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Abstract: Accurate short-term load forecasting is of great significance to the safe and stable operation
of power systems and the development of the power market. Most existing studies apply deep
learning models to make predictions considering only one feature or temporal relationship in load
time series. Therefore, to obtain an accurate and reliable prediction result, a hybrid prediction
model combining a dual-stage attention mechanism (DA), crisscross grey wolf optimizer (CS-GWO)
and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. DA is introduced on the
input side of the model to improve the sensitivity of the model to key features and information
at key time points simultaneously. CS-GWO is formed by combining the horizontal and vertical
crossover operators, to enhance the global search ability and the diversity of the population of GWO.
Meanwhile, BiGRU is optimized by CS-GWO to accelerate the convergence of the model. Finally, a
collected load dataset, four evaluation metrics and parametric and non-parametric testing manners
are used to evaluate the proposed CS-GWO-DA-BiGRU short-term load prediction model. The
experimental results show that the RMSE, MAE and SMAPE are reduced respectively by 3.86%, 1.37%
and 0.30% of those of the second-best performing CSO-DA-BiGRU model, which demonstrates that
the proposed model can better fit the load data and achieve better prediction results.

Keywords: short-term load prediction; dual-stage attention mechanism; crisscross grey wolf optimizer

1. Introduction

Electric load forecasting plays an important role in the modernization of power system
management and has become the research focus of current power enterprises [1]. It
can be divided into long-term, medium-term and short-term forecasting according to its
different purposes [2]. Among them, short-term load forecasting can ensure the safe and
stable operation of the power system and improve social benefits [3]. Furthermore, it
can accelerate the development of the power market and improve economic benefits [4].
Therefore, it is of great significance to design an efficient and accurate short-term load
forecasting method.

The early short-term load methods mainly use are the exponential smoothing method [5]
and hidden Markov model [6], but the ability of these methods to extract nonlinear charac-
teristics of load is weak [7]. With the rapid increase in the installation of smart meters [8]
and the development of artificial intelligence technology [9], short-term load forecasting
based on big data analysis has become a current research hotspot, such as the BP neural
network [10], extreme learning machine [11], support vector machine [12], etc. In addition,
in order to avoid falling into local minima, some scholars use swarm intelligence optimiza-
tion algorithms to optimize the artificial intelligence model. For example, Niu and Dai [13]
proposed a short-term load forecasting model based on modified particle swarm optimiza-
tion, in which the parameters of least squares supporting a vector machine are optimized.
The experimental results show that the regression accuracy and generalization ability of
the model have been improved by the proposed algorithm. To address the problem of the
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ease in which long short-term memory neural networks fall into local minima, a whale
optimization algorithm (WOA) is used to optimize the network [14]. Li et al. [15] use grey
wolf optimization (GWO) to optimize the parameters of every single kernel in an extreme
learning machine to improve its forecasting ability. However, GWO quickly falls into the
optima trap or fails to find the global optimal solution [16].

Moreover, the above-mentioned shallow learning method is applicable in the scenario
where only the historical load is used for forecasting. If it is necessary to extract deep
hidden features in massive load data, a deep learning model is needed. For example,
Khan et al. [17] use a convolution neural network to extract the coupling relationship of
the input features. Muzaffar and Afshari [18] use a long short-term memory (LSTM) neural
network to learn the temporal correlation contained in the load time series data. In addition,
a gated recurrent unit (GRU) with simpler structures is also used for short-term load
prediction [19], with a high-efficiency ability of feature extraction. To extract the implicit
coupling relationship between features and temporal dependency in load time series,
the combination of CNN and LSTM [20], or its improved variants (e.g., CNN-GRU [21],
GRU-TCN [22] and RCNN-ML-LSTM [23]) are used in load prediction. However, the
above deep learning models have the problems of gradient disappearance and gradient
explosion [24]. Therefore, it is of great significance to avoid these problems and accelerate
the convergence speed of the model, so as to improve the accuracy of load forecasting.

The above-mentioned short-term load forecasting models based on artificial intel-
ligence techniques do not consider the importance of input features, making important
features disappear with the increase of step size [25]. Feature selection is the commonly
used technique to select out the most appropriate input features in forecasting problems [26].
Kong et al. [27] utilize principal component analysis to determine the major factors affecting
wind speed, reducing the dimension of relative features and improving the generation
of model. Li et al. [28] develop a feature selection method to choose competitive input
features. The above feature selection methods reduce the number of input features only
once before prediction by simple correlation analysis, which causes the potentially impor-
tant input variable be discarded [29]. To address this problem, an attention mechanism is
proposed [30], with the advantage of making the model handle the dependency of long time
series more easily. For example, Wang et al. [31] proposed a short-term load forecasting
model based on a feature attention mechanism (FA), in which the effective characteristics
of the input variables are highlighted, leading to improved prediction accuracy. In Ref. [32],
a temporal attention mechanism (TA) is applied in short-term load prediction to capture
the high-impact time steps of load sequence, so as to further reduce the prediction errors.
However, there are few research studies that focus on combining FA with TA to propose a
multi-stage attention mechanism, capturing the feature and temporal relationship in load
time series.

In view of the shortcomings of existing forecasting models, this paper proposes a
short-term load forecasting model (DA-CS-GWO-BiGRU) based on a dual-stage attention
mechanism (DA) and crisscross grey wolf optimizer algorithm (CS-GWO). The contribu-
tions of this paper are presented as follows:

• Combining the advantages of a feature and temporal attention mechanism, a dual-
stage attention mechanism (DA) is introduced in this paper. DA is utilized at the input
side of the forecasting model to comprehensively capture the correlation relationship
between various variables and temporal dependency in the load time series.

• To address the deficiency of GWO, a novel crisscross grey wolf optimizer algorithm
is firstly applied in a short-term load forecasting problem. By introducing horizontal
and vertical crossover operators, the global search ability and community diversity of
CS-GWO are improved.

• The proposed DA-CS-GWO-BiGRU model is verified by using the real load data
set collected in a certain area. The experimental results show that the proposed
model has higher forecasting accuracy than other comparison models, and has good
application prospects.
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The organization of the remainder of this paper is as follows. Section 2 introduces
the basic principle of the deep learning model involved in this paper. Section 3 presents
the methodology of the proposed DA-CS-GWO-BiGRU short-term load forecasting model.
Section 4 introduces the metrics of evaluating predictions. Section 5 focuses on the details
of the experiments, and the results are analyzed and discussed. Section 6 points out the
limitations of and indicates the subsequent work that could follow this paper. Finally,
Section 7 summarizes this paper.

2. Principle of Deep Learning Model
2.1. BiGRU Neural Network

A recurrent neural network (RNN) can only remember short-term dependencies of a
time series and is often accompanied by the problem of gradient explosion or disappear-
ance in the training process [33], leading to its limited use in practice. By modifying the
calculation method of the hidden state of RNN, GRU and LSTM can effectively strengthen
the long-term dependence of time series [19]. The network structure of GRU is shown in
Figure 1.
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It can be seen from Figure 1 that the GRU network calculates the combination degree
of the current input and the previous status information by the reset gate rt. The calculation
process is shown in Equation (1).

rt = σ(xtWr + ht−1Ur + br) (1)

where xt is the input data in t-th time step, ht−1 is the output of the previous time step, Wr
and Ur are the weight metrices of the reset gate, br is the bias of the reset gate and σ is the
sigmoid activation function.

In addition, the GRU network controls the retention of the previous state informa-
tion ht−1 in the current state by update gate zt, and its calculation process is shown in
Equation (2).

zt = σ(xtWz + ht−1Uz + bz) (2)

where Wz and Uz are the weight metrices of the update gate and bz is the bias of the
update gate.

Next, GRU obtains candidate hidden states through the reset gate based on the updat-
ing mechanism of RNN [34], as shown in Equation (3).

h̃t = tanh(xtWh + (rt � ht−1)Uh + bh) (3)

where Wh and Uh are the weight metrices of candidate output and bh is the bias of the
candidate output.

Finally, GRU obtains new hidden state ht by considering the previous hidden state
ht−1 and candidate hidden state h̃t as well as zt. The calculation process is shown in
Equation (4).

ht = zt � ht−1 + (1− zt)� h̃t−1 (4)
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It can be seen from Equations (1)–(4) that GRU only considers the influence factors
on the current time, and lacks consideration of future influence factors [35]. Meanwhile, a
recently proposed neural network named bidirectional gated recurrent unit (BiGRU) can
effectively make up for the deficiency of GRU. BiGRU can fully excavate the influence
relationship hidden in the time series before and after through its unique forward and
backward propagation network structure [36]. The network structure of BiGRU is shown
in Figure 2, and its calculation process is shown in Equations (5)–(7).

→
h t = G(xt,

→
h t−1) (5)

←
h t = G(xt,

←
h t−1) (6)

ht =
→
wt
→
c t +

←
wt
←
c t + bt (7)

where
→
h t is the state information of forward propagation,

←
h t is the state information of

backward propagation,
→
wt is the weight metrices of the hidden layer in forward propaga-

tion,
←
wt is the weight metrices of the hidden layer in backward propagation, bt is the bias of

the hidden layer and G(·) is the calculation process of GRU as shown in Equations (1)–(4).
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As can be seen from Figure 2, BiGRU can exploit information both from the past and
the future. Therefore, this paper uses BiGRU for timing analysis.

2.2. Attention Mechanism

By simulating human visual behavior, the attention mechanism adaptively assigns
different attention weights to the input features of the model to highlight the more critical
influence factors [37], helping the model predict better.

The attention mechanism is mainly composed of three parts, namely, attention weight
calculation, weight normalization and intermediate semantic vector calculation. Firstly,
the attention weight e of different features in the model input x or at t-th time step is
calculated by using a multi-layer perceptron or neural network. Then, in order to meet the
requirement that the sum of attention weights is 1, the attention weight e is normalized to
find α. Finally, the intermediate semantic vector can be obtained by considering x and α as
shown in Equation (8).

c = αx (8)

Therefore, this paper expects to use the attention mechanism to capture the coupling
relationship between each feature and the impact of information both from the past and
the future on the forecasted load value.

3. DA-CS-GWO-BiGRU Short-Term Load Forecasting Model
3.1. Mathematical Model

Set L(i) = (L(24 · i− 23), . . . , L(24 · i)) as the electric load time series of the previous
day, t(i) = (tmax(i), tmax(i + 1), tmin(i), tmin(i + 1)) as the highest and lowest temperature
of the previous day and the current day, r(i) = (r(i), r(i + 1)) as the rainfall of the previous
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day and the current day and d(i) = (d(i), d(i + 1)) as the weather day type of the previous
day and the current day. The short-term load forecasting problem can be regarded as using
the load information of the previous day L(i), and combining its relevant characteristics
t(i), r(i) and d(i) to make a prediction of the electric load values in the current day. Let the
function map of the model be Fθ , and the prediction process is shown in Equation (9).

Ŷ(i)
= Fθ(X(i)) (9)

where X(i) =
[
L(i), t(i), r(i), d(i)

]
=
(

x(i)1 , x(i)2 , . . . , x(i)T

)
∈ RT , and Ŷ(i)

represents the pre-
dicted load values of the current day.

3.2. Dual-Stage Attention Mechanism

As shown in Section 3.1, the prediction model takes historical load time series L(i),
temperature t(i), rainfall r(i) and weather day type d(i) as inputs. According to [38], different
time steps and different features of the same time step have unequal effects on the output.
In order to simultaneously enhance the sensitivity of features and the temporal dimension
while making short-term load predictions, this paper proposes a novel attention mechanism
named dual-stage attention mechanism (DA) that combines a feature attention (FA) and
a temporal attention mechanism (TA). Combining the advantages of TA and FA, DA can
fully capture the relationship between variables and temporal dependence in load time
series, so as to provide data support for an efficient forecasting model.

3.2.1. Feature Attention Mechanism

To highlight the more critical influence features of the input, FA is introduced. As the
successor of the attention mechanism, FA also has three parts, and the calculation of the
attention weight of the input features is realized through the neural network in this paper.
The realization of FA is demonstrated in Figure 3 and as below.
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(1) Attention weight calculation: Set X = (x1, x2, . . . , xT) ∈ RN×T as the input vector

of the prediction model, where xj =
{

x(i)j

}N

i=1
∈ RN(j ∈

{
1, 2, . . . , n f

}
) and N is the

number of samples. The quantization process of the corresponding weight of each feature
is shown in Equation (10).

e = σ(XWe + be) (10)

Among them, e = (e1, e2, . . . , eT) is the unnormalized attention weight, We ∈ RT×T is
the trainable coefficient matrix and be ∈ RT is the bias.

(2) Weight normalization: In order to make the attention weight satisfy the proba-
bility distribution whose sum is 1, e is normalized by the softmax function, as shown in
Equation (11).

αj = softmax(ej) = exp(ej)/
T

∑
i=1

exp(ei) (11)
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(3) Intermediate semantic vector calculation: The normalized weight αj is multiplied
by the corresponding feature vector xj to achieve the purpose of enhancing or reducing the
expression of xj. Finally, the adaptively optimized feature vector XATT can be obtained as
shown in Equation (12).

XATT = (α1x1, α2x2, . . . , αTxT) (12)

It is worth noting that the attention weights are dynamically changed during the train-
ing process of the model, and the weights are determined only when the iterations converge.

3.2.2. Temporal Attention Mechanism

In order to capture the temporal correlation relationship between each time step in
XATT and the current prediction results, TA is introduced. The adaptive extraction of
features at important moments is realized by integrating TA and the BiGRU network. The
implementation is shown in Figure 4 and as below.
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TA also has three parts, which are the same as FA.
(1) Attention weight calculation: Taking the vector XATT containing the feature asso-

ciation relationship and the hidden state ht−1 at the previous time step of BiGRU as the
input of TA, the attention weights at t-th time step in the iterative process are quantified, as
shown in Equation (13).

ft = σ(
[
XATT; ht−1

]
W f + b f ) (13)

where W f ∈ R(2T)×np is the trainable coefficient matrix, b f ∈ Rnp is the bias and np is the
number of hidden elements in the last layer of BiGRU.

(2) Weight normalization: In addition, ft is normalized using the softmax function, as
shown in Equation (14).

β
j
t = exp( f j

t )/
T

∑
i=1

exp( f i
t ) (14)

(3) Intermediate semantic vector calculation: In order to obtain the implicit temporal
correlation relationship at t-th time step, β

j
t and αtxt are weighted and summed to obtain an

intermediate semantic vector dt, which contains features and temporal-related information,
as shown in Equation (15).

dt =
T

∑
j=1

β
j
tαjxj (15)
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Once the iteration of BiGRU terminates, the final hidden state hT and the intermediate
semantic vector dT are obtained. The final prediction is taken by a single-layer feedforward
network utilizing hT and dT , as shown in Equation (16).

Y′ = [hT ; dT ]Wy + by (16)

where Wy ∈ R(2T)×np is the weight metrices of the feedforward network and by ∈ Rnp is
the bias.

Assuming that all parameters of the DA-BiGRU model are θ, its loss function is shown
in Equation (17). With the goal of minimizing this loss function, the final DA-BiGRU
prediction model is obtained when the training is over.

J(Y′, Y, θ) =
1
N

N

∑
i=1

(Y′(i), Y(i))
2

(17)

3.3. CS-GWO Optimization Algorithm

Facts have proved that the prediction model trained with an Adam optimizer can
achieve rapid convergence in the early stage, but the learning rate is too low in the later
stage of training, which may affect the effective convergence of the model and cause
generalization problems [39]. Swarm intelligence optimization algorithms (e.g., PSO, GWO)
are used to address the aforementioned problems; however, this leads to another problem
of failing to find global optimal solutions [16]. In Ref. [40], an improved GWO algorithm
created by incorporating a crisscross optimization algorithm (CSO) [41] is proposed for
solving the optimal power flow problem, effectively avoiding falling into the local optimum
and preventing the premature convergence. Inspired by this, this paper applies a crisscross
grey wolf optimizer (CS-GWO) to optimize the DA-BiGRU model in the early stage of
training, so as to further accelerate the convergence and improve the generation of the short-
term load prediction model. Compared with GWO, CS-GWO achieves better global search
ability and group diversity by introducing horizontal crossover and vertical crossover
operators of CSO.

The implementation of CS-GWO is mainly composed of five parts, which are parame-
ter initialization, hunting, attacking prey, horizontal crossover and vertical crossover. The
implementation process is described in detail as follows.

3.3.1. Parameter Initialization

Set the population of grey wolf as Φ = [θ1, θ2, . . . , θnM ]T ∈ RnM×D, where nM is the
population size and D is the population dimension. Select the individual with the best
fitness value in population Φ as grey wolf α, the individual with the second-best fitness
value in population Φ as grey wolf β, the individual with the third-best fitness value in
population Φ as grey wolf δ, and the rest of the population Φ as grey wolf ω.

3.3.2. Hunting

Since the optimal hunting position of the wolves is unknown in the abstract search
space, it is necessary to set three wolves with the strongest hunting ability to guide the
hunting of the wolves. Assume that the three wolves are α, β and ω, respectively, and
the other wolf ω updates its position according to the positions of the above three wolves
during the iteration process, as shown in Equations (18) and (19).

θ′α = θα(t)− A1 · |C1θα(t)− θω(t)|
θ′β = θβ(t)− A2 ·

∣∣C2θβ(t)− θω(t)
∣∣

θ′δ = θδ(t)− A3 · |C3θδ(t)− θω(t)|
(18)

θω(t + 1) =
θ′α + θ′β + θ′δ

3
(19)
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where θα(t), θβ(t), θδ(t) and θω(t) are the positions of grey wolves α, β, δ and ω at t-th
iteration, respectively, and A1, A2, A3, C1, C2 and C3 are synergy coefficients, which are
calculated as Equations (20) and (21).

3.3.3. Attack Prey

Once the prey is at rest, grey wolves stop searching and attack the prey. To simulate
this process, GWO designs a synergy coefficient A, as shown in Equation (20).

A = 2a · r1 − a (20)

where r1 is a random number in the range of [0, 1], and a linearly decreases from 2 to 0
during the entire iteration process.

It can be seen from Equation (20) that GWO simulates the attack process of grey
wolves. When |A| < 1, the wolves attack the prey; when |A| > 1, the wolves leave the prey
alone, hoping to find better prey.

In addition, in order to avoid local optimum, GWO also designs another synergy
coefficient C, as shown in Equation (21).

C = 2r2 (21)

where r2 is a random number in the range of [0, 1].

3.3.4. Horizontal Crossover

In order to improve the global search ability of GWO, horizontal crossover (HC) is used
to perform arithmetic crossover operations between two different individuals in all dimen-
sions. Assuming that the i-th parent θi and the j-th parent θj(i, j ∈ {1, 2, . . . , nM}) perform
HC operations on the d-th dimension, respectively, their offspring can be expressed as: θHC

i,d = r3 × θi,d + (1− r3)× θj,d + C4 ×
(

θi,d − θj,d

)
θHC

j,d = r4 × θj,d + (1− r4)× θi,d + C5 ×
(

θj,d − θi,d

) (22)

where r3 and r4 are uniformly distributed random values in the range of [0, 1], and C4 and
C5 are uniformly distributed random values in the range of [−1, 1]. Once the HC is over,
the new population ΦHC =

[
θHC

1 , θHC
2 , . . . , θHC

nM

]T ∈ RnM×D can be obtained.

3.3.5. Vertical Crossover

In order to improve the population diversity of GWO, vertical crossover (VC) is
used to perform arithmetic crossover operations for all individuals between two different
dimensions to generate offspring. Assuming that the d1-th dimension and d2-th dimension
of the individual perform VC operations, the offspring can be expressed as:

θVC
i,d1

= r× θi,d1 + (1− r)× θi,d2 (23)

where r is a random value uniformly distributed in the range of [0, 1]. Once the VC is over,
a new population ΦVC =

[
θVC

1 , θVC
2 , . . . , θVC

nM

]T ∈ RnM×D is obtained.

3.3.6. The Detailed Implementation Steps of CS-GWO

To solve the problems of gradient disappearance and gradient explosion problems
in deep neural networks [42], the CS-GWO is used to optimize weights and bias θ of
the DA-GRU model in the early stage of training, aiming to improve the generalization
performance of the model. The flow chart of CS-GWO is shown in Figure 5, and the detailed
implementation steps of the CS-GWO algorithm are as follows:
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(1) Initialize parameters: Set the number of grey wolf populations nM, the maximum
number of iterations T and the population dimension D (the number of weights and bias of
the DA-BiGRU model), and initialize the population Φ.

(2) Set the fitness function: Take Equation (17) as the fitness function.
(3) Determine wolves α, β and δ: Use Equation (17) to calculate the fitness of each

individual; the individual with the best fitness value is grey wolf α, the second-best fitness
value is grey wolf β and the third-best fitness value is grey wolf ω.

(4) Update position and synergy coefficient: Firstly, update the position of grey
wolf ω according to Equations (18) and (19), and then update A and C according to
Equations (20) and (21).

(5) Horizontal crossover: According to Equation (22), perform horizontal crossover
on the parent population Φ to obtain the offspring population ΦHC, and use Equation (17)
to calculate the fitness of each individual. If the fitness of individual θk(k ∈ {1, 2, . . . , nM})
in Φ is worse than that of individual θHC

k in ΦHC, replace θk with θHC
k ; otherwise, do

not replace.



Energies 2023, 16, 2878 10 of 24

(6) Vertical crossover: According to Equation (23), carry out horizontal crossover on
the parent population Φ to obtain the offspring population ΦVC, and use Equation (17) to
calculate the fitness of each individual. If the fitness of individual θk in Φ is worse than
that of individual θVC

k in ΦVC, replace θk with θVC
k ; otherwise, do not replace.

(7) Iteration termination: If the number of iterations reaches T, the position of grey
wolf α is used as the initial weight and threshold θα of the DA-GRU model; otherwise,
return to step (3) and continue the iteration.

4. Evaluation Index

In order to evaluate the effectiveness of the proposed prediction model, this paper
uses root mean square error (RMSE), mean absolute error (MAE), symmetric mean absolute
percentage error (SMAPE) and decision coefficient (R2) to evaluate the prediction results.
The definitions of the four evaluation indicators are shown in Equations (24)–(27), where
RMSE, MAE and SMAPE are indicators used to describe the error between the predicted
value and the real value. The smaller the value, the more accurate the prediction result.
Furthermore, R2 is the indicator used to assess the linear relationship between the input
and output values. The larger the value, the higher the prediction accuracy.

RMSE =

√
1

ntest
∑
ntest

(
Ytest − Ŷtest

)2
(24)

MAE =
1

ntest
∑
ntest

∣∣Ytest − Ŷtest
∣∣ (25)

SMAPE =
1

ntest
∑
ntest

∣∣Ytest − Ŷtest
∣∣(

Ytest + Ŷtest
)
/2

(26)

R2 = 1−
∑

ntest

(
Ytest + Ŷtest

)2

∑
ntest

(
Ytest − Ytest

)2 (27)

where Ytest and Ŷtest are the actual and predicted load values in the testing dataset, respec-
tively, Ytest is the average value of the actual load value and ntest is the sample number of
the testing dataset.

5. Experiment and Analysis

This section will verify the effectiveness of the proposed DA-CS-GWO-BiGRU short-
term load forecasting model through four evaluation indicators (RMSE, MAE, SMAPE
and R2) and two experiments. In addition, in order to reduce the errors caused by the
experimental operation, both experiments were performed 20 times, and the average value
was taken as the final experimental result. Both experiments are based on Python 3.8 and
the Keras deep learning library. The core configuration of the used computer is Intel (R)
Core (TM) i5-9600K 6-core processor, 3.70 GHz operating frequency, 8 GB memory capacity
and Windows 10 operating system.

Particularly, the load data used in this paper is the real sample data of a region
in 2018. These sample data have a total of 365 pieces, and their time resolution is 24.
In order to reduce the influence of data distribution on the experimental results, the data is
randomly sorted; 300 samples are selected as the training dataset, 30 samples are used as
the validation dataset and 35 samples are used as the testing dataset. These datasets are
depicted in Figure 6.
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5.1. Parameter Settings

The attention mechanism is realized by a single-layer fully connected neural network,
the number of neurons is 32 and the activation function is softmax.

The number of neurons in the hidden layer of the prediction model based on a BP
neural network is 32, the activation function is ReLU, the number of neurons in the output
layer is 24 and the activation function is linear. The unit number of the models based on
GRU and BiGRU is 32, the number of neurons in the output layer is 24 and the activation
function is linear. The BP, GRU, BiGRU, FA-BiGRU, TA-BiGRU, and DA-BiGRU models all
use the Adam optimizer, and their hyperparameters β1, β2 and ε are set to 0.9, 0.999 and
1 × 10−8, respectively. In addition, MSE is used as the loss function, and the number of
iterations of these models is set to 500.

5.2. Case 1: The Effectiveness of the BiGRU Model and Dual-Stage Mechanism

In order to better evaluate the effectiveness of the DA-BiGRU prediction model pro-
posed in this paper, this section verifies the superiority of the BiGRU model and effective-
ness of the dual-stage attention mechanism from the aspect of short-term load prediction.
Persistence, BP, GRU, BiGRU, feature-attention-mechanism-based BiGRU (FA-BiGRU) and
temporal-attention-mechanism-based BiGRU (TA-BiGRU) models are compared with the
DA-BiGRU model in this case. The experimental results are shown in Table 1 and Figure 7,
where Figure 7 is a comparison chart between the prediction results of different models
and the real values on 29–31 December 2018.

As shown in Table 1 and Figure 7, the following conclusions can be drawn:
(1) The advantages of BiGRU model:
The prediction performance of the deep learning model is the best among the single

prediction models (i.e., persistence, BP, GRU and BiGRU models), and the prediction
accuracy of the BiGRU model is the highest. For example, compared with the classic
baseline model persistence, the RMSE, MAE and SMAPE values of the BiGRU model are
reduced by 15.46%, 14.38% and 0.942%, respectively, and the R2 value is increased by 1.67%.
Compared with the shallow neural network BP model, the RMSE, MAE and SMAPE values
of the BiGRU model are reduced by 10.56%, 9.40% and 0.531%, respectively, and the R2
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value is increased by 1.98%. In addition, compared with the GRU model, the BiGRU model
has the best RMSE, MAE, SMAPE and R2 values.

Table 1. The experiment results of case study 1.

Prediction Model RMSE/MW MAE/MW SMAPE R2

persistence 36.679 29.258 4.810 0.900
BP 34.671 27.650 4.399 0.911

GRU 32.141 25.128 3.892 0.924
BiGRU 31.009 25.051 3.868 0.929

FA-BiGRU 29.583 23.068 3.591 0.935
TA-BiGRU 29.840 24.239 3.830 0.930
DA-BiGRU 29.053 22.897 3.566 0.937
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The reasons are as follows: Firstly, the machine learning model uses a large amount of
historical load data for training, which can effectively capture the nonlinear relationship of
load time series, and the prediction performance is improved compared with the persistence
model. Secondly, the BiGRU model has a unique bidirectional propagation structure, which
can link the past and future influencing factors with the current load time series so as to
improve the accuracy of short-term load forecasting.

(2) The effectiveness of the dual-stage attention mechanism:
This model combined with the feature attention mechanism can automatically extract

the correlation between each feature, which has the ability of reducing the prediction error
of the model. Compared with the BiGRU model, the RMSE, MAE and SMAPE values of
the FA-BiGRU model decreased by 4.60%, 7.92% and 7.16%, respectively, and the R2 value
increased by 0.65%.

This model combined with the temporal attention mechanism realizes the adaptive
extraction of features at important moments, which improves the prediction stability of
the model. Compared with the BiGRU model, the RMSE, MAE and SMAPE values of the
TA-BiGRU model decreased by 3.77%, 3.24% and 0.98%, respectively, and the R2 value
increased by 0.11%.

In addition, compared with other comparison models in this case study, the proposed
DA-BiGRU model has the best RMSE, MAE, MAPE and R2 values. This is because this
model combines feature and temporal attention mechanisms, which can improve the
sensitivity of the model to key features and key time steps, and finally achieve the purpose
of improving prediction accuracy.
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5.3. Case 2: The Effectiveness of the CS-GWO Algorithm

The popular suite of benchmark functions in validating optimization performance, i.e.,
CEC 2017 [43], is utilized in this subsection to conduct extensive optimization experiments.
The CEC 2017 test suite has 30 functions, which can be divided into four categories:
unimodal functions (F1–F3), multimodal functions (F4–F10), hybrid functions (F11–F20) and
composition functions (F21–F30). The ideal optimal value of each benchmark functions is 0.

Moreover, the well-known optimization algorithms (i.e., PSO, WOA, GWO and CSO)
are compared with CS-GWO to evaluate the effectiveness of the CS-GWO algorithm from
various perspectives, including accuracy, the Wilcoxon signed-rank test and a paired
samples t-test.

5.3.1. The Setting of the Numerical Experiments

The dimension of benchmark functions is uniformly set to 30 in this subsection. For a
fair comparison, the number of iterations of the swarm intelligence optimization algorithm
and the number of individuals is set to 3000 and 30, respectively. The position of PSO is
set in the range of [−1, 1], and the limit of speed is set in the range of [−0.5, 0.5] [44]. For
WOA [45], GWO [46] and CS-GWO, the limit of individual is set in the range of [−1, 1].
Among them, the vertical crossover probability of CSO and CS-GWO is set to 60%, and
the horizontal intersection crossover is set to 100% [47]. To reduce statistical errors, all the
reported results in this subsection are based on 30 independent runs.

5.3.2. The Comparison of Optimization Accuracy

The above-mentioned algorithms are evaluated using the CEC 2017 test suite, and
the experimental results are shown in Table 2. The reported values in Table 2 are based
on the errors between the terminated values of the optimization process and the target
values of the benchmark functions. To intuitively quantify the optimization ability of the
metaheuristics, mean values (Mean), minimum values (Min), maximum values (Max),
standard deviation (Std) and ranks (Rank) are used to evaluate the accuracy. Mean, Min
and Max reveal the optimization accuracy of the algorithm, Std reveals the optimization
stability and Rank is based on the Friedman test [48] to rank the optimization performance
of the algorithm from the aspect of statistics. Moreover, the minimum values of Mean in
each benchmark function are shown in bold.

Table 2. Comparison of CS-GWO with well-known algorithms for CEC 2017 test functions.

Functions Metrics PSO WOA GWO CSO CS-GWO

F1

Mean 3.169 × 1011 2.408 × 103 3.781 × 1010 2.275 × 1010 4.875 × 103

Min 1.137 × 1011 1.070 × 102 5.121 × 109 4.985 × 109 1.000 × 102

Max 5.806 × 1011 9.847 × 103 8.496 × 1010 6.467 × 1010 1.771 × 104

Std 9.145 × 1010 2.219 × 103 2.197 × 1010 1.430 × 1010 5.283 × 103

Rank 5 1 4 3 2

F2

Mean 8.880 × 102 7.076 × 102 6.260 × 102 6.012 × 102 5.550 × 102

Min 8.253 × 102 6.184 × 102 5.892 × 102 5.705 × 102 5.129 × 102

Max 9.519 × 102 8.124 × 102 7.649 × 102 6.601 × 102 6.350 × 102

Std 3.825 × 101 4.662 × 101 3.205 × 101 2.046 × 101 3.437 × 101

Rank 5 4 3 2 1

F3

Mean 1.406 × 105 5.016 × 104 4.718 × 104 3.481 × 104 3.001 × 102

Min 8.673 × 104 2.929 × 104 3.286 × 104 1.132 × 104 3.000 × 102

Max 3.292 × 105 7.088 × 104 6.894 × 104 6.353 × 104 3.003 × 102

Std 6.473 × 104 1.017 × 104 9.881 × 103 1.028 × 104 6.049 × 10−2

Rank 5 4 3 2 1



Energies 2023, 16, 2878 14 of 24

Table 2. Cont.

Functions Metrics PSO WOA GWO CSO CS-GWO

F4

Mean 6.990 × 103 4.687 × 102 6.504 × 102 5.645 × 102 4.937 × 102

Min 2.951 × 103 4.001 × 102 5.166 × 102 4.833 × 102 4.641 × 102

Max 1.422 × 104 4.911 × 102 1.218 × 103 7.337 × 102 5.187 × 102

Std 2.613 × 103 1.995 × 101 1.457 × 102 6.179 × 101 1.520 × 101

Rank 5 1 4 3 2

F5

Mean 8.966 × 102 7.087 × 102 6.214 × 102 5.966 × 102 5.774 × 102

Min 8.469 × 102 6.323 × 102 5.671 × 102 5.681 × 102 5.202 × 102

Max 9.739 × 102 7.816 × 102 6.944 × 102 6.708 × 102 6.720 × 102

Std 3.825 × 101 4.073 × 101 2.883 × 101 2.248 × 101 4.910 × 101

Rank 5 4 3 2 1

F6

Mean 7.009 × 102 6.730 × 102 6.270 × 102 6.196 × 102 6.003 × 102

Min 6.795 × 102 6.482 × 102 6.126 × 102 6.102 × 102 6.000 × 102

Max 7.331 × 102 7.250 × 102 6.460 × 102 6.366 × 102 6.017 × 102

Std 1.221 × 101 1.364 × 101 8.497 × 100 6.550 × 100 4.418 × 10−1

Rank 5 4 3 2 1

F7

Mean 1.397 × 103 1.140 × 103 8.841 × 102 8.559 × 102 8.710 × 102

Min 1.218 × 103 1.022 × 103 8.019 × 102 7.960 × 102 7.698 × 102

Max 1.525 × 103 1.324 × 103 1.076 × 103 9.970 × 102 8.977 × 102

Std 6.925 × 101 7.795 × 101 6.307 × 101 5.190 × 101 3.069 × 101

Rank 5 4 3 1 2

F8

Mean 1.103 × 103 9.403 × 102 9.039 × 102 8.979 × 102 8.742 × 102

Min 1.002 × 103 9.114 × 102 8.541 × 102 8.479 × 102 8.129 × 102

Max 1.164 × 103 9.910 × 102 9.464 × 102 1.032 × 103 9.867 × 102

Std 3.661 × 101 2.327 × 101 2.433 × 101 3.537 × 101 4.819 × 101

Rank 5 4 3 2 1

F9

Mean 9.729 × 103 7.439 × 103 2.287 × 103 2.092 × 103 9.002 × 102

Min 5.733 × 103 3.310 × 103 1.410 × 103 1.035 × 103 9.000 × 102

Max 1.324 × 104 1.376 × 104 4.608 × 103 3.691 × 103 9.029 × 102

Std 1.659 × 103 3.347 × 103 7.803 × 102 7.556 × 102 5.347 × 10−1

Rank 5 4 3 2 1

F10

Mean 8.429 × 103 6.333 × 103 5.139 × 103 4.483 × 103 7.671 × 103

Min 6.359 × 103 4.002 × 103 2.849 × 103 3.091 × 103 6.807 × 103

Max 1.005 × 104 9.761 × 103 8.679 × 103 7.903 × 103 8.508 × 103

Std 8.850 × 102 1.699 × 103 1.674 × 103 1.270 × 103 4.446 × 102

Rank 5 3 2 1 4

F11

Mean 8.717 × 103 1.220 × 103 2.183 × 103 1.786 × 103 1.159 × 103

Min 4.894 × 103 1.153 × 103 1.389 × 103 1.276 × 103 1.108 × 103

Max 1.418 × 104 1.298 × 103 4.783 × 103 3.937 × 103 1.217 × 103

Std 2.371 × 103 3.880 × 101 9.575 × 102 7.822 × 102 3.555 × 101

Rank 5 2 4 3 1

F12

Mean 2.599 × 1010 1.764 × 105 3.831 × 108 5.773 × 108 3.160 × 105

Min 2.572 × 109 1.191 × 104 2.075 × 107 2.392 × 107 2.261 × 104

Max 2.031 × 1011 8.030 × 105 1.507 × 109 3.799 × 109 1.485 × 106

Std 3.719 × 1010 1.616 × 105 3.689 × 108 8.210 × 108 3.465 × 105

Rank 5 1 4 3 2

F13

Mean 1.224 × 1010 1.733 × 104 1.497 × 108 4.750 × 107 1.410 × 104

Min 2.027 × 108 3.680 × 103 3.990 × 104 4.008 × 104 1.416 × 103

Max 2.020 × 1011 4.611 × 104 1.498 × 109 1.405 × 109 4.460 × 104

Std 3.616 × 1010 1.109 × 104 4.094 × 108 2.564 × 108 1.138 × 104

Rank 5 2 4 3 1
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Table 2. Cont.

Functions Metrics PSO WOA GWO CSO CS-GWO

F14

Mean 4.157 × 106 1.219 × 104 4.015 × 105 1.794 × 105 4.376 × 104

Min 1.956 × 104 1.746 × 103 2.666 × 104 2.325 × 103 4.285 × 103

Max 4.485 × 107 1.370 × 105 1.337 × 106 9.272 × 105 2.532 × 105

Std 8.338 × 106 2.417 × 104 4.196 × 105 2.868 × 105 5.106 × 104

Rank 5 1 4 3 2

F15

Mean 1.424 × 109 8.116 × 103 4.410 × 106 4.594 × 106 3.994 × 103

Min 2.520 × 105 1.731 × 103 2.667 × 104 1.355 × 104 1.607 × 103

Max 1.273 × 1010 3.219 × 104 3.595 × 107 9.453 × 107 2.100 × 104

Std 2.717 × 109 8.011 × 103 9.902 × 106 1.740 × 107 4.244 × 103

Rank 5 2 4 3 1

F16

Mean 5.003 × 103 2.990 × 103 2.559 × 103 2.455 × 103 2.489 × 103

Min 3.196 × 103 2.365 × 103 2.069 × 103 2.033 × 103 1.700 × 103

Max 1.215 × 104 3.871 × 103 3.254 × 103 3.319 × 103 3.017 × 103

Std 2.024 × 103 3.759 × 102 3.002 × 102 3.224 × 102 3.925 × 102

Rank 5 4 3 1 2

F17

Mean 5.052 × 103 3.017 × 103 2.460 × 103 2.392 × 103 2.126 × 103

Min 3.917 × 103 2.269 × 103 2.102 × 103 1.990 × 103 1.612 × 103

Max 1.022 × 104 3.507 × 103 3.213 × 103 3.419 × 103 3.014 × 103

Std 1.165 × 103 3.432 × 102 2.835 × 102 3.141 × 102 3.478 × 102

Rank 5 4 3 2 1

F18

Mean 1.149 × 108 7.835 × 105 1.858 × 106 1.463 × 106 1.632 × 105

Min 2.326 × 106 8.942 × 104 5.083 × 104 8.757 × 104 4.111 × 104

Max 7.292 × 108 2.771 × 106 2.160 × 107 8.673 × 106 4.130 × 105

Std 2.234 × 108 6.988 × 105 4.064 × 106 1.773 × 106 8.817 × 104

Rank 5 4 3 2 1

F19

Mean 1.516 × 109 9.880 × 103 1.345 × 107 2.830 × 106 7.321 × 103

Min 8.062 × 106 1.979 × 103 3.550 × 104 6.985 × 103 1.991 × 103

Max 2.216 × 1010 4.385 × 104 3.380 × 108 1.373 × 107 3.052 × 104

Std 4.402 × 109 9.797 × 103 6.135 × 107 3.282 × 106 7.050 × 103

Rank 5 2 4 3 1

F20

Mean 9.231 × 103 6.463 × 103 6.165 × 103 5.747 × 103 4.678 × 103

Min 5.555 × 103 2.300 × 103 4.389 × 103 2.475 × 103 2.300 × 103

Max 1.129 × 104 9.968 × 103 1.015 × 104 9.513 × 103 9.283 × 103

Std 1.071 × 103 1.958 × 103 1.440 × 103 1.854 × 103 3.017 × 103

Rank 5 4 3 2 1

F21

Mean 2.697 × 103 2.520 × 103 2.408 × 103 2.388 × 103 2.403 × 103

Min 2.583 × 103 2.411 × 103 2.373 × 103 2.341 × 103 2.319 × 103

Max 2.838 × 103 2.650 × 103 2.523 × 103 2.436 × 103 2.469 × 103

Std 5.997 × 101 6.193 × 101 2.773 × 101 2.040 × 101 3.968 × 101

Rank 5 4 2 1 3

F22

Mean 9.247 × 103 6.023 × 103 6.002 × 103 6.264 × 103 3.598 × 103

Min 6.356 × 103 2.300 × 103 2.731 × 103 2.672 × 103 2.300 × 103

Max 1.083 × 104 1.204 × 104 1.041 × 104 9.926 × 103 9.689 × 103

Std 1.019 × 103 2.548 × 103 1.493 × 103 2.164 × 103 2.650 × 103

Rank 5 4 2 3 1

F23

Mean 3.363 × 103 3.479 × 103 2.792 × 103 2.757 × 103 2.708 × 103

Min 3.098 × 103 3.095 × 103 2.726 × 103 2.701 × 103 2.674 × 103

Max 3.869 × 103 3.882 × 103 2.946 × 103 2.895 × 103 2.767 × 103

Std 1.838 × 102 1.772 × 102 5.363 × 101 3.990 × 101 2.849 × 101

Rank 4 5 3 2 1



Energies 2023, 16, 2878 16 of 24

Table 2. Cont.

Functions Metrics PSO WOA GWO CSO CS-GWO

F24

Mean 3.533 × 103 3.531 × 103 2.993 × 103 2.947 × 103 2.970 × 103

Min 3.281 × 103 3.233 × 103 2.899 × 103 2.881 × 103 2.865 × 103

Max 3.856 × 103 3.882 × 103 3.095 × 103 3.092 × 103 3.011 × 103

Std 1.543 × 102 1.353 × 102 5.745 × 101 5.943 × 101 3.716 × 101

Rank 4 5 3 1 2

F25

Mean 4.003 × 103 2.915 × 103 3.005 × 103 2.960 × 103 2.888 × 103

Min 3.581 × 103 2.884 × 103 2.930 × 103 2.906 × 103 2.883 × 103

Max 5.042 × 103 2.948 × 103 3.220 × 103 3.044 × 103 2.910 × 103

Std 3.285 × 102 2.514 × 101 7.924 × 101 3.339 × 101 4.344 × 100

Rank 5 2 4 3 1

F26

Mean 1.005 × 104 6.454 × 103 4.605 × 103 4.554 × 103 4.105 × 103

Min 7.873 × 103 2.800 × 103 4.114 × 103 4.051 × 103 3.698 × 103

Max 1.259 × 104 1.021 × 104 5.272 × 103 5.723 × 103 4.894 × 103

Std 1.211 × 103 2.659 × 103 3.458 × 102 3.358 × 102 2.572 × 102

Rank 5 4 2 3 1

F27

Mean 3.833 × 103 4.218 × 103 3.200 × 103 3.200 × 103 3.211 × 103

Min 3.410 × 103 3.644 × 103 3.200 × 103 3.200 × 103 3.201 × 103

Max 5.619 × 103 4.903 × 103 3.200 × 103 3.200 × 103 3.221 × 103

Std 4.177 × 102 3.348 × 102 2.205 × 10−4 3.106 × 10−4 5.428 × 100

Rank 4 5 2 1 3

F28

Mean 5.399 × 103 3.157 × 103 3.315 × 103 3.317 × 103 3.210 × 103

Min 4.195 × 103 3.100 × 103 3.296 × 103 3.296 × 103 3.100 × 103

Max 6.761 × 103 3.265 × 103 3.474 × 103 3.465 × 103 3.267 × 103

Std 6.843 × 102 6.460 × 101 4.611 × 101 4.549 × 101 3.247 × 101

Rank 5 1 3 4 2

F29

Mean 3.507 × 103 3.498 × 103 2.987 × 103 2.963 × 103 2.953 × 103

Min 3.197 × 103 3.312 × 103 2.878 × 103 2.877 × 103 2.860 × 103

Max 3.771 × 103 3.695 × 103 3.111 × 103 3.074 × 103 2.992 × 103

Std 1.371 × 102 9.597 × 101 6.437 × 101 6.320 × 101 3.351 × 101

Rank 4 5 3 2 1

F30

Mean 4.622 × 109 1.995 × 104 1.353 × 107 3.037 × 107 8.942 × 103

Min 6.778 × 107 7.843 × 103 3.555 × 104 1.607 × 104 5.375 × 103

Max 7.022 × 1010 4.219 × 104 2.789 × 108 3.440 × 108 1.593 × 104

Std 1.505 × 1010 7.370 × 103 5.074 × 107 7.612 × 107 3.023 × 103

Rank 5 2 3 4 1

Mean rank 4.883 3.183 3.117 2.316 1.500
Final rank 5 4 3 2 1

For the unimodal and functions (i.e., F1–F10), CS-GWO achieves the best results six times,
and WOA and CSO share the remaining four best results. This reveals that WOA performs well
for simple low-dimensional optimization problems. For the 10 hybrid functions (i.e., F11–F20),
CS-GWO achieves the best performance seven times. Although WOA has the best values for
F12 and F14, it gets the second-worst values in 4 out of 10 cases. This reveals that WOA has
unstable performance in solving complex problems [49,50]. For the 10 composition functions
(i.e., F21–F30), CS-GWO achieves the best performance six times, followed by CSO’s three times.
The worst rank of CSO in composition functions is three with F21 and F27, indicating that CSO
has the ability to escape local optimum when applied in complex optimization problems [47].

Particularly, GWO never dominates in optimization of all benchmark functions, but it
ranks third overall. This reveals that GWO has stable performance in solving optimization
problems but easily falls into the optima trap [51]. Comprehensively speaking, CS-GWO
ranks first overall among the optimization algorithms and obtains the best performance in
19 out of 30 functions, whether from the aspect of the optimization accuracy or stability.
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From the above analysis, we can conclude that CS-GWO performs the best with the
30 dimensional optimization problems among all the compared algorithms. This is because
CS-GWO combines the stable optimization performance of GWO and outstanding ability
in finding global optima in the problem-solving space of CSO.

5.3.3. Wilcoxon Signed-Rank Test and Paired Samples t-Test

In order to further prove the validity of the CS-GWO algorithm, the parametric and
non-parametric tests, which are the paired samples t-test (PSTT) [52] and Wilcoxon signed-
rank test (WSRT) [53], are adopted to evaluate the difference of optimization performance
between CS-GWO and the comparison algorithms in 30 benchmark functions. The null
hypothesis of PSTT and WSRT are that there is no difference between two compared
samples. If the difference approximately obeyed the normal distribution, PSTT is used.
When this premise is not satisfied, WSRT can be selected. The results of PSTT and WSRT
are shown in Tables 3 and 4, respectively.

Table 3. The paired samples t-test results.

Functions
CS-GWO–PSO CS-GWO–WOA CS-GWO–GWO CS-GWO–CSO

t-Value Sig. (2-Tailed) t-Value Sig. (2-Tailed) t-Value Sig. (2-Tailed) t-Value Sig. (2-Tailed)

F1 −1.898 × 101 6.748 × 10−18 2.413 × 100 2.236 × 10−2 −8.712 × 100 1.367 × 10−9 −9.427 × 100 2.472 × 10−10

F2 −3.355 × 101 9.349 × 10−25 −1.603 × 101 6.012 × 10−16 −7.118 × 100 7.828 × 10−8 −7.771 × 100 1.434 × 10−8

F3 −3.733 × 101 4.521 × 10−26 −1.447 × 101 8.498 × 10−15 −2.535 × 100 1.688 × 10−2 −4.732 × 100 5.343 × 10−5

F4 −1.361 × 101 4.016 × 10−14 5.103 × 100 1.907 × 10−5 −6.128 × 100 1.122 × 10−6 −5.836 × 100 2.499 × 10−6

F5 −2.913 × 101 5.005 × 10−23 −1.207 × 101 7.880 × 10−13 −2.016 × 100 5.320 × 10−2 −4.119 × 100 2.892 × 10−4

F6 −4.482 × 101 2.469 × 10−28 −2.925 × 101 4.471 × 10−23 −1.638 × 101 3.381 × 10−16 −1.711 × 101 1.078 × 10−16

F7 −4.000 × 101 6.363 × 10−27 −1.717 × 101 9.852 × 10−17 −1.211 × 100 2.358 × 10−1 −1.954 × 100 6.035 × 10−2

F8 −1.977 × 101 2.240 × 10−18 −6.441 × 100 4.791 × 10−7 −2.143 × 100 4.061 × 10−2 −3.119 × 100 4.073 × 10−3

F9 −2.915 × 101 4.917 × 10−23 −1.070 × 101 1.390 × 10−11 −8.638 × 100 1.639 × 10−9 −9.730 × 100 1.224 × 10−10

F10 −4.268 × 100 1.926 × 10−4 3.982 × 100 4.199 × 10−4 1.263 × 101 2.564 × 10−13 7.920 × 100 9.815 × 10−9

F11 −1.744 × 101 6.491 × 10−17 −6.545 × 100 3.613 × 10−7 −4.355 × 100 1.517 × 10−4 −5.824 × 100 2.584 × 10−6

F12 −3.827 × 100 6.381 × 10−4 2.057 × 100 4.877 × 10−2 −3.849 × 100 6.013 × 10−4 −5.683 × 100 3.811 × 10−6

F13 −1.855 × 100 7.384 × 10−2 −1.045 × 100 3.045 × 10−1 −1.014 × 100 3.188 × 10−1 −2.002 × 100 5.470 × 10−2

F14 −2.698 × 100 1.150 × 10−2 2.856 × 100 7.859 × 10−3 −2.508 × 100 1.800 × 10−2 −4.504 × 100 1.004 × 10−4

F15 −2.870 × 100 7.579 × 10−3 −2.481 × 100 1.915 × 10−2 −1.445 × 100 1.592 × 10−1 −2.437 × 100 2.118 × 10−2

F16 −6.619 × 100 2.964 × 10−7 −5.076 × 100 2.056 × 10−5 −3.658 × 10−1 7.172 × 10−1 −1.120 × 100 2.720 × 10−1

F17 −1.250 × 101 3.371 × 10−13 −9.608 × 100 1.622 × 10−10 −2.962 × 100 6.043 × 10−3 −4.194 × 100 2.354 × 10−4

F18 −1.801 × 101 2.752 × 10−17 −1.777 × 101 3.930 × 10−17 −4.058 × 100 3.412 × 10−4 −4.287 × 100 1.828 × 10−4

F19 −1.886 × 100 6.940 × 10−2 −1.182 × 100 2.468 × 10−1 −4.709 × 100 5.685 × 10−5 −1.200 × 100 2.399 × 10−1

F20 −7.822 × 100 1.258 × 10−8 −2.627 × 100 1.363 × 10−2 −1.677 × 100 1.042 × 10−1 −2.327 × 100 2.715 × 10−2

F21 −2.256 × 101 6.096 × 10−20 −8.681 × 100 1.476 × 10−9 1.939 × 100 6.226 × 10−2 −6.014 × 10−1 5.523 × 10−1

F22 −1.092 × 101 8.593 × 10−12 −3.382 × 100 2.076 × 10−3 −4.182 × 100 2.434 × 10−4 −4.385 × 100 1.395 × 10−4

F23 −1.887 × 101 7.868 × 10−18 −2.395 × 101 1.174 × 10−20 −5.113 × 100 1.853 × 10−5 −7.663 × 100 1.895 × 10−8

F24 −1.967 × 101 2.579 × 10−18 −2.128 × 101 3.048 × 10−19 2.003 × 100 5.460 × 10−2 −2.219 × 100 3.446 × 10−2

F25 −1.859 × 101 1.176 × 10−17 −5.979 × 100 1.688 × 10−6 −1.154 × 101 2.322 × 10−12 −8.043 × 100 7.194 × 10−9

F26 −2.662 × 101 6.231 × 10−22 −4.748 × 100 5.111 × 10−5 −6.544 × 100 3.618 × 10−7 −6.443 × 100 4.764 × 10−7

F27 −8.182 × 100 5.069 × 10−9 −1.640 × 101 3.285 × 10−16 1.129 × 101 3.900 × 10−12 1.129 × 101 3.902 × 10−12

F28 −1.764 × 101 4.810 × 10−17 4.099 × 100 3.058 × 10−4 −1.060 × 101 1.737 × 10−11 −9.310 × 100 3.254 × 10−10

F29 −2.047 × 101 8.731 × 10−19 −2.666 × 101 6.021 × 10−22 −6.827 × 10−1 5.002 × 10−1 −2.368 × 100 2.476 × 10−2

F30 −1.682 × 100 1.033 × 10−1 −7.369 × 100 4.050 × 10−8 −2.184 × 100 3.718 × 10−2 −1.460 × 100 1.550 × 10−1

Table 4. Wilcoxon signed-rank test results of CEC 2017.

Functions
CS-GWO vs. PSO CS-GWO vs. WOA

p-Value R+ R− Winner p-Value R+ R− Winner

F1 1.734 × 10−6 0 465 + 6.564 × 10−2 322 143 =
F2 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F3 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F4 1.734 × 10−6 0 465 + 2.163 × 10−5 439 26 −
F5 1.734 × 10−6 0 465 + 1.921 × 10−6 1 464 +
F6 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F7 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F8 1.734 × 10−6 0 465 + 2.843 × 10−5 29 436 +
F9 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F10 5.287 × 10−4 64 401 + 9.627 × 10−4 393 72 −
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Table 4. Cont.

Functions
CS-GWO vs. PSO CS-GWO vs. WOA

p-Value R+ R− Winner p-Value R+ R− Winner

F11 1.734 × 10−6 0 465 + 1.238 × 10−5 20 445 +
F12 1.734 × 10−6 0 465 + 8.972 × 10−2 315 150 +
F13 1.734 × 10−6 0 465 + 1.589 × 10−1 164 301 =
F14 3.182 × 10−6 6 459 + 1.150 × 10−4 420 45 −
F15 1.734 × 10−6 0 465 + 3.609 × 10−3 91 374 +
F16 1.734 × 10−6 0 465 + 5.307 × 10−5 36 429 +
F17 1.734 × 10−6 0 465 + 2.879 × 10−6 5 460 +
F18 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F19 1.734 × 10−6 0 465 + 1.470 × 10−1 162 303 =
F20 5.216 × 10−6 11 454 + 1.480 × 10−2 114 351 +
F21 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F22 2.353 × 10−6 3 462 + 3.379 × 10−3 90 375 +
F23 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F24 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F25 1.734 × 10−6 0 465 + 1.359 × 10−4 47 418 +
F26 1.734 × 10−6 0 465 + 2.613 × 10−4 55 410 +
F27 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F28 1.734 × 10−6 0 465 + 6.639 × 10−4 398 67 −
F29 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F30 1.734 × 10−6 0 465 + 4.286 × 10−6 9 456 +

+/=/− 30/0/0 23/3/4

Functions
CS-GWO vs. GWO CS-GWO vs. CSO

p-Value R+ R− winner p-Value R+ R− winner

F1 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F2 3.182 × 10−6 6 459 + 1.127 × 10−5 19 446 +
F3 1.359 × 10−4 47 418 + 3.327 × 10−2 129 336 +
F4 1.921 × 10−6 1 464 + 3.882 × 10−6 8 457 +
F5 4.196 × 10−4 61 404 + 7.190 × 10−2 145 320 =
F6 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F7 1.470 × 10−1 162 303 = 4.779 × 10−1 198 267 =
F8 8.217 × 10−3 104 361 + 3.872 × 10−2 132 333 +
F9 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F10 1.238 × 10−5 445 20 − 2.879 × 10−6 460 5 −
F11 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F12 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F13 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F14 6.892 × 10−5 39 426 + 7.865 × 10−2 147 318 =
F15 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F16 3.709 × 10−1 189 276 = 7.813 × 10−1 219 246 =
F17 3.065 × 10−4 57 408 + 1.319 × 10−2 112 353 +
F18 6.156 × 10−4 66 399 + 3.589 × 10−4 59 406 +
F19 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F20 2.564 × 10−2 124 341 + 1.986 × 10−1 170 295 =
F21 7.971 × 10−1 245 220 = 4.950 × 10−2 328 137 −
F22 6.156 × 10−4 66 399 + 1.484 × 10−3 78 387 +
F23 2.879 × 10−6 5 460 + 3.405 × 10−5 31 434 +
F24 5.984 × 10−2 141 324 = 3.872 × 10−2 333 132 −
F25 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F26 3.112 × 10−5 30 435 + 4.286 × 10−6 9 456 +
F27 1.734 × 10−6 465 0 − 1.734 × 10−6 465 0 −
F28 1.734 × 10−6 0 465 + 1.734 × 10−6 0 465 +
F29 7.190 × 10−2 145 320 = 8.130 × 10−1 221 244 =
F30 1.734 × 10−6 465 0 − 1.734 × 10−6 465 0 −

+/=/− 22/5/3 +/=/− 19/6/5
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Two indicators including t-value and Sig. (2-tailed) can be obtained from PSTT. If the
Sig. (2-tailed) is less than 0.05, it can be concluded that the CS-GWO algorithm is better
than the compared algorithm. In addition, four indicators including p-value, R+, R− and
winner can be obtained from WSRT. If the p-value is less than 0.05, the null hypothesis can
be rejected at 5% significance level. R+ represents a mean error of the CS-GWO algorithm
that is higher than that of the compared one. R− represents a mean error of the CS-GWO
algorithm that is lower than that of the compared one. Finally, winner indicates whether the
CS-GWO algorithm is superior to the compared algorithm, “+” indicates that the CS-GWO
algorithm is better than the compared algorithm, “−” indicates that the CS-GWO algorithm
is worse than the compared algorithm and “=” indicates that the performance of the two
algorithms display no obvious difference.

It can be seen that most of the Sig. (2-tailed) values in Table 3 are less than 0.05,
which means that there is an obvious difference between the CS-GWO algorithm and the
comparison algorithms, further indicating that the CS-GWO algorithm is superior to the
involved algorithms. In Table 4, most of the combinations (p-Value, R+, R, winner) are
(1.734× 10−6, 0, 465, +), revealing that the CS-GWO algorithm outperforms the comparison
algorithms. Furthermore, the results of ‘+/=/−’ is 94/14/12, indicating that the CS-GWO
algorithm is better than the compared algorithm in 94 out of 120 cases.

From a statistical perspective, it can be concluded that CS-GWO dominates the other
compared algorithms in optimization problems with CEC 2017 test functions.

5.4. Case 3: The Effectiveness of the CS-GWO-DA-BiGRU Model

In order to verify the effectiveness of the combination of the crisscross grey wolf
optimization algorithm and the DA-BiGRU model in short-term load forecasting, PSO-DA-
BiGRU, WOA-DA-BiGRU and GWO-DA-BiGRU models are compared with the combined
CS-GWO-DA-BiGRU model in this case. In this subsection, the number of iterations of
the swarm intelligence optimization algorithm is uniformly set to 200, and the number of
individuals is set to 20.

The experimental results are shown in Table 5 and Figure 8, where Figure 8 is a
comparison chart between the prediction results of different models and the real values on
29–31 December 2018.

Table 5. The experiment results of case study 2.

Prediction Model RMSE/MW MAE/MW SMAPE R2

DA-BiGRU 29.053 22.897 3.566 0.937
PSO-DA-BiGRU 28.546 22.285 3.519 0.939

WOA-DA-BiGRU 28.209 22.221 3.471 0.941
GWO-DA-BiGRU 27.895 22.162 3.545 0.942
CSO-DA-BiGRU 27.194 21.255 3.347 0.945

CS-GWO-DA-BiGRU 26.144 20.963 3.337 0.949

As shown in Table 2 and Figure 8, the following conclusions can be drawn:
(1) The effectiveness of the swarm intelligence optimization algorithm:
The prediction model combined with the swarm intelligence optimization algorithm

has better prediction performance than the single prediction model (i.e., DA-BiGRU). For
example, compared with the DA-BiGRU model, the RMSE, MAE and SMAPE values of
the PSO-DA-BiGRU and GWO-DA-BiGRU models are reduced by 1.75% and 3.99%, 2.67%
and 3.21% and 1.32% and 0.59%, respectively, and the R2 values are increased by 0.21% and
0.53%, respectively. This is because the weights and the bias of the DA-BiGRU model are
optimized by the swarm intelligence optimization algorithm in the initial stage of training,
which can effectively avoid the problems of gradient disappearance and gradient explosion,
and further improve the accuracy of load forecasting.
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(2) The superiority of the CS-GWO algorithm:
Among all the comparison forecasting models, the proposed CS-GWO-DA-BiGRU

short-term load forecasting model has the highest forecasting accuracy. For example, the
RMSE, MAE and SMAPE are reduced by 3.86%, 1.37% and 0.30% from those of the second-
best performing CSO-DA-BiGRU model, respectively. From the aspect of the R2 value, the
CS-GWO-DA-BiGRU model has an increase of 0.42% compared with the CSO-DA-BiGRU
model. Therefore, the CS-GWO algorithm combined with horizontal crossover and vertical
crossover operators can improve the global search ability and enhance the diversity of the
population, making a great contribution to improving short-term load forecasting.

6. Discussion

In this paper, a high-precision model called CS-GWO-DA-BiGRU is presented in
short-term load forecasting problems. However, the proposed model still has some short-
comings that need to be improved. The limitations and future research can be summarized
as follows.

(1) The CS-GWO algorithm only focuses on improving the accuracy of short-term load
prediction while ignoring the prediction stability, leading to unstable prediction when ex-
tending to new data. In the future, we plan to upgrade CS-GWO to a multi-object CS-GWO
algorithm to improve the accuracy and stability of short-term load prediction simultaneously.

(2) At present, the intelligent big data platform is valuable for the improvement of the
prediction model. In future work, the proposed CS-GWO-DA-BiGRU prediction model
will be embedded into the intelligent big data platform to construct an intelligent load
forecasting system.

7. Conclusions

Short-term load prediction is essential for the stable operation and safety management
of power systems. Therefore, this paper proposes a hybrid model for short-term load pre-
diction, named CS-GWO-DA-BiGRU, which consists of a dual-stage attention mechanism,
crisscross grey wolf optimization algorithm and bidirectional gated recurrent unit. The
main contributions of this paper can be concluded as follows:

(1) Different from the conventional feature mechanism applied in short-term load
forecasting, this paper proposes a dual-stage attention mechanism by combining feature
and temporal attention mechanisms. Based on case 1, compared with FA-BiGRU, the
RMSE, MAE and SMAPE values of the DA-BiGRU model are reduced by 1.79%, 0.74% and
0.70%, respectively, and the R2 value is increased by 0.21%. Therefore, DA can effectively
capture the correlation relationship of input feature and temporal dependence in load time
series simultaneously.
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(2) By combining horizontal and vertical crossover operators, the global search ability
and population diversity of GWO are enhanced. Based on the Friedman test in case 2,
CS-GWO ranks first among the well-known algorithms and achieves the best results for
19 out of 30 functions in CEC 2017. In addition, CS-GWO outperforms the compared
algorithms in 94 out of 120 cases based on the Wilcoxon signed-rank test. Furthermore, for
the proposed CS-GWO-DA-BiGRU model in case 3, which is based on CS-GWO, the R2

value has an increase of 0.42% compared with the CSO-DA-BiGRU model and has the best
forecasting performance.
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Nomenclatures

Abbreviations
WOA whale optimization algorithm
GWO grey wolf optimization
LSTM long short-term memory
GRU gated recurrent unit
FA feature attention mechanism
TA temporal attention mechanism
DA dual-stage attention mechanism
CS-GWO crisscross grey wolf optimizer algorithm
RNN recurrent neural network
BiGRU bidirectional gated recurrent unit
CSO crisscross optimization algorithm
HC horizontal crossover
VC vertical crossover
RMSE root mean square error
MAE mean absolute error
SMAPE symmetric mean absolute percentage error
R2 decision coefficient
Mean mean value
Min minimum value
Max maximum value
Std standard deviation
Rank ranks
PSTT paired samples t-test
WSRT Wilcoxon signed-rank test
Formula symbols
xt input data at t-th time step
ht−1,ht,hT hidden state at (t−1)-th, t-th and T-th time step
rt reset gate
Wr, Ur, br weight metrices and bias of reset gate
σ sigmoid activation function
zt update gate
Wz,Uz,bz weight metrices and bias of update gate
Wh,bh weight metrices and bias of candidate output
h̃t candidate hidden state
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→
h t,
←
h t state information of forward and backward propagation

→
wt,
←
wt weight metrices of hidden layer in forward and backward propagation

bt bias of the hidden layer
G(·) calculation process of GRU
e unnormalized attention weight
α normalized attention weight
c intermediate semantic vector
L(i) electric load time series of the previous day
t(i) highest and lowest temperature of the previous day and the current day
r(i) rainfall of the previous day and the current day
d(i) weather day type of the previous day and the current day
Fθ function map of prediction model
X(i) input of prediction model

Ŷ(i) predicted load values of the current day
N number of samples
We,be weight matrix and bias in FA
XATT adaptively optimized feature vector
W f ,b f weight matrix and bias in TA
np number of hidden elements in the last layer of BiGRU
dt,dT intermediate semantic vector in t-th and T-th iteration
Wy,by weight metrices and bias of the feedforward network in TA
θ all parameters of DA-BiGRU model
J(·) loss function of DA-BiGRU model
Φ population of grey wolf
nM population size
D population dimension
θα(t),θβ(t), grey wolves α, β, δ and ω at t-th iteration
θδ(t),θω(t)
A1,A2,A3,C1, C2, synergy coefficients
C3, A, C
r1, r2, r3, r4, r random number
ΦHC,ΦVC offspring population
T maximum number of iterations
Ytest,Ŷtest actual and predicted load value in testing dataset
Ytest average value of the actual load value
ntest sample number of the testing dataset
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