4638 2385
PV 4662 2361

PJM 4881 2142
NE 4493 2530

Table 2. Mean and standard deviation (Std) values of the original and the filled time series empirical
distribution.

Original Mean Filled Mean Original Std Filled Std

SP15 50.83 51.94 34.13 37.09
PV 44.01 46.57 28.82 35.26

PJM 50.06 50.05 27.09 26.49
NE 56.52 56.85 32.19 31.52

www.eia.gov/electricity/wholesale
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A comparison between the original time series empirical distribution and the filled
time series empirical distribution is depicted in Figure 3.

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000 Reconstructed

Original

SP15

(a)

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000 Reconstructed

Original

PV

(b)

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

Reconstructed

Original

PJM

(c)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300
Reconstructed

Original

NE

(d)

Figure 3. The original time series empirical distribution (in blue) and the filled time series distribution (in red). (a) SP15; (b)
Palo Verde; (c) PJM; (d) Nepool.

We remark that this approach needs no tuning parameters, and hence it needs neither
prior knowledge about the data nor assumptions about the distribution of the data of the
variable domain [27]. Misztal [55] underlined the good performance of the missForest
algorithm over generic missing patterns, including the case of Not missing at random
(NMAR) data. According to Little and Rubin [56], there are three missing data mechanisms:
missing completely at random (MCAR), missing at random (MAR) and not missing at
random (NMAR). MCAR means that the probability of a piece of information being missing
does not depend on pmis or pobs; MAR means that the probability of a piece of information
being missing does not depend on pmis, but may depend on pobs; MNAR means that the
probability of a piece of information being missing does depend on pmis. Obviously, there
is a risk of having artificial and compromised numerical effects which are inherent to
any imputation method and that may result in further spurious effects [57]. However,
missForest outperforms many methods of imputation, especially if data are supposed to
describe complex interactions in which non-linear relations are suspected [27]. Empirical
and simulation studies confirm that missForest method perform well and can produce
unbiased parameter estimates and standard errors [58–61].

2.2. Anomaly Detection, Removing and Filling

Before addressing the anomaly detection problem, we performed a decomposition
of the filled time series in order to extract the stochastic component of the power price
dynamics. To do this, let us pose:

s(t) = ln p(t), (7)

the natural logarithm of the electricity price at time t. We assume that s(t) is a linear
superposition of a deterministic component, f (t), accounting for trend and seasonality,
and a random component, x(t), namely,

s(t) = f (t) + x(t). (8)

Typically, electricity prices are higher in winter time and lower in summer time, so
the seasonal component must account for this semiannual periodicity. A trend must be
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taken into account for expected inflation and conceivably for a real escalation rate of power
prices (positive or negative). We used the STL decomposition technique [62] to identify
the deterministic component of the dynamics, f (t). STL stands for “seasonal and trend
decomposition using LOESS” and separates the time series into a trend, a seasonal and a
residual, stochastic component. LOESS stands for “locally estimated scatterplot smoothing”
and it is a seasonal-trend decomposition procedure. Many excellent and comprehensive
presentations of the STL decomposition technique can be found in the literature (see, e.g.,
ref. [63] and references therein). Figure 4 depicts (from top to bottom) the deterministic
components, respectively, trend and seasonality, and the residual stochastic component of
the filled time series of daily electricity log-prices, obtained from the STL decomposition
technique, in the case of SP15 and Palo Verde power markets for the period 1 January 2001
to 24 March 2020. In Figure 5 the time series STL decomposition is shown in the case of
PJM and Nepool power log-prices during the same period.
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Figure 4. From top to bottom, the deterministic components: trend, seasonality and the stochastic
component of the filled time series of daily electricity log-prices for the period 1 January 2001
to 24 March 2020 for SP15 and Palo Verde power markets. x-axis: calendar time; y-axis: single-
component log-price.

The anomaly detection problem can be now addressed. In the approach we propose,
turbulent price movements, i.e., jumps and spikes, are identified as anomalies in the power
price time dynamics. The purpose of this analysis is to identify and isolate anomalies in
the stochastic component of the dynamics in order to decouple the stable motion from the
jumpy and spiky behavior. To detect anomalies, we use the isolation forest (or iForest)
algorithm which is an unsupervised learning algorithm for anomaly detection that works
on the principle of isolating anomalies [34,35]. This method uses two main characteristics
of anomalies: (i) they are the smaller part of the dataset and (ii) they have values that
are very different from those that are considered normal points. Anomalies are “few and
different,” and these peculiarities allows us to isolate them with respect to normal data
points. Being a technique that creates a data-induced random tree, called an isolation tree
(or iTree), the data partitioning continues until the isolation of every instance has been
obtained. As for their susceptibility to isolation, anomalies are more likely to be isolated
closer to the root of the tree, while normal points stay more in depth. The iForest algorithm
is characterized by high detection performances [34].
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After detection, anomalies can be removed from the dynamics. At the end of this
process, the additional gaps created by removing anomalies are newly filled by using the
missForest imputation algorithm, thereby providing a new price time series describing
the stable dynamics of electricity markets prices. We call this time series the “stable”
time series. In this way, the stable motion can be decoupled from the turbulent motion
in which jump and spikes are observed. Figure 6 shows both the stable dynamics (the
red line) and the anomalous turbulent dynamics (the blue line) for the power markets
under investigation. The analysis was performed in an unsupervised manner using the
hyperparameters reported in Table 3. In Figure 7, we can see the detail for a 60 day
time frame.
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Figure 5. From top to bottom, the deterministic components: trend, seasonality and the stochastic
component of the filled time series of daily electricity log-prices for the period 1 January 2001 to 24 March
2020 for PJM and Nepool power markets. x-axis: calendar time; y-axis: single-component log-price.
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Figure 6. The decomposition of the stochastic dynamics of electricity market price: the stable dynamics (the red line) and
the anomalous turbulent dynamics (the blue line). x-axis: calendar time; y-axis: stochastic component of log-price. (a) SP15;
(b) Palo Verde; (c) PJM; (d) Nepool.
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Figure 7. The decomposition of the stochastic dynamics of log-prices for the time interval June 2011 to July 2011: the stable
dynamics (the red line) and the anomalous turbulent dynamics (the blue line). x-axis: calendar time; y-axis: stochastic
component of log-price. (a) SP15; (b) Palo Verde; (c) PJM; (d) Nepool.

Table 3. iForest hyperparameter values.

iForest Hyperparameter Value

Number of iTrees 1000
Contamination value Find automatically
Max samples 256

3. Modeling Electricity Price Dynamics

The reconstruction of the filled power price time series and the decoupling technique
based on the machine learning algorithms are very useful for defining suitable stochastic
models of the electricity price dynamics. Moreover, the decoupling between the stable
motion and the turbulent motion allows us to introduce appropriate estimation techniques.
In this section, we propose a mean-reverting jump-diffusion model of power prices and we
discuss a two-step estimating technique of the model based on the information contained
in both the stable time series and the turbulent dynamics.

3.1. A Mean-Reverting Jump-Diffusion Model of Power Prices

We focus on a mean-reverting jump-diffusion model in which the dynamics of x(t)
are described by the following stochastic differential equation:

dx(t) = −αx(t)dt + σdw(t) + Jdq(t), (9)

where w(t) is a Wiener process and q(t) is a Poisson process with constant intensity
λ. In Equation (9) the random variable J, describing the jump amplitude, is assumed
to be distributed as a normal random variable with mean µ and standard deviation σJ ,
i.e., J ∼ N(µ, σ2

J ). Moreover, we assumed that the Wiener process, the Poisson process
and the jump amplitude, are mutually independent processes. Nevertheless, this analysis
can be extended to account for jump amplitude with arbitrary probability distributions [53].
The decoupling technique discussed in this paper allows us to estimate the dynamic model
using a two-step procedure that makes use of on the information contained in both the
stable time series and the turbulent dynamics. We will show that the proposed model
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provides an interesting description of the power price dynamics observed in real markets,
thereby offering a good compromise between mathematical tractability and the physical
interpretation of the main stylized facts of power price dynamics. For this reason, it can
be used for several financial applications ranging from the pricing of power derivatives
and the hedging of financial risk [52], to the evaluation of long-term investments in power
generating technologies [53].

3.2. The Empirical Analysis

Figure 8 reproduces the stochastic component of daily electricity prices, hereinafter, prices,

px(t) = exp
(
x(t)

)
, (10)

and the stochastic components of log-returns, hereinafter, log-returns,

∆x(t) = x(t + ∆t)− x(t), (11)

where ∆t is equal to one day, obtained from the original filled time series for the 15-year
period 1 January 2004 to 31 December 2018 for the four power markets under investigation.
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Figure 8. The time interval 1 January 2004 to 31 December 2018. Left panel: prices vs. calendar time.
Right panel: log-returns vs. calendar time.

We note that in the power markets located in the same US region electricity prices
show very similar patterns. Table 4 depicts the number of days with missing data in the
15-year period of 1 January 2004 to 31 December 2018.
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Table 4. Count of daily grid positions being empty (missing) or not (populated) for the period
January 2004 to December 2018. Total grid positions: 5928.

Populated Missing

SP15 3628 1851
PV 3688 1791

PJM 3811 1668
NE 3555 1924

3.2.1. A Short-Term Empirical Analysis

In this section we show an empirical analysis of the model in the 2-year time inter-
val of 1 January 2017 to 31 December 2018. In all four markets, log-returns show large
fluctuations with jumps and spikes, and non-normal, leptokurtic empirical distributions.
The descriptive statistics of log-returns are displayed in Table 5.

Table 5. Descriptive statistics of log-returns (2017–2018).

Mean St. Dev. Skewness Kurtosis

SP15 0.0001 0.1706 0.4441 11.5882
PV 0.0003 0.1768 0.3523 11.1401

PJM 0.0001 0.1585 −0.4177 18.4634
NE −0.0004 0.1817 0.7832 8.7816

We estimated the dynamics described by Equation (9) on market data by using a two-
step procedure. In the first step, the parameters of the diffusion component of the model,
i.e., α and σ, were estimated. In the second step the parameters of the jump component of
the model, i.e., λ, µ and σJ were estimated.

In the first step, the following Euler discretization of the diffusion component of
Equation (9) with time-step ∆t equal to one day was used, namely,

∆x(t) = −αx(t)∆t + σ∆w(t). (12)

In order to account for the volatility due to the diffusion component of the model,
without including the volatility of the jump component, the parameter σ was determined
by estimating Equation (12) on the stable time series (i.e., the red time series depicted
in Figure 6) by maximum likelihood in the time interval 1 January 2017 to 31 December
2018. On the other hand, since the mean-reversion component must force back prices to
fluctuate around the long-run mean after an anomalous price movement has occurred,
the mean-reversion parameter, α, was determined by estimating Equation (12) on the
stochastic component of the filled original time series via maximum likelihood for the same
time interval. Estimation results are depicted in Table 6.

Table 6. Estimation results (2017–2018): step one. Standard errors are between parentheses.

α σ

SP15 0.0838 (0.0097) 0.0778 (0.0021)
PV 0.0807 (0.0067) 0.0883 (0.0023)

PJM 0.1184 (0.0065) 0.0885 (0.0024)
NE 0.0852 (0.0064) 0.1051 (0.0027)

In the second step of the estimation procedure we determined the values of the jump
parameters. The approach we followed is based on the simulated moments method [64,65]
using Monte Carlo techniques [65,66]. For each triple of values (λ, µ, σJ) belonging to a
suitable three dimensional grid, a sample of one thousand random paths was generated
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from Equation (9) by using Monte Carlo techniques with the estimated parameters, α and
σ, determined in the first step. Along each path, the first central moments, in particular
the standard deviation, the skewness and the kurtosis, of log-returns were computed
and averaged over the sample. We assumed that a triple (λ, µ, σJ) offers a good fit if for
each central moment, the difference between the sample average value and the observed
value reported in Table 5 is less than one-fourth (25%) of the sample standard deviation
for that moment. Some good triples are reported in Table 7. Table 8 displays some
statistical parameters of simulated paths. Such values are determined by averaging over
one thousand randomly generated paths using the estimates obtained in the two-step
procedure. The agreement with the descriptive statistics of log-returns shown in Table 5 is
very interesting.

Table 7. Estimation results (2017–2018): step two.

µ σJ λ

SP15 0.04 0.37 15.8%
PV 0.04 0.38 15.5%

PJM −0.04 0.48 6.8%
NE 0.09 0.35 15.8%

Table 8. Statistics of simulated path log-returns (2017–2018). Sample standard deviations are between
parentheses.

Mean St. Dev. Skewness Kurtosis

SP15 −0.0001 0.1708 0.4609 11.7550
(0.0005) (0.0113) (0.5264) (1.8673)

PV 0.0000 0.1767 0.4036 11.1325
(0.0006) (0.0113) (0.5067) (1.8445)

PJM 0.0002 0.1582 −0.4272 18.4418
(0.0005) (0.0121) (0.9810) (4.3313)

NE 0.0002 0.1813 0.7366 8.7964
(0.0006) (0.0101) (0.3883) (1.3830)

We recall the importance, in option pricing and in risk hedging methodologies, of a
given model being able to capture the first four central moments of empirical distributions
of log-returns, not only the standard deviation. Skewness is particularly related to the
asymmetry between upward versus downward moves; the kurtosis describes the tails of
the distribution. These parameters are particularly relevant in the case of power prices in
which extreme events may occur [52].

3.2.2. A Long-Term Empirical Analysis

Accurately modeling the electricity price dynamics using short-term models is also a
crucial task for describing the electricity price dynamics on longer time horizons. In the
presence of a mean-reverting component, in fact, the probability distributions of power
prices tend to stationary long-run probability distributions [53]. In this way, the long-term
behavior of power prices can be derived by the short-term dynamics. However, for a long-
run empirical analysis, the amplitude of the estimation time interval must be increased
in order to get more significant values [6]. To this end, we considered the 15-year period
1 January 2004 to 31 December 2018. The descriptive statistics of log-returns are displayed
in Table 9.
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Table 9. Descriptive statistics of log-returns (2004–2018).

Mean St. Dev. Skewness Kurtosis

SP15 0.0000 0.0960 0.4276 23.5549
PV 0.0000 0.0935 0.5753 28.2951

PJM 0.0000 0.1431 −0.4011 14.7284
NE 0.0000 0.1360 0.4508 12.4794

We used the same two-step procedure to estimate the jump-diffusion model described
by Equation (9) over this fifteen-year time horizon too. Estimation results are depicted in
Table 10 for the parameters of the diffusion component of the model, and in Table 11 for
the parameters of the jump component of the model. Table 12 displays some statistical
parameters computed from simulated log-return time series. Such values were determined
by averaging over one thousand randomly generated paths using the estimates obtained
in the two-step procedure. Additionally, in this case, the agreement with the descriptive
statistics of observed log-returns shown in Table 9 is very interesting.

Table 10. Estimation results (2004–2018): step one. Standard errors are between parentheses.

α σ

SP15 0.0475 (0.0036) 0.0613 (0.0007)
PV 0.0479 (0.0011) 0.0618 (0.0006)

PJM 0.1008 (0.0027) 0.0925 (0.0009)
NE 0.0622 (0.0012) 0.0886 (0.0009)

Table 11. Estimation results (2004–2018): step two.

µ σJ λ

SP15 0.03 0.34 4.5%
PV 0.03 0.38 3.2%

PJM −0.03 0.40 6.6%
NE 0.04 0.34 8.5%

Table 12. Statistics of simulated path log-returns obtained using estimated parameters (2004–2018).
Sample standard deviations are between parentheses.

Mean St. Dev. Skewness Kurtosis

SP15 0.0000 0.0960 0.4560 23.5352
(0.0001) (0.0034) (0.4844) (3.2481)

PV 0.0000 0.0932 0.6194 28.5322
(0.0001) (0.0034) (0.5851) (3.8200)

PJM 0.0000 0.1425 −0.4152 14.7151
(0.0001) (0.0037) (0.3175) (1.4268)

NE 0.0001 0.1356 0.4421 12.4323
(0.0001) (0.0032) (0.2588) (1.0766)

4. Concluding Remarks

In this paper we provided a general methodology to fill missing data in time series
with irregular observation times and to detect anomalies in the dynamics. Our approach is
based on machine learning ensemble techniques. In particular, the missForest imputation
algorithm was used to fill in the gaps of the time series, and the isolation forest algorithm
was used to detect anomalies in the time behavior. Moreover, the missForest algorithm
was also used to fill the additional gaps originated by removing anomalies, in order to
create a complete and clean time series describing the stable dynamics of power prices.
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The decoupling of the price dynamics between the stable motion and the turbulent motion
allowed us to define a suitable mean-reverting jump-diffusion model of power prices and
a two-step estimation procedure of the model parameters that uses the full information
contained in both, the stable time series and the anomalous regions of the dynamics.
The same two-step procedure was used to estimate both models, the short-term and
the long-term.

The filling and decoupling technique proposed in this paper seems to be a powerful
tool of analysis for investigating the features of the complex dynamics of power prices
observed in real markets. It allows one to distinguish normal periods in which prices
fluctuate around the long-run mean from turbulent movements of power prices character-
ized by jumps and spikes. Within this framework, the decoupling technique is a powerful
tool for estimating jump-diffusion stochastic models of power prices in an accurate way.
The obtained results show interesting agreement with empirical data.

Moreover, ensemble methods allowed us to put into evidence some similarities of the
electricity price dynamics observed in different power markets. From this point of view,
unsupervised machine learning techniques can be used to study the dynamics of the power
markets prices as a whole, instead of taking them individually, thereby considering factors
in common and similarities. We left those topics to future investigations.

Finally, let us remark that, although our analysis focused on power market prices,
the proposed methodology is general and can be applied to very different contexts ranging
from physical to social sciences.
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Appendix A. A Gap Filling Test for the missForest Algorithm

In this section we provide a performance comparison between the missForest al-
gorithm, used as gap filling technique for irregular time series, and a more traditional
approach based on moving average techniques. To this end, we first randomly chose a time
interval of August 2007 to December 2007. In this time interval, we created artificial gaps
to be refilled using both the missForest algorithm and the moving average algorithm with
a time window of 5, 10, 20 days, and we directly compared the filled data and true data
during the same time periods. In this experiment, we artificially created a number of gaps
equal to 5%, 10% and 15% of the number of market observations in the considered period.
Then, for each couple of parameters, the experiment was repeated ten times to ensure
that the artificial gaps had different patterns. Afterwards, to compare the two techniques
we computed the MAPE (Mean Absolute Percentage Error), averaged for the ten rounds.
The results are reported in Table A1. The outcomes show that in all cases the value of the
MAPEmissFo is always consistently lower than the MAPEma, as we expected [55].
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Table A1. The results of the gap filling test.

Parameters
MAPEma MAPEmissFoFraction of Gaps Time Window

SP15

5 5 10.05 6.21
5 10 8.38 5.05
5 20 12.84 5.25

10 5 9.62 6.07
10 10 10.64 5.54
10 20 11.61 4.57
15 5 7.92 4.7
15 10 11.21 6.78
15 20 11.93 5.36

PV

5 5 11.19 6.49
5 10 12.26 6.12
5 20 11.98 5.94

10 5 11.12 5.87
10 10 11.37 6.19
10 20 12.6 5.88
15 5 9.01 4.9
15 10 11.35 5.46
15 20 12.71 5.41

PJM

5 5 16.39 8.93
5 10 17.83 9.26
5 20 18.33 10.42

10 5 14.86 9.6
10 10 17.03 8.74
10 20 20.3 9.51
15 5 18.21 10.42
15 10 15.31 9.6
15 20 18.73 9.39

NE

5 5 10.38 7.74
5 10 10.11 5.32
5 20 14.3 6.29

10 5 12.94 8.13
10 10 12.83 7.43
10 20 14.02 7.57
15 5 10.21 7.38
15 10 11.03 6.79
15 20 14.85 7.78
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