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Abstract: Energy communities (ECs) are becoming increasingly common entities in power distri-
bution networks. To promote local consumption of renewable energy sources, governments are
supporting members of ECs with strong incentives on shared electricity. This policy encourages
investments in the residential sector for building retrofit interventions and technical equipment reno-
vations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy
system where different energy carriers are converted or stored to meet the building energy needs.
Following the standardized matrix modeling approach, this paper introduces a novel methodology
that aims at jointly identifying both optimal investments (planning) and optimal management strate-
gies (operation) to supply the EC’s energy demand in the most convenient way under the current
economic framework and policies. Optimal planning and operating results of five refurbishment
cases for a real multi-family building are found and discussed, both in terms of overall cost and
environmental impact. Simulation results verify that investing in building thermal efficiency leads to
progressive electrification of end uses. It is demonstrated that the combination of improvements on
building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to
be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared
to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher
renewable energy source (RES) penetration, reaching a significant reduction of emissions due to
decreased net energy import.

Keywords: energy community; energy hub; electricity sharing; multi-energy; optimization

1. Introduction

Buildings and buildings construction sectors combined are responsible for 36% of final
energy consumption and nearly 40% of total CO2 emissions worldwide [1]. In the European
Union, the heating sector accounts for around 50% of the overall energy consumption,
with the residential sector having the highest share (around 45%) of the final heating
consumption [2]. The 2015 Paris Agreement on Climate Change following the COP21
Conference boosted the European Union’s efforts to decarbonize its building stock [3].
In fact, the European Commission presented in November 2016 the Clean Energy for all
Europeans Package, a set of eight legislative acts aimed at regulating the transition towards
a sustainable energy system. The first approved act was the new Energy Performance of
Buildings Directive (EPBD) 2018/844 [4], which encouraged member states to achieve a
highly energy-efficient and decarbonized building stock by increasing deep renovations
and promoting equal access to financing. One of the key measures for a fossil-free heat
supply of buildings is the large-scale deployment of heat pumps, both for new constructions
and for deep refurbishments. This trend will severely affect the power consumption
patterns in the electrical distribution systems [5]. At the same time, increasing penetration
of small-scale renewable energy sources (RESs) such as photovoltaic (PV) systems is
pushing the energy system towards a decentralized structure [6].
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Due to the increasing number of distributed energy resources and to the foreseen
electrification of end uses (mainly due to heat pumps, new cooling capacity, and electric
vehicles), both power production and consumption within residential buildings will un-
dergo a significant increase in the upcoming years, thus making buildings gain a central
role in the energy system. Several attempts have been made by the legislators to pave the
way for buildings to play this new role.

One of them is the introduction of smart readiness as a new indicator for the assess-
ment buildings performance, which assesses their ability in (i) adapting to user needs and
energy environment; (ii) operating more efficiently, and (iii) interacting with the energy
system and with the district infrastructure in the context of demand response programs [4].
This capability is strongly related to the so-called energy flexibility of the building, i.e.,
to its ability to manage its demand and generation according to local climate conditions,
user needs, and grid requirements [7]. As shown in different studies [8,9], the flexibility of
buildings depends on many factors (level of insulation, type of emitter, etc.), varies over
time (cold vs. transition season), and is constrained by thermal comfort in both heating
and cooling season.

Another important novelty to accommodate the increased energy flows in power
distribution networks comes from the recast of the renewable energy directive (RED II) [10]
that brought different member states to recognize new legal entities known as energy
communities (ECs), i.e., groups of users that are entitled to produce, consume, store,
and sell renewable energy. Moroni et al. [11] classified them according to two main
criteria: place-based vs. non-place-based and single-purpose vs. multi-purpose ECs. The
locally produced energy may be shared within the community, which is allowed to access
all suitable markets [12]. The shareholders or the members of the EC may be natural
persons, small and medium enterprises, or local authorities, including municipalities.
Nevertheless, the primary purpose of EC participants shall be limited to the provision of
environmental, economic, or social community benefits rather than financial profits [13].
Energy communities enable renewable electricity sharing, a practice where RESs such as
PV systems or small-scale wind turbines supply electricity to more than one dwelling [14].
This new regulatory framework introduces new opportunities, such as shared investments
in local renewable energy projects.

Growing electrification of end uses, increasing penetration of distributed RESs, and
building refurbishments and up-to-date legislation are all key factors to decarbonize the
building sector [15]. Decision support tools could improve the efficiency of this decar-
bonization process by optimizing choices at a preliminary stage, which consider initial
investment costs, operational costs for end-users, and technical constraints such as space
limits, thermal comfort, etc. A possible engineering-oriented representation of energy
flows at the building or the district level may be the so-called energy hub (EH), defined as
a unit where multiple energy carriers can be converted, conditioned, and stored. The EH
represents an interface between different energy infrastructures and/or loads [16], where
the final energy demand is optimally satisfied considering the synergy between different
energy sources, conversion, and storage systems. By coupling together different types of
energy carriers, the energy system can benefit from higher operational flexibility and higher
energy utilization efficiency. The concept of EH fits perfectly with the aim of identifying
efficient and functional energy solutions for the residential sector for both new and existing
buildings. The latter have more structural and spatial constraints, thus making it difficult
to realize all conceivable solutions compared to new buildings. However, in both cases, it
is possible to obtain benefits from the integration of the different technological solutions,
guaranteeing an easier approach to reach near zero energy buildings (NZEB) standards.

A broader classification of optimization problems for energy systems includes synthe-
sis, design, and operational optimization problems [17]. Synthesis problems address the
optimal configuration/selection of components (e.g., generators, storage, converters) [18];
design problems typically address the optimal sizing of a given set of components [19];
operational optimization problems address the optimal management of the components
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in a given energy system [20,21]. Researchers have also made different attempts to solve
two [22,23] or even all three problems [24] simultaneously. The EH approach can tackle
all these problems through a series of simplified approximations, such as neglecting
both uncertainties and non-linear behavior of system components and networks, and
aggregating demands at the building or district level [25]. Despite the mentioned ap-
proximations, solving all these problems simultaneously requires a very high number of
variables and constraints, which result in a very high computational effort. For instance,
Morvaj et al. [26] investigated the optimal design and operation of distributed energy sys-
tems as well as optimal heating network layouts for different economic and environmental
objectives. Qi et al. [27] proposed a demand side management strategy for a residential
complex to shift electrical and thermal loads towards time windows with solar production.
Rech et al. [28] used the EH approach to find the optimal number of PV systems and solar
thermal collectors (SCs) and the volume of thermal storage tanks that minimize costs for a
university campus and its surrounding residential neighborhood in Lisbon. Wu et al. [29]
used an EH model to find optimal retrofitting and energy supply strategies for residential
buildings in a Swiss town. Ghorab [30] modeled a Canadian community made of 20
buildings grouped into five energy hubs and achieved significant savings thanks to PV
energy sharing combined with diverse electrical demand profiles. Manservigi et al. [31]
used the EH to find the optimal design and operation of a small scale combined heat
and power (CHP) unit for two electrically interconnected buildings with both thermal
and electrical energy storage. Huang et al. [32] used the EH approach to optimize the
design and the operation of three residential buildings in Sweden and showed that electric
vehicle penetration, thermal storage, and energy sharing affect PV system sizing/positions
and performance indicators. In the aforementioned literature, most studies neglect the
effect of environmental conditions on the performances of the machines, as discussed by
Vian et al. [33]. Moreover, when considering both optimal planning and operation of the
EH, electricity sharing occurs within unclear regulatory conditions. This makes simulation
results not entirely correlated to the current economic framework which, in fact, remarkably
influences the decisions of investors.

This paper aims at filling these gaps and presents an optimal planning and operation
strategy for ECs considering current regulatory policies on shared electricity incentives.
The proposed method is used to assess the most convenient investment scenario among
different building refurbishment cases. In this regard, optimization results include both
sizing and operating schedules of thermal and electrical storage units, heat generators,
along with the roof-mounted PV system. Sizes and performance characteristics of all units
are taken from datasheets of real devices available in the market. In light of the above
literature review, this article introduces the following novelties: (i) considering the effects
of environmental conditions, not only in terms of ECs’ needs but also on devices technical
performances; (ii) selecting components from technical catalogues, thus approaching a
solution that is compatible with market conditions; (iii) assessing the impact of electricity
sharing policies on EC sizing and management.

2. Energy Hub Model

Both topology and typology of the EH are modeled using a graph-oriented formu-
lation, which relies on the definition of all input and output energy carriers entering or
leaving each considered device. This method requires the definition of input, output, and
internal nodes. Input nodes define the points of delivery of all energy carriers supplying
the EH, which can be either physical or virtual connections. In the first case, electricity
and gas coming from distribution networks as well as other primary energy carriers are
considered, while the latter includes local RESs such as solar radiation or wind power.
Output nodes correspond to the connection points of building electrical and thermal loads
associated with electricity, space heating, domestic hot water (DHW), and cooling demand.
When on-site data are not available, demand profiles can be calculated by using either
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physical or data-driven models from public datasets. Internal nodes represent the EH
equipment used to convert, allocate, and eventually store the energy flowing in the system.

Once the EH architecture is set, additional information regarding the system compo-
nents dynamics needs to be included in the problem formulation through an appropriate set
of constraints. As reported in [33], when considering a design and operation optimization
problem, dependency on external environment conditions must be adequately modeled as
it may lead to very different economic and technical solutions. Furthermore, to ensure the
practical feasibility of the problem solutions, other technical constraints should be consid-
ered, such as the maximum available surface or the volume for equipment installation. As
stated in Section 1, this paper aims to propose an optimal design and operation approach
for a multi-family building. To reduce the computational burden, the standardized matrix
modeling (SMM) approach [34,35] was followed, which allows formulating the problem as
a mixed-integer linear programming (MILP) problem.

In the next paragraph, the EH formulation is presented along with some design, sizing,
and operational considerations.

2.1. Standardized Matrix Modeling Approach

The SMM is an automated method based on graph theory used for the analysis of
energy systems. It was firstly introduced by [36] to avoid non-linearities stemmed from the
dispatch factors traditionally used to model interconnected systems. This can be achieved
using energy flows between the components as decision variables. As a result, the whole
optimization problem maintains a MILP formulation and can be efficiently solved by
commercial solvers.

Following the SMM approach, the EH is modeled as a set of conversion and storage
elements (nodes) connected through energy vectors (branches). Based on the typology of
each considered converter, nodes are modeled with an adequate number of ports. Then,
energy vectors connecting input and output ports are added. Being g ∈ {1, .. G} and G
the total number of nodes in the EH, for each g-converter, a branch-port incidence matrix,
Ag, and a conversion matrix, Hg, are defined. The set of Ag ∈ A = {A1, .. AG} defines
the connections between all the G converters of the system and all the energy carriers
vb{v1, .., vB}, where B is the total number of energy vectors, i.e., the branches of the EH
system. Similarly, the set of Hg ∈ H = {H1, .. HG} defines the conversion performance of
all G nodes. Consequently, multiplying these two matrixes leads to the energy conversion
matrix Z = HA which represents the relationship between the EH converters and the
energy carriers in the system. Moreover, all vb optimization variables are grouped in a
single vector Vt = {v1,t, v2,t, . . . , vB,t}, where t ∈ {1, ..T} is the considered time-step, and T
is the simulation time horizon. Hence, for each considered time-step, it is possible to set
the energy conservation equation for the entire EH as:

Z Vt = 0. (1)

While Equation (1) is valid for all time-independent EH converters, the energy conser-
vation equation for all storage devices is stated in a different matrix form, as explained in
Section 2.3.

The EH is linked to special input and output nodes. The former type represents the
connections to distribution grid or other local energy sources, while the latter type denotes
the connections to building loads. Incidence matrixes X and Y are defined for both inputs
and outputs nodes, respectively. These matrixes describe the relationship between the EH
internal energy flows, Vt , and input and output energy vectors, Vin

t and Vout
t :

Vin = X V, (2)

Vout = Y V. (3)
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In typical EH optimization problems, Vout is defined ex-ante by setting the end-user
load profiles, while Vin is an optimization variable. Equations (1)–(3) can be rearranged in
a more compact matrix form:  X

Y
Z

V =

 Vin

Vout

0

. (4)

The flexible SMM approach allows to properly model some further features of real
case EH. The first feature involves the modeling of devices with non-linear conversion
characteristics. To avoid falling into a non-linear problem, piecewise linearization can also
be applied within the SMM approach. This is achieved by splitting nodes of non-linear
devices into as many subnodes as the segments which linearize the non-linear conversion
function. The overall conversion characteristic can therefore be computed as the sum of
all subnode linear characteristics [34]. A second feature the SMM approach can handle
regards the effects of environmental factors on devices’ conversion efficiencies. Following
the approach suggested by Huang et al. [34], the Z matrix can be modified according to
external signals, such as outdoor temperature and solar radiation.

2.2. Multi Sizing and Operation Constraints

When designing the building energy system, an initial technical configuration must
be given to the optimizer defining the typology and the connection characteristics of all
considered devices. Given the SMM flexibility, the initial configuration can be very general,
hence including a wide range of technologies available in the market. According to the
considered objective function, the optimizer looks for the optimal combination of devices,
evaluating the influence each of them has on the whole energy system. As a result, the
final EH design configuration may be a subset of the proposed initial equipment.

Because several models of the same device are available in the market, each of them
having different sizes and technical performances, a further degree of freedom should
be given to the optimizer. This means that, when looking for the optimal EH design,
the combinations of all devices in terms of typology and model should be considered.
Although the computational burden suffers from this implementation, it allows finding a
market-oriented and thus more realistic solution. To implement both design and sizing
optimization using the SMM approach, it is necessary to proceed by steps, as shown by a
trivial example in Figure 1.

Figure 1. Multi-sizing implementation: (a) initial layout; (b) upgraded layout.

Initially, a general technical scheme is defined, along with connections between devices.
Each device type is identified according to acronyms, and the available device models
are listed on an external catalogue, where all economical and technical information are
defined. Then, for each internal component, an automatic code verifies whether there are
other models listed in the catalogue. Next, the EH scheme is automatically updated by
substituting each original node with as many new nodes as the number of listed models.
Finally, the energy vectors connecting new nodes are added. Based on the number of new
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nodes added in this process, the EH system is described by an upgraded general scheme
with G* nodes and B* branches.

The following constraints are used to implement the optimal design and the optimal
sizing dynamics within the SMM approach:

0 ≤ AgVt ≤ C max
g δg, (5)

CTSg

∑
i=1

δi = 1. (6)

Equation (5) has a twofold purpose. First, it ensures the energy vectors related to
the g-node are bounded within zero and their maximum operational value, C max

g . Then,
thanks to the binary decision variables g{1, . . .G∗}, it allows whether to include devices
from the upgraded general scheme. When δg = 1, i.e., the g-device is included, the related
energy vectors decision variables can take any value up to C max

g . Instead, when δg = 0,
i.e., the g-device is not included, the related energy vectors are forced to zero. As shown
in Section 4.2, binary decision variables are also used to define the investment objective
function. Moreover, Equation (6) ensures that only one model must eventually be selected
among all those listed, being i

{
1, ..CTSg

}
and CTSg the number of available models for

the g-node.

2.3. Storage Constraints

The energy–time balance expressed by Equation (1) does not hold for energy storage
devices (ESs). Indeed, the amounts of energy entering and leaving each ES do not necessar-
ily coincide for a specific timestep. This is due to the possibility that ESs have to discharge
part of their stored capacity. Indeed, for ESs, the left-hand side of Equation (1) is equal to
the energy either withdrawn or injected into the system. To integrate ES into the problem
formulation, Huang et al. [34] introduced an additional virtual node for each considered
ES. Furthermore, the energy vector vstr,t ∈ Vt is included to represent the charged and the
discharged energy by each ES, being str ∈ {1, . . . , STR} and STR the total number of ESs
in the EH. The energy balance equation for ESs becomes:[

^
Z −I

][ V
∆E

]
= 0. (7)

Unlike electrical storage devices (EESs), the maximum capacity of thermal storage
devices (TESs) is given by a volumetric water capacity. Besides, their charging and discharg-
ing phases are typically managed to maintain the internal temperature within a predefined
temperature range. Although temperature-dependent operation could be implemented,
handling temperature dynamics in an energy-based formulation is not practical. For this
reason, all TESs in this paper are modeled following an EES approach. The equivalent kWh
maximum capacity is given by:

smax
str = Volstr cp ∆T/3600 (8)

where Volstr is the volume in liters of the str-TES, cp is the water specific heat, and ∆T is
the maximum deviation allowed between minimum and maximum internal temperature.
Then, the capacity of all TESs is computed as follows:

sstr,t = sstr,t−1 + vstr,t − Kloss
str

(
Top

str,t − TTR
)

, (9)

Top
str,t = Tmin

str +
sstr,t−1

smax
str

∆T, (10)

Tmin
str = Tout

str − ∆T/2. (11)
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Equation (9) calculates the current thermal capacity state considering the previous
capacity state, the energy exchanged by the virtual node, vstr,t, along with the product of
the stationary loss factor, Kloss

str , and the difference between the internal operating tempera-
ture, Top

str,t, and the air temperature of the technical room where the TES is installed, TTR.
Furthermore, Top

str,t is defined in (10) as the sum of the minimum internal fluid temperature,
Tmin

str,t , and a fraction of ∆T depending on the ratio between the previous capacity state
and smax

str . Moreover, Tmin
str,t is computed in (11) as the difference between the setting output

temperature, Tout
str , and half of the maximum temperature deviation allowed. Finally, TES

operation is limited by the following constraints:

0 ≤ sstr,t ≤ δg smax
str , (12)

∑CTSstr
i=1 δiVoli ≥ kTES ∑UPstr

u=1 δgCmax
g . (13)

Equation (12) does not only limit the thermal capacity within smax
str , but it also allows

whether to include the str-device into the final system configuration. Constraint (13) en-
sures that the volume of the TES model chosen on the g-node is greater than the product
of the safety factor, kTES, and the overall capacity of the upstream thermal generators
feeding the g-node [37,38]. Herein, u ∈ {1, . . . , UPstr}, while UPstr and CTSstr repre-
sent the number of upstream nodes and the number of available storage models of the
str-device, respectively.

2.4. Multiple Thermal Outputs Constraints

Devices able to provide different energy services (e.g., gas boilers producing both
heating and DHW) are modeled as multi input multi output components [33]. As a result,
the number of input ports is equal to the number of output ports. This allows to easily
recognize the input branches responsible for each energy conversion, and it also permits to
specify different and unrelated energy conversions for each output carrier. Conversely, heat
pumps usually give priority to DHW production over heating service in order to minimize
discomfort for the users. Thus, the heat supply for space heating and DHW systems does
not occur simultaneously. The following constraints are used to capture this feature:

0 ≤ ADHW
g Vt ≤ Cmax

g Mg,t, (14)

0 ≤ AH
g Vt ≤ Cmax

g
(
1−Mg,t

)
. (15)

where ADHW
g and AH

g represent the branch-port incidence matrixes for the DHW and the
heating conversion, respectively. For devices capable of both heating and DHW service
production, the Mg,t =

{
mg,1, . . . , mg,T

}
vector containing T binary decision variables is

used to set a binary control strategy. When Mg,t = 1, the g-device is enabled to produce
DHW, while the heating output is forced to zero. On the other hand, when Mg,t = 0, the
heating service is allowed, and DHW service is denied.

2.5. Solar Equipment Roof Constraints

When including PV and SCs into the EH system, additional constraints regarding
the available space on the roof must be considered. Indeed, in real case application, the
available surface on a roof is not just limited in space, but it is also made up of many sectors,
each of them having different areas, orientations, and tilt angles. All of these parameters
greatly influence the EH system sizing and operation, leading to different combinations of
PV and SC surfaces according to the considered objective function.

Similar to the multi sizing procedure explained in Section 2.2, nodes representing
either PV or SC are split into R nodes, being R the number of sectors of the roof and
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r ∈ {1, . . . , R}. Then, branches between upstream and downstream nodes are added.
Hence, the installation of PV and SC on each sector is subject to the following constraints:

APV/SC
r = nPV/SC

r SZPV/SC, (16)

δr SZPV/SC ≤ APV/SC
r ≤ δr SZR

r , (17)

vPV/SC
r = ηPV/SC APV/SC

r Ir, (18)

APV
r + ASC

r ≤ SZR
r . (19)

In Equation (16), the installed PV (SC) surface on each sector, APV/SC
r , is defined as a

multiple of one single PV (SC) module area, SZPV/SC, using the integer variable nPV/SC
r .

Constraint (17) bounds APV/SC
r between SZPV/SC and the available surface on the r-sector,

SZR
r . Moreover, the binary decision variable δr is here used to choose whether to install

any PV (SC) module on the corresponding sector. The energy converted by the PV (SC) on
the r-sector, vPV/SC

r , is given by Equation (18), where the sun radiation Ir is multiplied by
APV/SC

r and the conversion efficiency ηPV/SC. Finally, Equation (19) ensures that the sum
of the installed PV and SC surfaces on each sector does not exceed SZR

r .

3. Energy Community Model

Energy communities employ different energy carriers to satisfy the community energy
consumption. Therefore, the EH approach can be implemented within the EC framework
to assess the benefits of electricity sharing for both EC users and the environment.

Initially, each final energy use must be acknowledged as a domestic or a communal
load. In the first case, loads are met importing energy from the input buses, and no internal
conversion device is needed, whereas in the latter case, energy entering the EC is converted
by centralized conversion equipment owned by the community. To properly allocate
electricity bills due to domestic and communal loads, tenants’ electricity consumption
is measured using private energy meters, while electricity used for communal loads is
tracked using a communal meter. Following current virtual self-consumption schemes [39],
private and communal meters are connected to the public grid, whilst an internal grid
allows the local RES generation to cover part of the communal loads. Moreover, when local
RES generation exceeds the electricity demand of communal loads, electricity is sold to the
public grid.

3.1. Electricity Mesurements

In this paper, thermal loads are supposed to be met using centralized devices owned by
the community. Therefore, heating, cooling, and DHW demand are deemed as communal
loads. Since devices converting electricity into thermal energy carriers are also included,
electricity used for domestic and communal purposes must be separately measured. For
this reason, two different electricity meters are modeled. All private energy meters are
aggregated into one domestic meter (DM), allowing the estimation of the total domestic
load, Eload, while a communal meter (CM) measures the amount of electricity used for
thermal communal purposes, ETH . The proposed EC connection to the electrical grid is
modeled by Equations (20)–(23):

ESS,in
t = ED,de f

t + EC,de f
t , (20)

ESS,out
t = Esur

t , (21)

ETH
t − EPV

t = EC,de f
t − Esur

t − Esh
t , (22)

Eload
t = ED,de f

t + Esh
t . (23)

The electricity imported from the closest substation (SS), ESS,in
t , is defined in (20),

where ED,de f
t and EC,de f

t stand for the electricity purchased for meeting domestic and
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communal demands, respectively. In (21), the electricity effectively sent to the SS, ESS,out
t , is

set equal to the surplus energy of the EC system, Esur
t . As stated in (22), when the electricity

generated by the overall PV system, EPV
t , falls below ETH

t , electricity is withdrawn from
the SS, entering the CM. Alternatively, when EPV

t exceeds ETH
t , the surplus PV generation

exiting the CM can be either sent to the SS by Esur
t or shared to the DM via Esh

t . Finally,
in (23), Eload

t can be matched either by importing electricity from the SS or by sharing
PV generation.

3.2. Shared Electricity Pricing

Due to the virtual self-consumption regulation currently in force, energy and financial
cash-flows do not coincide. Indeed, under the current regulation, shared electricity is
considered as the minimum between the domestic electricity consumption and local RES
generation exceeding electrical communal demand. The latter term represents the energy
exiting the CM, given by the sum of surplus and shared electricity. Within this framework,
electricity from the grid must be purchased at the retail price, πSS,in, and all the electricity
exceeding communal purposes is sold to the main grid at a given price, πSS,out.

Hence, the cost-effectiveness of the shared electricity incentives can only be appreci-
ated once the corresponding remuneration is received by the EC together with the energy
bill. To integrate this postponed remuneration into an operation optimization problem, the
shared electricity net value is defined as:

πsh = πSS,in − πSS,out − πinc. (24)

where the retail price, πSS,in, is reduced by both πSS,out and the incentive remuneration,
πinc, given for each unit of shared electricity. As a consequence, the optimal dispatch
of all thermal devices strongly depends on the resulting value of πsh, causing EPV to be
differently allocated between ETH , Esur, and Esh.

4. Problem Formulation and Methodology
4.1. EC Topologic Implementation

In this paper, the EC input nodes are supposed to be connected to the electrical and
the natural gas distribution grids. Solar radiation is also supposed to enter the EH via a
virtual input node. The output nodes are represented by electric, cooling, heating, and
DHW loads, which are differentiated into domestic and communal loads, as explained in
Section 3.1. The starting configuration of the EC given to the optimizer is illustrated in
Figure 2.

As defined by the SMM approach, energy vectors are represented as unidirectional
arrows. In this paper, four different types of internal energy carriers are considered:
electricity (E), space heating (H), domestic hot water (DHW), and cooling.

In the initial configuration, the following conversion devices are included: gas boiler
(GB), electrical heat pump (EHP), direct expansion multi-split systems for space cooling
(AC), photovoltaic panel (PV), solar thermal collector (SC). Carriers E, H, and DHW can ben-
efit from storage components, named EES, TES(H), and TES(DHW), respectively. To allow
the dispatching of SCs, a dedicated storage unit is also included, TES(SC). Lastly, multiple
interface energy management (MIEM) components are used to interface different devices
with the same energy carrier, allowing to merge and split the connected energy vectors.
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Figure 2. Initial topologic layout of the considered energy community (EC).

Once the initial configuration is determined, an automatic code skims over the cata-
logue of devices checking all available models. It is worth recalling that, for solar compo-
nents, the optimizer does not only choose the most appropriate model in the catalogue, but
it also decides the number of single solar modules to be installed on each sector of the roof.

As it can be noticed, the EC topologic implementation shown in Figure 2 satisfies
Eqations (20)–(23) according to the definition of DM and CM energy meters. In Table 1,
the relationships between energy vectors and variables of the EC model are listed. The gas
imported, G, to fuel the GB for heating and DHW purposes is also included.

Table 1. Relationships between EC variables and energy vectors.

Variables Energy Vectors

ED,de f
t v1

EC,de f
t v2
Esur

t v3
G v4 + v5

EPV
t v10

Esh
t v12

ETH
t v21 + v22 + v29

It should be noticed that, while Eload
t does not offer any flexibility to the optimizer due

to its predefined profile, ETH
t can be optimized by dispatching thermal devices according

to the considered objective function.
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4.2. Objective Function

To find the optimal configuration and the optimal operation of the EC considering
current incentives on shared electricity, the following objective function is proposed:

min CI + CO, (25)

CID =
G∗

∑
g=1

δg

[
1(

rg + 1
) rg

(
rg+1

)kg(
rg+1

)kg − 1
CIg

(
1 +

R

∑
r=1

nPV/SC
g,r

)]
, (26)

CO =
D

∑
d=1

λd

(
T

∑
t=1

CSS
d,t + Cinc

d,t + Cgas
d,t

)
, (27)

CSS
d,t = ESS,in

d,t πSS,in − ESS,out
d,t πSS,out, (28)

Cinc
d,t = Esh

d,t πsh, (29)

Cgas
d,t = Gd,t πgas. (30)

As stated in (25), the problem solution is given by the sum of investment and operating
costs, whose terms are defined in detail in (26)–(30). The investment cost is defined in
(26) as the sum of present values of yearly payments related to all devices chosen by
the optimizer, i.e., those devices having δg = 1. Moreover, CIg, rg, and kg represent the
investment cost, the interest rate, and the lifetime of the g-th device. The investment cost
for solar devices is given by the sum of all solar units installed on each sector of the roof.
Note that, in this paper, maintenance costs are also included in CIg.

Being d ∈ {1, . . . , D} and D the number of reference day in a year, Equation (27)
computes the yearly operation cost as the sum of each d-operation cost weighted by
the corresponding number of represented days, λd (details are reported in Section 5.2).
Moreover, each d-operating cost is defined as the sum of the following terms: (i) CSS

d,t , i.e.,
the electricity transaction cost between the main grid and the EC (28); (ii) Cinc

d,t , i.e., the
shared electricity cost (29); (iii) Cgas

d,t , i.e., the cost for purchasing gas at the retail price
πgas (30). While πSS,in,πSS,out, and πgas prices are set by energy retailers, πinc depends on
incentives given by the particular self-consumption scheme, as previously considered in
Section 3.2.

5. Case Study
5.1. Building and Climate Data

The approach for the design and the operation of the EC system is applied to a
residential building containing 22 apartments located in the northeast of Italy near Treviso.
The building was built in 1989 and consists of three interconnected blocks with three floors.
The planimetry of the first and the second floor is shown in Figure 3, where the dwellings
are contoured in red, and the unheated spaces are highlighted in yellow. The ground floor
is almost entirely used as garages, except for the central part of the main block, occupied by
two apartment units. The first floor is partly on a portico, and there is an unheated crawl
space between the second floor and the gable roof, whose pitch is 22◦.
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Figure 3. Building street view and floor plan of the first and the second floor.

The overall heated and cooled floor area is 1480 m2, and the ratio between external
surfaces and the conditioned volume is 0.81 m2/m3. The external walls are made of hollow
bricks, and there are aluminum double-pane windows. The main thermal properties of the
external opaque and the glazed components are listed in Table 2.

Table 2. Properties of the main opaque components and windows.

Components Main Properties

External walls U-value = 0.92 W/(m2K)
Ground floor U-value = 0.87 W/(m2K)
Other floors U-value = 1.29 W/(m2K)

Upper-level ceiling U-value = 1.58 W/(m2K)
Windows, glazing U-value = 2.83 W/(m2K) g-factor = 0.755
Windows, frame U-value = 7.00 W/(m2K) Aframe/Awindow = 0.15

The entire building is modeled considering 22 heated/cooled zones (i.e., all the
apartments) and 14 unconditioned zones (five zones for the stairs, three zones for the crawl
spaces, six zones for garages and technical rooms).

As regards space heating, the internal air temperature was set to 20 ◦C, with an
overnight reduction to 18 ◦C from 23:00 to 07:00. During the cooling season, indoor
air was set to 26 ◦C with a maximum 50% of relative humidity. The infiltration rate
of the heated/cooled zones was set to 0.3 volumes per hour. Internal heat gains were
modeled using standards and the profiles from a large monitoring campaign conducted in
Italy [40–42]. The climate data of Treviso was considered by means of the corresponding
test reference year taken by the well-known EnergyPlus weather data repository [43]. In
this climatic zone, the heating period lasts 183 days, from 15 October to 15 April. The
corresponding number of heating degree days is 2456.

Various solutions can be evaluated for the retrofit of the considered building to im-
prove its energy performance as well as the tenants’ thermal comfort. The replacement of
the windows and the insulation of the opaque components are initially considered sepa-
rately and later combined together. As regards glazed components, new uPVC double-pane
windows filled with Argon are considered with an overall U-value of 1.4 W/(m2K) and a
g-factor of 0.589. As regards opaque components, EPS boards with thermal conductivity of
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0.04 W/(m2K) and thickness of 15 cm are considered for the insulation of the external walls
and the ceiling of the portico. The ceiling of the second floor is insulated from the side of
the crawl space, reaching a thermal transmittance of 0.3 W/(m2K). The floor of the first
floor is insulated from the side of the garages, considering a board with a thermal resistance
of 2.55 m2K/W made of 2.5 cm of cement-bonded wood fiber coupled with 8 cm of mineral
wool; in terms of fire resistance, this material is suitable to be used in garages. More details
about the climate data and the annual energy demand in the simulated scenarios are given
in Appendix A.

5.2. Demand Evaluation and Reference Days

Based on the building technical data presented in the previous section, building sim-
ulations are performed using TRNSYS 17, a well-known software for detailed dynamic
building simulations [44], with a 15 min resolution timestep. The results of the simulations
allow the assessment of heating and cooling load profiles under the following refurbish-
ment cases: (i) no intervention made; (ii) windows replacement; (iii) envelope replacement;
(iv) windows and envelope replacement. The annual DHW consumption is evaluated
using a statistical model proposed by Jordan et al. [45]. Finally, the electric load profile of
the EC is obtained aggregating real data consumption of the considered 22 housing units.

Considering yearly-based profiles in optimization applications leads to very accurate
problem solutions, although it causes extremely time-consuming simulations. For this
reason, yearly-based data regarding demand consumption and external parameters (e.g.,
sun radiation and outdoor temperature) must be boiled down to a limited number of
reference days throughout the year. Based on homogeneous characteristics of yearly
demand and external signals profiles, five seasonal periods are identified, similarly to
what was done in [35]: (i) very cold with low insolation; (ii) cold with medium insolation;
(iii) mid-season; (iv) hot; (v) very hot. Results are shown in Table 3. Each d-reference day
profile is calculated as the mean profile of all the represented days. In conclusion, yearly
profiles are approximated by the profiles of a consecutive combination of d-days, each of
them weighted by the corresponding number of represented days, λd.

Table 3. Reference days considered in the analysis.

d Periods of the Year λd

1 1 December–28 February 90

2 1 March–15 April, 16
October–30 November 92

3 16 April–31 May, 16
September—15 October 76

4 1–30 June, 16 August–15
September 61

5 1 July–15 August 46

To achieve representative operating results of the EC throughout the year, the operat-
ing results of each d-day must adequately represent the corresponding season. Because the
profiles of energy demand and external parameters greatly differ one season from the other,
by simulating each d-day consecutively, operation results are affected by inaccuracies due
to time-dependent components (e.g., TESs). Indeed, charging and discharging phases of
storage units greatly depend on previous and future load forecasts. Therefore, the man-
agement of storage devices is substantially distorted when demand profiles of consecutive
d-days are too different. To avoid this type of inconsistency, each reference day is simulated
five times in a row, resulting in an overall 25 days simulation. Additionally, because five
identical days are considered for every season, each simulated day should be weighted by
a fifth of the corresponding λd.

Since the third day of each season is the least affected by adjacent seasons, once the
25 days-based simulation is over, a post-process code extracts the operating results for every
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third day of each season and multiplies them by the corresponding λd. The combination of
these terms is used to define the correct yearly operation result of the EC.

5.3. Technical Systems

The catalogue of devices included in this paper is listed in Table 4. Investment costs
and performances of devices currently available in the Italian market are considered to
achieve market-oriented solutions.

Table 4. Catalogue of devices considered.

Device Size Life CI Device Size Life CI

AC 35 kW 15 39,600 € TES(H) 800 l 20 736 €

EHP 20 kW 20 7200 € 1000 l 20 779 €
40 kW 20 14,400 € 2000 l 20 1377 €
85 kW 20 30,600 € 4000 l 20 2713 €
95 kW 20 34,200 € 5000 l 20 3738 €

EES 10 kWh 10 6000 € 6000 l 20 4304 €
29 kWh 10 18,000 € 8000 l 20 5005 €
48 kWh 10 30,000 € 10,000 l 20 6380 €

GB 24 kW 15 5767 € 16,000 l 20 10.008 €

32 kW 15 6266 € TES(DHW) 1000 l 20 2846 €
44 kW 15 7133 € 1500 l 20 3814 €
60 kW 15 8403 € 2000 l 20 5118 €
80 kW 15 10,599 € 3000 l 20 6420 €

105 kW 15 11,911 € 4000 l 20 8150 €

PV 1.6 m2 25 352 € 5000 l 20 9426 €

SC 2 m2 15 600 € 10,000 l 20 18.852 €

MIEM(DHW) - 15 1 € TES(SC) 3000 l 20 6420 €

MIEM(E) - 15 4000 € 5000 l 20 9426 €

MIEM(H) - 15 1000 €
AC: space cooling; EHP: electrical heat pump; EES: electrical storage devices; GB: gas boiler; PV: photovoltaic
panel; SC: solar thermal collector; MIEM: multiple interface energy management; DHW: domestic hot water; TES:
thermal storage devices.

For PV and SC components, the size value reported in Table 4 refers to the area of
the PV (SC) single module, SZPV/SC. Their conversion efficiencies have nominal values
equal to 0.18 and 0.8, respectively, and depend on external conditions as described in
Vian et al. [33]. In this reference, PV systems depend on both outdoor temperature and sun
radiation, while SCs’ performance is only affected by sun radiation. Moreover, the roof
of the considered building has three available sectors: (i) 165 m2 facing south; (ii) 110 m2

facing east; (iii) 110 m2 facing west.
All ESs have constant charging and discharging efficiencies set to 0.98 and 0.99, re-

spectively. TESs are supposed to control the outlet water temperature within a range of
±3 ◦C, thus having a ∆T = 6 ◦C. For TESs devices with sizes smaller than 2000 l, the sta-
tionary loss factor Kloss

str = 5.37 W/K is used, whereas for bigger sizes, Kloss
str = 4.38 W/K is

considered. Finally, for all TESs, kTES = 20 l/kW is used based on common design practice.
Real performances of condensing gas-fired boilers and air-to-water heat pumps are

used to model the dependency on outdoor air temperature of GB and EHP. In Figure 4a, the
GB implemented conversion efficiency is presented, while in Figure 4b, the coefficient of per-
formance (COP) of the EHP is shown for different values of water temperature production.
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Figure 4. Outdoor temperature dependency of thermal devices: (a) condensing gas-fired boiler efficiency; (b) coefficient of
performance of an air-to-water electric heat pump.

The investment costs associated with MIEMs include all those technical expenditures
needed for practical installation. As an example, the MIEM(E) cost includes all purchases
for wiring and protection equipment. Moreover, the investment cost of MIEM(H) is
supposed to include the installation cost related to the DHW system. Finally, the present
value of yearly payments of all devices is calculated using a fixed interest rate r = 4%.

5.4. Investment Scenarios and Operating Assumptions

To assess the most suitable investment solution, five scenarios are investigated, and
their features are reported in Table 5. They do not only differ in terms of retrofit intervention
but also for the temperature of the water supplying the heating system, Tw, and for the
typology of devices included in the initial configuration.

Table 5. Description of considered scenarios.

Scenario Refurbishment
Intervention Retrofit Cost Catalogue Tw

S-B No intervention 0 GB, TESs, AC 55 ◦C
S-H No intervention 0 full 55 ◦C

S-W Windows
replacement 60,953 € full 50 ◦C

S-E Envelope
replacement 125,304 € full 50 ◦C

S-WE Scenario W +
Scenario E 186,257 € full 45 ◦C

Scenario S-B is used as a benchmark scenario where no other devices other than
GBs, AC, and MIEMs together with TES(H)s and TES(DHW)s can be chosen, and no
refurbishment intervention is made. This is supposed to represent the majority of current
fossil-based thermal systems with no local generation available. In addition, because PVs
cannot be installed, remuneration for shared electricity cannot take place. Scenario S-H
is a hybrid scenario where no intervention is considered but where the energy system
is designed according to the general configuration displayed in Figure 2. Scenarios S-W,
S-E, and S-WE are also configured according to the general initial configuration while
benefitting from a progressive increase in building efficiency. Besides, as the building
efficiency increases, radiators are supplied with lower Tw, hence progressively improving
the performance of heating devices. In all scenarios, DHW is supplied at a temperature



Energies 2021, 14, 2045 16 of 24

of 55 ◦C. Lastly, all retrofit intervention investment costs are supposed to be split into
25 yearly payments with a fixed interest rate r = 4%.

Electricity retail price πSS
in is set at 0.19 €/kWhe, while surplus energy injected into

the grid is remunerated at πSS
in = 0.05 €/kWhe. Following current incentives by the Italian

government [39], shared electricity is remunerated at πinc = 0.11 €/kWhe. Ultimately,
natural gas retail price is set at 0.90 €/scm, which translates into πgas = 0.0938 €/kWhth
using the conversion factor of 9.6 kWhth/scm.

The proposed model is implemented in the YAMILP platform [46], which allows
the problem to be built within a MATLAB interface, and solved thanks to the GUROBI
solver [47], one of the most used commercial solvers for linear and quadratic programming.
Simulations are conducted on a 64 bit PC with a 2.80 GHz CPU and 16 GB RAM.

6. Simulation Results

Simulation results are used to assess the most convenient investment intervention
from a short-term and a long-term perspective. Then, the overall best economic scenario
is analyzed to appreciate optimal operating results. In conclusion, annual emissions
generated by the EC are evaluated based on the net energy imported into the system.

6.1. Optimal Results of Considered Scenarios

Optimal design and sizing results are reported in Table 6. To highlight the contribution
given by current incentives on shared electricity, all scenarios are simulated with (Y) and
without incentives (N). The same identification was also used in Table 7.

Table 6. Typology and size of devices included in considered scenarios.

Devices S-B S-H S-W S-E S-WE

- Y N Y N Y N Y N

AC (kW) 35 35 35 35 35 35 35 35 35

EHP (kW) - 40 40 40 40 40 40 40 40

GB (kW) 80 44 44 32 32 - - - -

TES(H) (l) 10,000 4000 4000 8000 8000 10,000 10,000 4000 4000

TES(DHW) (l) 5000 3000 3000 1500 1500 5000 5000 5000 5000

PV(EST)
(
m2) - 108.8 108.8 108.8 105.6 108.8 40.0 108.8 16.0

PV(WEST)
(
m2) - 108.8 59.2 108.8 40.0 108.8 40.0 108.8 12.8

PV(SOUTH)
(
m2) - 164.8 164.8 164.8 164.8 164.8 164.8 164.8 164.8

Table 7. Optimal investment and operation results.

Costs S-B S-H S-W S-E S-WE

- Y N Y N Y N Y N

CID 6238 11,663 10,991 11,566 10,591 11,518 9655 11,259 8702
CIB 0 0 0 3752 3752 7712 7712 11,464 11,464
CO 33,649 22,461 24,762 18,460 21,139 13,011 16,602 10,878 15,178
Ctot 39,887 34,124 35,753 33,777 35,482 32,242 33,970 33,601 35,345

In all considered simulations, optimal configurations do not include EES, SC, and
TES(SC) devices due to their high investment costs which are not compensated by sufficient
operating energy savings. Since the 35 kW AC is the only AC model listed in the calatogue,
it must be included in all scenarios. As it can be observed, shared electricity remuneration
only affects the sizing of the PV system, thus not influencing the choice of other devices.
Because incentives on shared electricity are so attractive, when remuneration is given to
the EC, the optimizer maximizes the PV surface on each available roof sector. Instead,
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when electricity sharing is not remunerated, PV generation is not shared among end-users.
Then, the overall size of the PV system only depends on the EHP and the AC consumption
needed to meet the heating and the cooling load, respectively.

For both TES(H) and TES(DHW), sizing solutions are found within a set of three
available models, namely small, medium, and large. In the benchmark scenario (S-B),
heating and DHW can only be produced by the GB. Hence, an 80 kW GB together with
large TESs are chosen. Although the hybrid scenario (S-H) is based on the same demand
profiles of S-B, by letting the solver choose among the entire device catalogue, a different
solution is found. In fact, heating and DHW loads are met using a 40 kW EHP and a
40 kW GB. Given the EHP contribution, the medium size of TES(H) and the small size of
TES(DHW) are selected. The slight improvement of the building efficiency in S-W results
in lower heating and cooling demands. Thus, heating peak load is covered using the 40 kW
EHP, a smaller 32 kW GB, and the medium TES(H). The retrofit intervention of S-E leads
to a significant reduction of the heating demand, allowing the exclusion of GB, which is
balanced by using large TESs. Finally, in S-WE, the further reduction of the heating demand
permits to decrease the capacity of the TES(H) to its smallest size.

The resulting total cost is given by the sum of the operating cost (CO), the total
investment cost for devices (CID), and the present value of yearly payment for retrofit
intervention (CIB). The economic results of the considered scenarios are reported in Table 7.
This clearly shows that the remuneration on shared electricity leads to cheaper solutions
for each considered scenario.

The values in Table 7 can be observed in Figure 5, which illustrates the results of the
scenarios with (Figure 5a) and without (Figure 5b) remuneration. Although S-B shows the
lowest CID, its operating cost is considerably higher than all other cases, thus resulting in
the most expensive scenario. The CID is nearly constant across all other cases, with slightly
lower values when no remuneration is given due to the smaller area of the PV system
installed. As might be expected, operating cost reduction can be achieved by investing in
refurbishment interventions. Moreover, when shared electricity is remunerated, operating
costs can be further reduced. Although S-WE guarantees the lowest operating costs, the
corresponding CIB makes the overall solution more expensive than that of S-E. Therefore,
the solution of S-E with remuneration represents the overall best.

Figure 5. Optimal investments and operation results: (a) with incentives; (b) without incentives.

6.2. Long-Term Economic Evaluation

To assess the most convenient investment scenario in a long-term perspective, an
economic evaluation is carried out considering only solutions with remuneration on shared
electricity. The following assumptions are made: (i) 15 years time horizon, which is
the shortest device lifetime among all devices included in Table 6; (ii) investments costs
are distributed over the time horizon since year 0 with a fixed interest rate r = 4%;
(iii) operating costs are paid at the end of each year with no interest rate.
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Because the lifetime of most devices exceeds 15 years, the present value of the whole
equipment system within the considered time horizon is calculated as the sum of the first
15 yearly payments of each device, CID. Similarly, retrofit interventions have 25 year
payback periods; therefore, the present value of the payments made within the considered
time horizon is evaluated as the sum of the first 15 yearly payments, CIB. The overall
optimized cost of each scenario, Cost15, is computed as the sum of total investments, CItot,
and 15 times the CO.

The results shown in Table 8 are used to assess the progressive cost profiles of
each scenario, Figure 6a, and the progressive saving profiles of each scenario compared
with the benchmark scenario S-B, Figure 6b. Within the considered time horizon, S-E
results in the most convenient scenario, i.e., the scenario with the overall lowest cost
(Cost15,S−E = 417, 536 €). In particular, S-E allows 159,331 € cost savings compared to S-B
after 15 years. It is worth noticing that, by not choosing S-B, savings can be achieved within
a time span directly related to the investment costs. The additional investment in S-H
compared with S-B would be matched in 5 years, while for S-WE, it would be matched in
9 years.

Table 8. Present values of investment and operation results.

Scenario CID

(€)
CIB

(€)
CItot

(€)
CO

(€/year)
Cost15
(€)

S-B 72,132 0 72,132 33,649 576,868
S-H 134,861 0 134,861 22,461 471,783
S-W 133,738 43,381 177,118 18,460 454,011
S-E 133,188 89,180 222,368 13,011 417,536

S-WE 130,188 132,561 262,749 10,878 425,917

Figure 6. The 15 year projection economic analysis of: (a) cumulative costs; (b) cumulative savings compared to S-B.

6.3. Operation Analysis of the Best Scenario

This section presents the results about the optimal operation of the economically
best investment scenario, S-E. As shown in Figure 7a, PV generation cannot be shared
on the first reference day, which represents very cold days with low solar radiation. This
is due to high EHP consumption for space heating, as can be seen in Figure 7b. In all
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other reference days, PV generation exceeds ETH , hence allowing to share electricity and
eventually sell the surplus to the main grid. It is worth noticing that, thanks to the
considered pricing scheme, EPV is distributed according to the following convenience
order: ETH , Esh, Esur. The optimizer recognizes that supplying shared electricity to the
domestic load is more convenient than buying electricity from the distribution network at
the retail price. Furthermore, this strongly encourages the optimizer to maximize the PV
area on the roof, in accordance with the results in Table 6.

Figure 7. Simulation results: (a) distribution of PV generation among the supply of communal loads, shared, and surplus
electricity; (b) dispatch of thermal communal units.

From Figure 7b, the composition of ETH can be appreciated. Although, in this paper,
the management of the cooling load does not offer any flexibility, the ETH profile is op-
timized by optimally scheduling the power demand of the EHP. During cold days, the
EHP is mostly used for the heating service, while DHW production occurs intermittently
during the day. On milder days, the EHP operates exclusively for the DHW service, with
a moderate consumption during most of the day and a significant consumption peak
during sunny hours. While working at its maximum capacity from 09:00 to 22:00, the EHP
consumption decreases in the central hours of the day due to the outdoor temperature
rise, increasing its COP. At 16:00, the EHP consumption deviates due to the lower COP
of the DHW system, which distributes DHW at a higher temperature compared to the
heating system.

The electrical and the thermal end-use profiles are illustrated in Figure 8. In Figure 8a,
the electrical load is supplied by the electricity coming from the grid and the PV-shared
electricity. The supply of both heating and DHW load is secured by the EHP thermal
output and by the thermal energy provided by TESs. When the EHP generation exceeds
the demand, the surplus energy is used to charge the TESs. On the other hand, when the
EHP generation falls below the demand, TESs discharge, matching thermal loads. During
cold periods, the heating load in Figure 8b is met using mostly EHP generation while also
taking advantage of the TES(H) discharge to cover its peak consumption. During these
days, TES(DHW) in Figure 8c is dispatched to cover most of the DHW demand thanks
to its discharged contribution while charging occasionally during the day. In warmer
days, the DHW load is generally satisfied by EHP generation during sunny hours and by
discharging the TES(DHW) during night-time.
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Figure 8. Energy end-use profiles: (a) electrical load; (b) heating load; (c) DHW load.

6.4. Environmental Evaluation

Lastly, simulation results are used to assess the environmental benefit of the considered
EC and the influence of the electricity sharing incentive. Annual tons of CO2 equivalent
emissions (tCO2eq) are associated with the amount of net energy imported from the
electrical and the gas distribution networks. For the electricity case, the net amount of
imported energy is given by the difference between purchased and sold electricity. The
conversion from energy to CO2eq is calculated based on: (i) emission index of Italian
national generation used for electric loads γe = 281.4 gCO2eq/kWhe; (ii) natural gas
emission index γth,gas = 201.0 gCO2eq/kWhth. As it can be seen from Table 9, emissions
fall steadily with the increase of building efficiency. As might be expected, S-WE is the
overall best environmental scenario, allowing a 78% emission reduction compared to S-B.

Table 9. Net imported energy and corresponding CO2eq emissions.

Scenario
Electrical

Energy
(kWhe)

Thermal
Energy
(kWhth)

Electrical
Emissions
(tCO2eqe)

Thermal
Emissions
(tCO2eqth)

Total
Emissions
(tCO2eqtot)

S-B 70,398 106,702 19.81 21.44 41.25
S-H 56,715 37,265 15.96 7.49 23.45
S-W 56,278 15,269 15.84 3.07 18.91
S-E 44,312 0 12.47 0 12.47

S-WE 31,710 0 8.92 0 8.92
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The same procedure is repeated when no remuneration is given, and the results can
be observed in Figure 9.

Figure 9. Tons of CO2eq emissions for scenarios without and with incentives on shared electricity.
Percentage values indicate the emission percentage reductions compared with S-B.

7. Discussion

Simulation results confirm that investing in higher refurbishment interventions leads
to progressively lower operating costs. Because equipment renovation costs remain approx-
imately constant through all scenarios, the overall best economic solution can be identified
based on the operating cost reduction achieved by the corresponding refurbishment invest-
ment. In this regard, the benchmark scenario S-B features the most expensive CO, thus
resulting in it being the least convenient solution in a long-term perspective. Although the
hybrid scenario S-H requires almost twice the investment of S-B, the corresponding lower
CO leads to an 18% reduction of Cost15. Results also prove that investing in windows
replacement offers low margins for CO reduction. This makes windows and envelope
intervention in S-WE slightly less convenient than S-E, hence proving the envelope-only
intervention to be the most convenient investment. In detail, S-WE and S-E allow 26% and
28% reduction of Cost15 compared to S-B, respectively.

Shared electricity policies have a great impact on the optimal sizing of the EC, helping
to reduce the overall cost of all investment scenarios. Indeed, remuneration incentives pro-
mote further investments in PV installation, thus pushing toward higher rates of domestic
electric consumption to be locally supplied. In addition, shared electricity remuneration
greatly influences the environmental impact of the EC. As can be seen from Figure 9, when
shared electricity is not remunerated, emissions fall at a significantly lower rate. This
is mainly due to the inferior penetration of PV generation compared to solutions with
remuneration. As an example, while in the case of S-WE with remuneration 382.4 m2

of PV are installed, S-WE without remuneration can only benefit from 193.6 m2 of PV.
Therefore, shared electricity policies prove to have a twofold purpose—overall investment
cost reduction and CO2eq emissions curtailment.

8. Conclusions

In this paper, an optimal planning and operation strategy is proposed to evaluate
investments for ECs under current shared electricity policies. The SMM approach is
employed to model a general EC as a multi-energy EH with electric, space heating, DHW,
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and cooling demands. According to different refurbishment interventions, the thermal
energy needs of a real multi-family building are estimated using TRNSYS software. Five
investment scenarios ware evaluated based on different refurbishment interventions and
different real market-available devices to be installed.

Results demonstrate that investing in building thermal efficiency leads to lower oper-
ating costs. Moreover, by reducing the building thermal needs, progressive electrification
of thermal loads becomes more economically viable. This encourages end-users to take
advantage of both EHP performances and local PV generation. However, as the paper
demonstrates, higher intervention on building efficiency does not necessarily guarantee
the overall most convenient investment, as some retrofit investments may not be compen-
sated by corresponding operating cost reduction. For the considered case study, envelope
substitution proves to be more convenient than windows replacement, allowing 28% cost
reduction compared to the benchmark scenario S-B in a long-term perspective. Besides,
although the combined intervention on both envelope and windows allows the lowest
operating cost, the associated overall cost is higher than investing in the envelope-only sub-
stitution in both short and long-term perspectives. In conclusion, results also demonstrate
that policies on shared electricity remuneration strongly encourage investments in demand
electrification and local renewable installation (PV). This allows higher RES penetration
into the system and further reduces both overall costs and CO2eq emissions.
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Appendix A

Space heating and Cooling Demand Evaluation.
In Table A1, the monthly average, minimum, and maximum dry air temperatures are

listed, along with the global insolation on the east, the south, and the west sides of the roof
(pitch 22◦).

Table A1. Monthly climate data of Treviso.

Month Dry Air Temperature (◦C) Global Insolation (kWh/m2) on the
Roof (Pitch 22◦)

Average Minimum Maximum East South West

1 4.0 −4.0 12.0 26.3 32.6 26.2
2 4.7 −4.0 15.3 31.0 41.6 30.8
3 7.5 −4.2 21.4 76.2 89.6 75.9
4 12.0 3.0 22.0 106.6 120.8 105.9
5 16.1 7.0 26.3 148.6 161.2 147.7
6 19.1 6.0 29.1 156.7 166.4 155.6
7 22.6 14.9 32.0 168.0 180.7 166.8
8 22.1 15.0 32.0 138.5 155.5 137.6
9 18.7 7.3 29.2 96.3 113.2 95.7

10 12.2 0.0 25.0 58.2 73.3 57.9
11 8.3 −2.3 17.7 26.3 32.7 26.3
12 4.0 −4.0 12.0 21.7 27.4 21.7
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Results in terms of annual energy demand for heating and cooling and the percentage
difference from the envelope (S-B) are shown in Table A2. The overall retrofit of the
envelope leads from 120 to 36 kWh/m2 for heating and from 16 to 23 kWh/m2 for cooling.

Table A2. Results of the simulations: annual energy demand for heating and cooling.

Case Qheating Qcooling ∆Qheating ∆Qcooling

(kWh) (kWh/) (kWh) (kWh/)

S-H 177,249 119.6 24,019 16.2
S-W 149,710 101.0 24,069 16.2 −16%
S-E 80,076 54.0 30,877 20.8 −55% +29%

S-WE 53,631 36.2 33,602 22.7 −70% +40%
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