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Abstract: In this paper, a two-step tuning strategy of a finite element (FE) model of a bridge with
pot bearings exposed to mining-triggered tremors of various intensities is proposed. In the study,
a reinforced concrete bridge 160 m long is considered. Once the modal identification of the bridge
was experimentally carried out based on low-energy ambient vibrations, the FE model was tuned by
replacing the free-bearing sliding with a Coulomb friction-regularized model. This model of friction
split the tangential relative displacement rates between contacting surfaces into a reversible elastic
part and irreversible sliding. The elastic microslip (spring-like behavior) prior to macrosliding can
be explained by the deformation of asperities (roughness of contacting surfaces on the microscopic
scale). The proposed model allows for accurate sliding bearing performance simulation under both
low-energy and high-energy mining-induced tremors. In the first step of the FE model tuning strategy,
the elastic microslip constant was experimentally estimated based on the modal identification. In
the second step, the macro-sliding friction parameter was implemented to address the realistic
behavior of the bridge under mining-induced shocks. Finally, the dynamic responses of the bridge to
mining-triggered tremors of various intensities were calculated and assessed using the untuned and
tuned FE models. The analysis proved that the untuned model was not suitable for dynamic bridge
assessment in the case of low-intensity tremors. The stresses obtained for this model turned out to be
strongly underestimated. For shocks of higher intensity, frictionless sliding at the bearings gives a
relatively good global estimation of the structure performance but undervalues its local response.
The analysis also reveals that the tuned Coulomb friction-regularized model allows for the accurate
simulation of sliding bearings under both low and high-energy mining-induced tremors.

Keywords: mining-triggered seismicity; experimental modal identification; FE model tuning; dy-
namic response of bridges; coulomb friction-regularized model; sliding bearing modeling

1. Introduction

The exploitation of natural resources—while serving developing mankind—may
result in negative effects on the environment and civil infrastructure. Attracted by the
perspective of industrial growth, researchers must not forget about all the negative impacts
related to resource exploitation. In particular, the extraction of gas, coal, or copper often
results in so-called triggered seismicity, which has a considerable negative influence on
people and infrastructure, since surface vibrations generated by mining-induced seismic
shocks can be equivalent to those resulting from small earthquakes in terms of energy
and amplitude levels [1,2]. The impact of mining-triggered seismicity on infrastructure
has become a research topic of numerous studies in active mining countries, like China,
Slovenia, Australia, South Africa, Canada, India, Russia, and Poland [3–7]. Some important
problems associated with natural earthquakes have also been considered for mining-
triggered seismicity. The development of systems measuring ground motion allowed for
establishing response spectral curves for mining activity areas [8]. Researchers point out the
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importance of considering six degrees of freedom of ground motion during mining-induced
tremors [9] and the spatial variation of ground motion associated with mining-triggered
shocks [10]. However, mining-triggered and natural quakes differ significantly in some key
features. First, the area disturbed by a quake is smaller in case of mining shocks than natural
events [11]. Second, the duration of the intensive phase of vibration is shorter for mining
tremors [12]. Third, in the case of mining events, the dominant frequencies are located in
the range of 2–30 Hz. Hence they are higher than the very low predominant frequencies of
earthquakes [13]. Finally, the peak ground acceleration (PGA) of mining-induced tremors
reaches 0.3 g [14], whereas values over 1 g were registered for earthquakes [15].

Despite the rapid progress in ground motion measuring in mining activity areas,
there are many zones where online monitoring systems of ground motion and structural
behavior are still not installed. Therefore, in these zones, assessing the dynamic response
of structures to mining-triggered seismic shocks is carried out only based on numerical
simulations. To meet the reliability criteria of such simulations, it is necessary to create
experimentally verified computational finite element (FE) models of structures. Researchers,
using both experimental tests and numerical modeling, emphasize that the high correlation
between measured and calculated dynamic properties could be accomplished mainly due
to the tuning procedures of FE models [16,17].

In the area of bridge engineering, experimental modal identification and FE model cal-
ibration are usually based on ambient vibration tests [16–21]. Natural sources of excitation,
like wind or normal traffic, are often the only ways of exciting bridges without taking them
out of service [22]. However, this testing method should be applied with caution. Regular
road traffic is not a strong source of energy, and the level of vibration amplitude is usually
low. If there is not enough input energy assigned to the detected frequency range, some
bridge modes may not be well excited, and the corresponding modal properties may not
be identified or accurately extracted from the measurement data [23].

The inadequacy of bridge FE models may be caused by incorrect modeling of struc-
tural elements or connections, neglecting some structural elements, which may affect the
response not only in terms of mass but also stiffness [24–26], or disregarding unidentified
structural damage. One of the main sources of the inaccuracy of bridge FE models is the
complexity of structural member connections, like bearings [23].

In contrary to structures located in areas of natural seismicity, bridges erected in
mining-induced seismic zones do usually not benefit from antivibration protection, like
special energy-dissipating bearings. They are often equipped with typical sliding bearings,
which allow relative unidirectional or multidirectional movement of the superstructure.
However, for low levels of ambient excitation, friction forces can be substantial enough to
strongly limit or even prevent relative displacements in bearings. In FE models of bridges,
sliding bearings are usually modeled as rollers, whereas in reality, their behavior may be
significantly different. In this case, the FE model needs to be benefitted from springs, or
the possibility of relative displacement should be blocked entirely [27]. In the manual
tuning process, the appropriate stiffnesses of springs must be adjusted by subsequent trials
towards minimizing the errors of tuned models. The springs, improving the dynamic
performance of sliding bearings under low-level energy vibrations, can be applied in
the longitudinal direction to adjust frequencies corresponding to vertical bending mode
shapes, like in the case of the suspension footbridge Dolerw in Wales, UK [28], the steel box-
girder footbridge in Podgorica, Montenegro [29,30] and the RC arch Infante D. Henrique
Bridge in Porto, Portugal [31]. The bridge models’ tuning is also based on implementing
springs in the transverse direction to refine the frequencies corresponding to transverse
bending modes, as in the case of the concrete-filled steel tubular arch bridge in Xining City,
China [32]. Some sliding bearings models are equipped with springs in both directions, e.g.,
the cable-stayed Tatara Bridge on the Shimanami Kaido, Japan [33], and the prestressed
post-tensioned RC ravine bridge on the Egnatia Motorway in Greece [34]. The authors
reported that after tuning the models by introducing springs, the correlation between the
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numerical and the experimental models considerably improved. The discrepancies in
eigenfrequencies were reduced even from 30% to 4% [30].

The authors of studies on FE model tuning strongly emphasize that the updated linear
FE model corresponds to the bridge behavior under current measurement conditions, where
no sliding in pot bearings occurs due to the low level of ambient vibration. Therefore,
the eigenfrequencies, both identified and calculated, correspond only to these loading
conditions and may be successfully applied for structure health monitoring since this
research is based on operational load/response measurements. However, models updated
by adding springs in bearings are not employable for assessing the accurate seismic
performance of a bridge. As bearing performance during strong seismic events embraces
frictional sliding, this phenomenon must be taken into consideration in constructing
refined FE bridge models to be used for seismic assessment. This conclusion does not
weaken the validity of the results of the tuning procedures of the initial FE models, but
the authors recommend further adjustments of the models to meet the requirements of
realistic nonlinear pot bearings’ behavior in case of seismic loading. They suggest, for
future tests, measuring accelerations simultaneously at one point of the deck and at the top
of all columns with sliding bearings to assess the relative movements [31]. However, this
aspect is hardly addressed in current experimental studies [27].

According to the best of the authors’ knowledge, there is an evident lack of studies
on the appropriateness of the application of FE bridge models, tuned and updated based
on low-energy ambient vibrations, for further dynamic analyses under mining-triggered
seismic shocks.

The general objective of this paper is to develop the tuning strategy of FE models of
bridges with sliding bearings exposed to mining-triggered tremors of various energy levels
and intensities. The proposed strategy allows for an accurate assessment of the dynamic
performance of such bridges located in mining-triggered seismic areas. To accomplish this
purpose, an existing object, i.e., a reinforced concrete bridge 160 m long, was taken into
consideration. First, the modal identification of the bridge was experimentally carried out
based on low-energy ambient vibrations. Then, the FE model tuning was conducted by
replacing free sliding in the bearings with the Coulomb friction-regularized model. This
friction model splits the tangential relative displacement rates between contacting surfaces
into a reversible elastic part and irreversible sliding. Hence, it allows for the accurate
approximation of sliding bearings performance under both low-energy ambient vibrations
as well as high-energy mining-induced tremors. In the first step of the tuning strategy
of the bridge’s FE model, the elastic microslip constraint was experimentally estimated
based on modal identification. In the second step, the macro-sliding friction parameter was
implemented to address the bridge’s realistic behavior under mining tremors. Finally, the
dynamic responses of the bridge to mining-triggered shocks of various intensities were
numerically calculated and assessed using the tuned FE model of the structure.

The novelty of the current paper lies in developing the two-step tuning strategy,
allowing for the creation of an FE model of the bridge with sliding bearings, realistic
for both low and high levels of dynamic loading, as well as in the assessment of the
dynamic performance of the bridge under mining-triggered tremors of various intensity.
The FE tuning strategy, which requires replacing the free bearing sliding by the Coulomb
friction-regularized model, consists of the following two steps:

• First step: calibration of the FE model, i.e., estimation of the elastic microslip parameter
of the Coulomb friction-regularized model based on matching the results of the
numerical and experimental modal identification of the bridge, carried out via low-
energy operational modal analysis (OMA),

• Second step: modification of the FE model for mining-induced seismic performance
assessment of higher energy level, i.e., implementation of the frictional contact based
on elastoplasticity with the associated sliding rule as the constitutive model for
bearing connectors.
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The above-mentioned aspects have not been highlighted in the available literature
and make this study innovative.

Additionally, the paper presents the comparative analysis of the dynamic responses
of the bridge to mining-induced tremors of various intensities, using three FE models: (1)
untuned—with frictionless sliding in bearings, (2) tuned—with linear springs with stiff-
nesses adjusted based on experimental modal identification, and (3) proposed—benefitting
from the elastic microslip preceding frictional macrosliding in pot bearings.

2. Materials and Methods
2.1. Data of the Mining-Triggered Tremor Registered in the Upper Silesian Basin, Poland

Mining-triggered seismicity has become a considerable problem in several mining
activity regions in Poland. The assessment of the harmfulness of vibration for engineering
structures in these regions is based on empirical scales (e.g., [35–37]), which enable engi-
neers to determine the degree of vibration intensity and to estimate its influence on civil
infrastructure. One of the most seismically active regions in Poland is the Upper Silesian
Basin (USB), in which mining-induced seismicity hazards and the intensity of shocks have
recently increased. To assess the impact of mining-induced tremors on civil infrastruc-
ture in this region, the empirical mining tremors intensity scale GSI-GZWKW-2012-A was
proposed [37]. The scale refers to buildings as well as linear underground infrastructure
facilities, like tunnels or water, gas, and sewage networks.

The basic parameters necessary to assess the impact of surface vibrations caused by
mining tremors using the GSI-GZWKW-2012 A scale are [15]:

(a) The maximum value of the resultant horizontal acceleration in the free field PGAH10
obtained based on filtered components of the recorded horizontal vibrations in the
band up to 10 Hz (the subscript H10 means: H-horizontal accelerations, 10–maximal
frequency in the filtered vibrations in (Hz)),

(b) The duration of the intense vibration phase tHa (tHa is the time interval between
moments where the Arias intensity [38] measure of horizontal acceleration reaches 5
and 95% of its maximum value).

The scale distinguishes five degrees of vibration intensity: degree “0”—no damage
effects on buildings occur; degree I—sporadically increases in existing damage; degree
II—enlargement of preexisting damage to nonstructural elements; degree III—first new
damage on nonstructural elements occurs; and degree IV—isolated damage of structural
elements occurs.

The main objective of this study is to judge the possibility of using FE models of
bridges tuned and updated based on low-energy small-amplitude ambient vibrations for
the calculation of the dynamic response of these structures to mining-induced tremors of
different intensities. To accomplish this objective, a mining-triggered shock registered by a
seismic station located in the USB region [11] was taken into consideration as a kinematic
excitation of the analyzed concrete arch bridge. The duration of the intense vibration phase
tHa was about 3.5 s. The energy of the shock was 1 × 107 J, which puts it in the category of
high-energy events. The maximum horizontal PGA of the event reached 0.35 and 0.28 m/s2

in the W–E and N–S directions, respectively. Hence, the maximum value of the resultant
horizontal acceleration PGAH10 equaled 0.46 m/s2. The maximum vertical accelerations
were relatively small, and they did not exceed 0.12 m/s2. The acceleration-time histories of
the shock in three directions are presented in Figure 1, whereas the frequency spectra are
shown in Figure 2.
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Figure 2. The frequency spectra of the recorded accelerations: (a) horizontal direction W–E; (b) horizontal direction N–S; (c)
vertical direction Z.

The parameters PGAH10 = 0.46 m/s2 and tHa = 3.5 s classify the recorded tremor as
belonging to the II degree of vibration intensity. Since, for this study purpose, mining-
induced tremors of different intensities had to be considered, the originally registered
acceleration-time histories were scaled down to obtain a low-energy tremor categorized
as an event of the zeroth degree of intensity. Hence, the following values of PGAH10 were
used for further dynamic analyses:

• 0.1 m/s2, which corresponds to the tremor representing the zeroth degree of intensity
(tremor D_0);

• 0.46 m/s2, which refers to the second degree of vibration intensity D_II (originally
recorded tremor).

The intensities of both vibrations presented against the background of the GSI-
GZWKW-2012 A scale are shown in Figure 3. It must be pointed out that about 95% of
tremors, which occur in the USB region, are classified as 0, I, or II degree of vibration inten-
sity [39]. Since the scale GSI-GZWKW-2012-A does not refer to bridges or roads, the present
study serves only to assess the intensity and strength of the analyzed mining-induced
shocks. Neither structural nor nonstructural damages of the bridge were investigated
based on the scale.
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intensities of the two analyzed tremors.

2.2. Description, Material Data and Numerical Model of the Bridge
2.2.1. Structural Layout and Material Data

The bridge analyzed in this case study (Figure 4), located in Southern Poland, was
erected in 2013. The primary structural system of this five-span bridge consists of two
continuous prestressed girders integrated with a concrete slab and linked by crossbars. The
deck is suspended with 28 hangers on two arches over the length of the longest central
span. The bridge geometry (span lengths and cross-section dimensions) is depicted in
Figure 5. Each girder beam is prestressed by steel tendons with a cross-sectional area of
150 cm2. The building classes of bridge materials are collated in Table 1.
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Figure 5. Bridge geometry and dimensions (m): (a) side view, (b) deck cross-section.

Table 1. Bridge-building materials classes.

Bridge Element Material Building Class

Girder beams, deck slab Concrete C40/50
Pillars Concrete C30/37
Arches Concrete C50-60

Prestressing tendons Steel Y1860
Hangers Steel S460

The superstructure rests on abutments and four pairs of intermediate pillars, sup-
ported by a system of pot bearings. A set of fixed and transversally guided sliding bearings
is used over the supports along axis no. 4, whereas multidirectional and longitudinally
guided sliding bearings are applied at other supports according to the scheme presented in
Figure 6. Characteristic load-bearing capacities vary from 1500 kN (at axes 1 and 6 situated
on the abutments) through 3250 kN (at axes 3 and 4) to 3600 kN (at axes 2 and 5). The
pillars are 5.9 m high and have square cross-sections of 1.4 × 1.4 m.
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2.2.2. The Initial FE Model of the Bridge

The numerical analysis of the bridge performance was conducted in Abaqus FEA
software [40]. About 220,000 finite elements were incorporated into the model. Linear
8-node brick elements were used to discretize the girders, crossbars, arches, and pillars.
The slab was meshed with 8-node continuum shell elements, whereas the hangers were
modeled with truss elements (see Figure 7). Rigid structural parts like abutments or
foundation footings were disregarded in the bridge model since their deformability has a
negligible impact on the dynamic structure performance.
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The precompression of the girders was accounted for by increasing their Young’s mod-
ulus proportionally to the steel and concrete volume fraction, according to Formula (1) [41]:

Ecs =
Ec · Ac + Es · As

Ac + As
(1)

where EC, AC, ES, AS are Young’s moduli and cross-sectional areas of concrete and
steel, respectively.

The pot bearings were modeled by various connector element types provided by the
Abaqus software: JOIN—for the fixed bearings, PLANAR for the multidirectional bearings,
and AXIAL—for the unidirectional bearings. The PLANAR and AXIAL connectors allow
for free translation in the direction of the predefined plane and axis, respectively.

2.3. Experimental Setup for Nondestructive Testing

Natural frequencies and modes of vibration, as well as damping ratios, were experi-
mentally determined based on the analysis of the bridge vibration data under operating
conditions. This experiment also served as validation of the numerical structure model.

During the experimental tests, acceleration-time histories were collected for the cho-
sen structure points. The locations of these measurement points on the bridge (Figure 8a)
had been determined based on numerically predicted modes of vibration. The numerical
prediction was provided to fulfill the following criteria of sensors placing: (a) to avoid
mounting sensors in nodes of vibration modes, (b) to place sensors at the points of max-
imum amplitudes appearing in the analyzed mode shapes, (c) to control the transverse
mode of vibration. Hence, to accomplish the above-mentioned criteria, accelerometers
were placed in the middle of the extreme span (points P1a-b), in 1/3 and 2/3 of the second
span length (P3a-b, P4a-b), and in two locations of the central span: at a distance of 18.22
from the third support (P6a-b) and in the midspan (P7a-b). Additionally, sensors were
located over the second (P2a-b) and third (P5a-b) supports to control the transverse mode
of structure vibration. Due to the symmetry of the bridge, it was decided not to register
accelerations at the other two spans. All sensors were mounted on both outer edges of the
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bridge deck (Figure 8b). Each measurement point was equipped with three piezoelectric
accelerometers, registering data with a sensitivity of 10,000 mV/g, and a frequency range
from 0.1 to 2000 Hz, in three perpendicular directions: parallel to the bridge axis (X),
horizontal perpendicular to the bridge axis (Y), and vertical (Z).
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2.4. Theoretical Background for the In Situ Tests

The operational modal analysis (OMA) methods [42] were implemented to identify
the bridge dynamic characteristics: natural frequencies, modes of vibration, and damping
properties. Experiments using OMA techniques allow for the assessment of the structure
modal properties based on output response data to ambient vibrations, collected under
operational conditions, without known artificial excitation. Hence, the experiment does
not interfere with the normal use of the structure and is faster and cheaper than the
input–output techniques. The OMA technique applied in this paper is stochastic subspace
identification (SSI), one of the most applicable approaches for output-only identification
methods in the time domain [43,44].

The SSI theory assumes that the registered signals are burdened with stochastic
broad-band white noise. The SSI algorithm is based on the process of singular value decom-
position (SVD) of the Hankle matrix, which contains experimental data. This process allows
for filtering and reducing the noise and, as a consequence, leads to the identification of
parameters of deterministic systems. Therefore, the raw signals (accelerations of the control
points) registered in time can be used in analyses, and no signal filtering is needed [45–47].

The complex mode indicator functions (CMIF) are used within the SSI algorithm to
determine the natural frequencies of a structure. The CMIFs are computed based on the sin-
gular value decomposition (SVD) of the normal matrix, using the cross-correlation between
data sets. The peaks detected in the CMIF plot indicate the existence of modes, and these
peaks’ corresponding frequencies provide the natural frequency for each mode [48–50].
Since an inappropriate (too large or too small) experimental data set may lead to incorrect
results, the stability of the poles should be verified. Only stable poles appearing in the
CMIF matrix can be treated as a structure’s modes (unstable poles are mathematical objects
without physical interpretation). The pole stability control process is described in detail
in [51,52]. Accuracy of the modal properties obtained with CMIF depends on the proper
selection of the method parameters: the model order and convergence (stability) criteria
like frequency error, damping error, and modal vector similarity. The most important pa-
rameter is the model order (the system’s number of degrees of freedom), which determines
the number of modal frequencies obtained from the experimental data. Therefore, the
value of the model order should be derived from the number of experimental sets and
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correspond to the required number of modes. Over- or underestimation of the model order
leads to inaccurate values of modal parameters. The modal vector similarity specifies the
minimum required degree of similarity of eigenvectors. If the modal parameters for two
subsequent iterations meet all defined convergence criteria, the pole is considered stable.
Otherwise, the mode is treated as an unstable pole [50,53–55].

To determine the structure’s mode shape for each stable pole based on the experimental
data, the time domain decomposition (TDD) technique is used. In the TDD algorithm,
the registered signals must be filtered using band-pass filters, with bands containing the
frequencies of the single expected mode. Based on the filtered time history of acceleration,
the consecutive mode shapes are determined by the SVD of the signal using the energy
correlation matrix of the isolated (filtered) accelerations. Due to the rapid convergence of
the TDD, this technique is especially useful for ambient modal analysis [45,56,57].

The recognition of the dynamic properties of a structure should be complemented by
the evaluation of damping parameters. The level of structural damping is usually governed
by the logarithmic decrement of damping (δ) and the damping ratio (ξ) [58]. The Rayleigh
model of mass and stiffness proportional damping [44] was applied for the seismic analysis
of the bridge. The model assumes that the damping matrix is represented by a linear
combination of the mass matrix and the stiffness matrix. The proportionality coefficients
are determined based on the natural frequencies and corresponding values of damping
ratios [44].

2.5. Theoretical Background for Frictional Contact Based on Elasto-Plasticity with Associated
Sliding Rule

To account for the friction phenomenon occurring in sliding bearings under both
operational loads and large horizontal loads, appearing, for instance, during seismic events,
the frictional stick-slip model is introduced.

In the standard Coulomb friction model, the relation between the relative motion of
two surfaces in contact and the frictional tangential stress takes the form:

.
ūT =

{
0̄ if |t̄| < µ · p

λ t̄
|t̄| if |t̄| = µ · p (2)

where:
.
ūT–vector of relative displacement rate tangent to contacting surfaces, p–normal

contact stress (pressure), t̄–tangential contact force density (frictional tangential stress),
µ–coefficient of friction, λ–negative scalar multiplier.

In this model, there is no relative motion unless the frictional stress reaches the critical
value. Coulomb friction law can be alternatively formulated within the framework of
elastoplasticity [59,60]. In this approach, the tangential relative displacement rate between
contacting surfaces is split into the reversible elastic part

.
ū

e
T and the irreversible sliding

.
ū

p
T :

.
ūT =

.
ū

e
T +

.
ū

p
T (3)

The reversible relative tangential motion from the point of zero frictional stress is
governed by Equation (4):

t̄ = −k · ūT if |t̄| < µ · p (4)

which is equivalent to the introduction of the elastic constitutive law for the tangential
relative micro displacements between the contacting surfaces in the stick state. The behavior
remains elastic as long as the frictional stress does not reach the slip criterion (analogy to
the yield criterion):

f (t̄, p) = |t̄| − µ · p = 0 (5)

Sliding is governed by the sliding rule (analogous to the associated plastic flow rule):

.
ū

p
T = λ

∂ f
∂t̄

= −λ
t̄
|t̄| (6)
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The assumption of the existence of the elastic microslip preceding macrosliding is
based on experiments (e.g., [61]) and can be explained by the deformation of asperities
(roughness of contacting surfaces on the microscopic scale).

This formulation can also be seen as the regularization of the stick-slip behavior,
allowing to avoid the numerical difficulties due to the non-differentiability of the classical
Coulomb’s law at the onset of sliding [62] (see Figure 9).
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3. Results
3.1. Experimental and Numerical Evaluation of Natural Frequencies and Modes of Vibration of
the Bridge

In the first stage of the research, the natural frequencies and modes of vibration of the
bridge were experimentally and numerically determined and compared.

First, the preliminary modal analysis of the FEM model was carried out, and the basic
natural frequencies and mode shapes were estimated. The following natural frequencies
were recognized numerically: f 1 = 1.57 Hz–(corresponding to the first vertical mode shape)
f 2 = 1.87 Hz (associated with the first transverse mode shape), f3 = 3.48 Hz–(related to the
second vertical mode shape), and f4 = 14.30 Hz (associated with the first torsional mode
shape). The preliminary numerical modal analysis also revealed that, due to the complexity
of the structural system of the bridge, mode shapes corresponding to frequencies located
above the limit of 15 Hz were much more complicated, affecting mainly the arches and
hangers. Hence, both the experimental and numerical modal analyses covered only the
frequency range from 0 to 15 Hz, where the basic four natural frequencies related to
vertical, horizontal, and torsional modes are placed. Higher frequencies were not identified
in the research.

Second, the experimental modal analysis of the bridge was conducted using the OMA
techniques and the SSI algorithm to estimate natural frequencies and the TDD method to
determine modes of vibration corresponding to the estimated frequencies (see Section 2.4).
The acceleration-time histories resulting from ambient vibrations, i.e., wind and road
traffic, were registered at all output points. The 55 s fragment of acceleration-time histories
registered at point P7a in three directions as a result of ambient vibration is presented
in Figure 10. The CMIF natural frequency estimator of the experimental modal model
(see Section 2.4), based on the summation of all combinations of PSD and CSD functions
between data recorded at all output measurement points, is illustrated in Figure 11 for the
vertical and horizontal directions. The following parameters of the CMIF estimator were
applied in the analysis: order–30; convergence–90%; frequency and damping error–2%.
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registered during the in situ tests.

It can be observed from Figure 11a that the peaks and the stable poles of the CMIF
diagram in the vertical direction are located at frequencies 1.50, 3.36, and 14.26 Hz. Addi-
tional stable poles, appearing around 12 Hz, are not confirmed as the maximum values
of the CMIF magnitude or in the numerical prediction. For the horizontal direction, the
maximum values and the stable poles are observed in Figure 11b at the frequencies 2.48
and 14.26 Hz.

Finally, the results of the experimental and numerical analyses were compared. The
first four natural frequencies obtained experimentally and numerically are collected in
Table 2, whereas the corresponding modes of vibration are presented in Figure 12.

Table 2. Comparison of experimentally measured and preliminary calculated natural frequencies
and description of mode shapes.

Mode
Natural Frequency (Hz)

Natural Mode Shape Relative Error (%)
FE analysis Model no.1 OMA

1 1.57 1.50 1st Vertical 4.6
2 1.87 2.48 1st Lateral 24.6
3 3.48 3.36 2nd Vertical 3.6
4 14.30 14.26 1st Torsional 0.3
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The comparison of experimentally and numerically obtained natural frequencies
indicates a high level of consistency between the values calculated based on both methods
for the first, third, and fourth frequencies, where the discrepancies do not exceed 5%.
For such a level of structural system complexity, the similarity between numerical and
experimental results can be considered satisfactory if the differences are lower than 7% [63].
The only exception appears in the case of the second natural frequency corresponding to
the transverse mode shape (see Figure 12b), for which this discrepancy is much greater,
reaching almost 25%, far above the acceptable limit. Hence, the goal of the first step of the
FE model tuning strategy was matching the numerical transverse mode frequency with the
measured value to meet the modal identification requirements. It is also worth mentioning
that all experimental and numerical mode shapes show very high compliance.

3.2. Experimental Evaluation of Damping Properties

In the research, the values of logarithmic decrements of damping were determined
for the frequencies corresponding to the first and the second vertical mode shapes. The
estimation was based on discrete experimental data acquired during the jumping test,
in which four people jumped vertically synchronized by a metronome. The registered
acceleration-time histories were filtered by the 3rd order digital Butterworth filter with the
bandwidth 0.04 Hz, centered at the estimated natural frequencies.

Exemplary free decay plots for the frequency related to the first and second vertical
vibration modes are shown in Figure 13a,b, respectively. Such plots, obtained for all mea-
surement points, were the basis of the evaluation of the logarithmic damping decrements
and damping rations.

The average values estimated for the logarithmic decrements were δ1 = 0.13 and
δ2 = 0.17 for the first and second vertical modes of vibration, respectively, leading accord-
ingly to the damping ratios ξ1 = 2.1% and ξ2 = 2.7%.

On the basis of the obtained damping ratios, the coefficients of Rayleigh’s damping
model were estimated as α = 0.21 and β = 0.00208 and applied in the seismic analysis of
the bridge.
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3.3. First Step of the Tuning Strategy: Calibration of the FE Model Based on the Experimental
Modal Identification

Prior to the presented tuning strategy involving sliding bearings, two other variables
were taken into account in the process of manual tuning: (a) Young’s modulus of the pillars
and (b) Young’s modulus of the deck. The first tuning attempt consisted of increasing
the structural rigidity in the transverse direction by a modification of the pillars’ Young’s
modulus to account for the maximal allowable reinforcement percentage (4%) according to
Equation (1). This approach was abandoned since it resulted in an insufficient growth of
the second natural frequency to 1.9 Hz (still 17% below the experimental value), simultane-
ously increasing the first frequency to 1.6 Hz and thus worsening its compliance with the
experiment. Increasing Young’s modulus of the deck also resulted in significant growth of
vertical frequencies.

Other possible sources of the FE model inadequacy are damages or failures of bridge
structural elements. Periodic bridge inspections in Poland are regulated by a document
issued by General Directorate for National Roads and Motorways [64], defining two types
of inspections: (a) yearly basic inspection checking for possible damage and inspecting the
condition of installation and equipment and (b) detailed inspection performed every 5 years,
examining the technical and functional state of all structural elements. The condition of
every structural element is assessed on a 6-point rating scale, where 5 means “without any
damage” and 0 means “failure”. The analyzed bridge underwent a detailed inspection
in 2018 [65] (the year in which the authors carried out the experiment). All structural
bridge elements were assessed for 5 in the above-described scale. The yearly inspection in
2020 [66] confirmed these results. Hence, the decision was made to neglect the influence of
any possible damage of structural elements on the bridge dynamic behavior.

Taking into consideration the above-mentioned explanation, the authors decided to
focus on sliding bearing modeling as a potential source of the inadequacy of the FE model
frequency corresponding to the lateral mode shape.

In the primary numerical model, the sliding between bearing surfaces was assumed
as a frictionless connection. Such simplification does not reflect the real behavior of a
sliding pot bearing. The neglect of friction forces in the sliding bearings resulted in the lack
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of cooperation between the pillars and the slab under horizontal motion, leading to the
underestimation of the structure’s transverse stiffness.

It has been reported in the literature and proven experimentally [27] that during
low-energy ambient vibration bridge testing, horizontal excitations are small, generating
forces in the bearings below the sliding limit. Authors suggest that for the modal analysis,
one should assume that all bearings are fixed (without the possibility of sliding in any
direction). In our case, this assumption provided a satisfactory correction of the second
(horizontal) natural frequency (with discrepancies below 2%), but at the same time, it
spoiled the adjustment of the first (vertical) frequency, which jumped to 1.90 Hz, 27.5%
over the experimental value.

To avoid excessive stiffening of the model at the bearings, its calibration in the present
study has been conducted by attaching horizontal linear springs to the sliding bearings.
Since the modal analysis requires a full model linearization, applying the nonlinear fric-
tional model (see Section 2.5) to represent the bearing behavior was not an option at this
analysis stage. However, the stick part of this model is equivalent to adding horizontal
springs with constant stiffness Ks (see Figure 14) to the connectors representing sliding
bearings to account for the frictional interaction.
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To roughly estimate the spring stiffness, two simplified one-dimensional models of
the bridge were analyzed as single-degree-of-freedom (SDOF) frames oscillating in the
transverse direction. In these models, the deformation of the deck is ignored, the rigid deck
vibrates on the bending columns (Figure 15).

The frame with sliding support at the right pin beam–column connection (see Figure 15a)
represents the unrefined FEM bridge model with frictionless sliding at bearings. The natu-
ral frequency of this frame (or its equivalent mass–spring representation) takes the form:

fa =
1

2π

√
Kc

m
(7)

where: m is the oscillating mass and Kc = 3EI
h3 is the bending stiffness of the left frame

column, treated as a cantilever beam, with h, I, E meaning column height, cross-sectional
inertia moment, and material’s Young’s modulus, respectively.
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Figure 15. Simplified single degree of freedom transverse vibration frame models with equivalent
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sticking on the right bearing.

The frame with a frictional elastic stick at the right pin beam–column connection (see
Figure 15b) represents the updated FEM, in which the right column is involved in the
frame vibrations via the elastic spring representing the elastic stick friction in the bearing.
The equivalent stiffness of the system of two pillars (with bending stiffness KC each) and
the spring representing elastic stick with coefficient KS can be determined as:

K = Kc +
KcKs

Kc + Ks
= Kc

Kc + 2Ks

Kc + Ks
(8)

It leads to the natural frequency of this SDOF system:

fb =
1

2π

√
K
m

=
1

2π

√
Kc

m
Kc + 2Ks

Kc + Ks
(9)

After designating the ratio of the natural frequencies of both frames as:

α =
fb
fa

=

√
Kc + 2Ks

Kc + Ks
(10)

one can determine the dependence of the stiffness of the elastic stick spring on the bending
column stiffness Kc and the frames’ frequency ratio α:

Ks = Kc
α2 − 1
2− α2 (11)

This formula can serve as a rough approximation of the elastic stick coefficient, which
should be used in the bridge bearing friction model to fit the numerical first transverse
natural frequency to the experimental value.

The bending stiffness of the analyzed bridge pillars equals KC = 147 MN/m, the
transverse frequency of the primary FE model is fa = 1.87 Hz, and the desired transverse
frequency of the updated FE model should be equal to the experimental value fb = 2.48 Hz
(see Table 2). Substituting the above values into Equation (11) gives the approximation of
the elastic stick coefficient equal to KS = 462 MN/m.

The value of the elastic stick coefficient, which leads to the best compatibility between
experimental and numerical values of all four analyzed frequencies (based on the least
square method), equals KS = 400 MN/m. This value was used in the stick part of the
frictional contact model (see Section 2.5) in the seismic analysis of the bridge. Raising the
spring stiffness above this value led to an excessive increase of the first vertical frequency.
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The comparison of natural frequencies calculated using the calibrated FEM model with
the experimental values is presented in Table 3. One can notice much better compliance of
the results than for the primary model for the horizontal modes. The spring connection,
which guarantees the cooperation between the slab and both pillars during horizontal
vibration, leads to the increase in the transverse stiffness of the structure. As a consequence,
the value of the second natural frequency also rises. The discrepancies between the
experimental and numerical (for the modified model) frequencies do not exceed 8% in any
case. Such a result seems to be satisfactory, taking into consideration the complexity of the
structure. It is also worth mentioning that there are no significant changes in the numerical
mode shapes.

Table 3. Comparison of natural frequencies measured and calculated for the tuned model and
description of the corresponding mode shapes.

Mode
Natural Frequency (Hz)

Natural Mode Shape Relative Error (%)
FE with Tuned Model OMA

1 1.60 1.50 1st vertical 6.6
2 2.30 2.48 1st lateral 7.2
3 3.48 3.36 2nd vertical 3.6
4 14.31 14.26 1st torsional 0.4

Authors of similar studies devoted to experimental and numerical investigations of the
dynamic properties of bridges with comparably complex structures indicate a similar level
of compliance between measured and calculated eigenvalues. For example, in the analyzed
cases of a prestressed composite box-girder bridge [63], an arch railway bridge [67], and
a long-span cable-stayed bridge with a steel box girder [68], the maximal discrepancies
between the natural frequencies identified experimentally and derived numerically reached
6.8, 7.5, and 6%, respectively.

To confirm the correctness of the mode shape vectors, verification with the modal
assurance criterion (MAC) was performed [69]. The MAC procedure allows for the quan-
titative comparison of mode shapes obtained from different methods to avoid mistakes
(i.e., duplication of modes). Based on this method, one can determine the similarity of two
modes by evaluating MAC parameters with the following formula:

MACij =
(ϕAi

T · ϕBj)
2

(ϕAi
T · ϕAi) ·

(
ϕBj

T · ϕBj
) (12)

where ϕA and ϕB are the modal vectors obtained with methods A and B, respectively. The
MAC parameters can take values ranging from 0 (meaning no correspondence between
modes) to 1 (representing a full correspondence).

First, the AutoMAC matrix was determined, comparing the experimentally identified
mode shapes (Figure 16a). The results prove that particular modes differ from each other
and do not duplicate. Then, the experimentally and numerically determined modes were
compared using the MAC procedure (Figure 16b). It may be noted that the values located
on the MAC matrix main diagonal are higher than 0.8, which indicates the consistent
correspondence between the appropriate modes (modes with the same numbers) from the
experiment and numerical analysis. The off-diagonal MAC matrix elements do not exceed
0.2, proving the correct matching of the modes obtained by both methods.
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3.4. Second Step of the Tuning Strategy: Modification of the FE Model for Mining-Induced Seismic
Performance Assessment

Updating the FEM model by attaching springs to the connectors representing sliding
bearings allowed to closely match the experimentally measured natural frequencies. This
model can perform well under operational loads when the assumption of the absence
of sliding at bridge bearings can be justified. However, under heavy excitations gener-
ating significant horizontal forces, the bearing plates slide relative to each other. The
frictional force produced in the sliding pot bearing is bonded by the coefficient of friction
between the sliding surfaces of the bearing piston, usually covered by polytetrafluorethy-
lene (PTFE), and the soleplate, made of stainless steel. The design friction coefficient in
pot bearings ranges from 0.03 to 0.06 [70]. Since the linear spring attached to the connector
modeling the bearing parts produces a force proportional to the relative motion, it cannot
represent sliding.

To account for the proper modeling of bearing behavior under different loadings,
the second update of the bearing model was introduced. The frictional contact based
on elastoplasticity with the associated sliding rule (see Section 2.5) was adopted as the
constitutive model for bearing connectors. The elastic constant k, representing the stick
stage (Equation (4)), was taken as the linear spring stiffness KS determined in the first stage
of model tuning. The friction coefficient in the slip criterion (Equation (5)) was assumed as
0.04, which is in the range of design friction coefficients of pot bearings.

4. Discussion
4.1. Comparative Analysis of Dynamic Performance of the Bridge under Mining-Induced Shocks of
Various Intensity: Untuned vs. Tuned FE Models
4.1.1. The General Framework of the Comparative Analyses

The dynamic performance of the bridge was assessed for two mining-triggered shocks
of various intensities: D_0 with PGAH10 = 0.1 m/s2 and D_II with PGAH10 = 0.46 m/s2

(see Section 2.1). The time history analysis (THA) algorithm [71], based on the direct
integration of equations of motion at each time increment, was implemented to calculate
the dynamic responses of the bridge to the shocks. Due to its high accuracy, the THA
method is suggested in EC standards [72] for both linear and nonlinear dynamic analyses.
For the THA algorithm, kinematic excitation was defined by the vector of the supports’
accelerations (see Figure 1) applied to all supports.

The calculations were conducted with the Hilber–Hughes–Taylor time integration
algorithm provided in the ABAQUS software for a direct step-by-step solution [40].
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The dynamic responses (in terms of maximum principal stresses) were calculated for
selected representative elements of the structure. The elements were situated on the girders
above the supports and in the middle of the longest span (see Figure 17). Accordingly to
the bearing specification (see Figure 6), elements 2A, 3A, 4A, and 5A were placed over
fixed or longitudinally guided sliding bearings, whereas elements 2B, 3B, 4B and 5B were
positioned above the transversely guided sliding bearings. Elements S1 and S2 were located
in the middle of the main span.
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Figure 17. Elements chosen for analysis.

Three FE bridge models were used for the dynamic performance assessment of the
structure under the mining-induced shocks:

1. M0—the untuned FE model, in which the sliding between bearing surfaces was
assumed as a frictionless connection (see Section 2.2.2);

2. M1—the “half” tuned FE model, after the first step of the tuning strategy, with the
horizontal linear springs attached to the sliding bearings (see Section 3.3);

3. M2—the fully tuned FE model, after the second step of the tuning strategy, with
frictional regularized contact, applied as the constitutive model for bearing connectors
(see Sections 2.5 and 3.4).

Considering the results gathered for all representative elements, it was decided to
present a graphical comparison of the maximum principal stresses obtained for the three
above-mentioned FE bridge models in elements S1 and B3.

4.1.2. Dynamic Performance of the Bridge under the Tremor of the Zeroth Degree of
Intensity (D_0)

The dynamic responses of the bridge to the low-intensity tremor (D_0), obtained with
models M0, M1, and M2, are summarized in Figure 18. The comparison for element S1,
located in the middle of the longest span (see Figure 18a), clearly shows that the principal
stresses obtained for models M1 (“half” tuned-with springs) and M2 (fully tuned-with
frictional contact) are almost identical. In contrast, the stresses obtained for model M0
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(untuned, with ideally sliding bearings) are approximately twice smaller. The comparison
for element 3B, located above the sliding bearing, presents an analogous tendency (see
Figure 18b). However, the stresses obtained for model M0 account for only 10% of the
stresses received for models M1 and M2. Similar relations are observed for other elements
located over sliding bearings (2B, 4B, 5B).
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transversely sliding bearing).

The forces generated in bearing (connector) 3B for models M1 and M2 are almost
identical (Figure 19a) for tremor D_0. The slight difference in the time–force histories can
be explained by the fact that in the M2 model at about 1.6 s of the shock, the friction-to-
normal contact force ratio on the surface of the bearing reached the highest possible value
of 0.04, equal to the assumed friction coefficient (Figure 19b). Thus, the stick between both
bearing surfaces is broken. They slip, releasing energy, and then establish a new stick
position after the change of the tremor direction.
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The seismic responses observed for elements S1 and 3B can easily be explained. The
spring/friction connections implemented in the bearings in models M1 and M2 established
the cooperation between the girder and the pillars located beneath the sliders. This resulted
in: (i) an increase of the stress level in the middle of the main span (point S1 located far
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from the bearings), and (ii) a significant increase of the local stresses in the girder (point 3B
placed over the transversely guided sliding bearings).

It is also worth noticing that the time history response for the M0 model has a lower
frequency than that for the M1 and M2 models. This results from the fact that the second
natural frequency is lower in the untuned M0 model (1.87 Hz) than in the tuned M1 and
M2 models (2.3 Hz). This discrepancy is substantial enough to produce the dissimilar
amplification of the dynamic responses of the structure. The transverse natural frequencies
of both tuned models are close to the predominant tremor frequency range in the horizontal
direction (2.4–5.0 Hz, see Section 2.1). Thus, due to the resonance phenomenon, the stress
amplitudes are considerably larger than in the case of the untuned model.

The presented analysis proves that the proposed fully tuned model M2 behaves
similarly to model M1 (with springs adjusted based on the experimental modal identifi-
cation). Both models are suitable for assessing the dynamic bridge performance under
low-intensity tremors, which predominantly do not activate sliding at bearings. The oppo-
site conclusion can be drawn for the untuned model M0. The assumption of frictionless
contact enforces sliding in bearings under arbitrarily small horizontal excitations, which
is unrealistic. Hence, the untuned model is not suitable for dynamic bridge assessment
in the case of low-intensity tremors. The stresses obtained for this model turned out to be
strongly underestimated.

4.1.3. Dynamic Performance of the Bridge under the Tremor of the Second Degree of
Intensity (D_II)

The dynamic responses of all analyzed bridge models to the stronger tremor (D_II)
are summarized in Figure 20. The proportions between the responses of “untuned” M0
and “half-tuned” M1 models are the same as in the case of the D_0 tremor (Figure 18),
namely: the stress amplitudes acquired with the M1 model are approximately twice greater
at point S1 and ten times greater at point 3B, than these obtained with the M0 model.
This result is obvious since, due to both models’ linearity, the responses are proportional
to applied loads. However, a meaningfully dissimilar dynamic performance under the
stronger tremor is observed for the “fully tuned” model M2, which, due to the frictional
contact formulation, is nonlinear. In this case, the stresses in the representative element
located far from the bearings (S1) exhibit a strong resemblance to those obtained with
the untuned model M0 (see Figure 20a), while at points located directly over the bearing
(element 3B), the stress amplitudes are about twice bigger than those found for the untuned
model M0, but significantly smaller than values achieved with the spring equipped model
M1. It should be emphasized that such significant differences in stress values are of local
scope and involved only the girders’ zones located closely to the bearings. Other analyzed
elements placed far from the bearings were not affected by such significant alterations
in stresses.

The forces generated in the bearing (connector) 3B for models M1 and M2, as well as
the friction-to-normal contact force ratio for the D_II tremor, are presented in Figure 21a,b,
respectively. During each cycle of the intensive phase of the tremor, horizontal excitation
in the M2 model is strong enough to induce sliding in the bearing (see Figure 21b), which
results in the limitation of the frictional force in the connector to 0.04 of the normal contact
force, while the force in the M1 model spring, which is not limited, is considerably greater
(see Figure 21a).

Based on the presented comparisons, some conclusions can be drawn regarding the
stresses obtained using analyzed models under the second degree of intensity tremor
(D_II). The cooperation between the girder and the pillars beneath the sliders, introduced
by the spring and friction in models M1 and M2, respectively, causes an increase in the
stresses compared to those obtained with model M0. However, in the case of model M2,
the spring linear force/displacement relation is replaced by the frictional contact once
the sliding occurs at the bearings. This induces a rapid decrease in the stresses at both
representative elements.
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The presented analysis shows that only the fully tuned model M2 allows for the
accurate representation of the sliding bearing performance under a high-intensity mining-
induced tremor. Springs applied in the M1 model generate unrealistically large horizontal
forces in bearings, resulting in a considerable overestimation of the structural dynamic
response (especially for vibrations with dominant frequencies close to the transverse bridge
natural frequency). On the other hand, the frictionless sliding in the M0 model leads
to the undervaluing of the local structure response, although the global stress level is
estimated correctly. Additionally, one should bear in mind that this model underestimates
the structure transverse natural frequency. For the above reasons, neither the “half tuned”
M1 model nor the untuned M0 model is applicable for assessing the dynamic performance
of the bridge under high-energy mining-induced shocks.

It must be pointed out that similar assessments of the dynamic performance of the
bridge were performed for other degrees of tremors’ intensity: D_I, D_III, D_IV (see
Figure 3). In all cases, the results turned out to be analogous to these obtained for the
tremor D_II.
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5. Conclusions

In this paper, a two-step tuning strategy of FE models of bridges with sliding bearings
exposed to mining-triggered tremors is proposed, based on the numerical and experimental
analysis of a bridge equipped with standard pot bearings and not fitted with a structural
vibration monitoring system. The following conclusions can be drawn based on the
conducted experiments and numerical calculations:

1. The comparison of experimentally and numerically obtained natural frequencies indi-
cated a poor level of consistency between the values of the second natural frequency
corresponding to the transverse mode shape. The reason for such a discrepancy lies in
the primary, untuned numerical model, with assumed frictionless sliding in bearings.
Such simplification is not appropriate since, due to the low level of ambient vibration,
sliding in the pot bearings was prevented by frictional forces;

2. The proposed two-step tuning strategy of the FE bridge model significantly improved
the consistency of the experimental and numerical values of the second natural
frequency. In the proposed approach, the free bearing sliding was replaced with the
Coulomb friction-regularized model, based on elastoplasticity with the associated
sliding rule;

3. The comparative analysis of the dynamic responses of the bridge models to mining-
triggered tremors of various intensities (from 0 to IV degree) proved that the untuned
model is not suitable for structure dynamic assessment in the case of low-energy
tremors (0 degrees of intensity). The stresses obtained for this model turned out to be
strongly underestimated. For shocks of higher intensity, frictionless sliding at bearings
gave a relatively good global estimation of structure performance but undervalued
its local response. On the other hand, the model tuned with linear springs proved
to be applicable only for low-intensity tremors. In case of stronger shocks (from I
to IV degree of intensity), the springs applied in bearings generated unrealistically
large horizontal forces, resulting in a considerable overestimation of the structural
dynamic response;

4. The analysis revealed that only the fully tuned Coulomb friction-regularized model
allows for the accurate simulation of sliding bearings under both low-energy and high-
energy mining-induced tremors. However, it must be pointed out that this tuning
strategy is valid for a particular type of bridge only, i.e., for those who benefitted from
pot bearings (fixed and sliding).

It should be emphasized that due to the rapid industrial growth involving an increase
in the exploitation of natural resources, an urgent need arises to protect existing road
infrastructure. In that context, the proposed two-step tuning strategy may help the accurate
assessment of the dynamic performance of older bridges located in mining-triggered seis-
mic zones, not retrofitted with modern anti-seismic bearings but equipped with standard
systems of fixed and sliding bearings.
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