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1 Department of Geotechnics and Waste Management, Kielce University of Technology, 25-314 Kielce, Poland
2 Department of Geodesy and Geomatics, Kielce University of Technology, 25-314 Kielce, Poland;

ssobura@tu.kielce.pl
3 Department of Water and Wastewater Technology, Kielce University of Technology, 25-314 Kielce, Poland;

rstoinska@tu.kielce.pl
* Correspondence: bszelag@tu.kielce.pl

Abstract: The main task of a wastewater treatment plant (WWTP) is to reduce pollutants that
adversely affect the receiving environment in which the effluent is discharged. The operation of
a WWTP is a complex task due to the number of different processes that take place in its process
facilities. In order to maintain the high efficiency of a WWTP, it is necessary to control the quality
of the effluent at the outlet and monitor the processes taking place there. The main objective
of the research presented in this study was to evaluate the possibility of using unmanned aerial
vehicle (UAV) technology and multispectral images acquired with a Micasense Red-Edge MX camera
to analyse the performance of an activated sludge bioreactor using the example of a municipal
WWTP in Poland. Remote sensing analyses were carried out to check the relationships between the
calculated spectral indices and the quality parameters in the bioreactor. The spectral indices assessed
were the normalised difference vegetation index (NDVI), green normalised difference vegetation
index (GNDVI), optimised soil adjusted vegetation index (OSAVI), and their derived indices, after
substitution of the red or near-infrared channel with the red edge channel. In this study, the sensitivity
of the NDVI and GNDVIRED-EDGE indexes to changes in the nutrient content (NUC) of the bioreactor
was observed. The presented research may find application in the design of a new soft sensor for
monitoring the operating conditions of wastewater treatment plants.

Keywords: wastewater treatment plant (WWTP); unmanned aerial vehicle (UAV); spectral analyses;
multispectral images; GNDVI (green normalised difference vegetation index)

1. Introduction

The main task of a wastewater treatment plant (WWTP) is to reduce pollutants that ad-
versely affect the receiving environment in which the effluent is discharged. The operation
of a WWTP is a complex task due to the number of different processes that take place in its
process facilities [1,2]. In order to simplify and reduce the operating costs of the WWTP,
it is advisable to determine the variability in raw wastewater quality at the design stage,
which influences the selection of appropriate treatment technologies [3–5]. In order to
achieve high effluent treatment efficiency, a process in individual bioreactor compartments
is needed. Online analysers are installed in the bioreactor to measure selected wastewater
quality indicators (WQI) to ensure treatment efficiency. However, because of the costs
of their operation, i.e., energy consumption, reagents, and local conditions, their use is
not always possible. For this reason, computational models are built at WWTPs using
the data collected therein, using machine learning methods and thus creating so-called
soft sensors. This solution allows for the modelling and control of wastewater treatment
processes but requires input data to be provided to the model as a basis for performing
simulation calculations [4]. As the quality of wastewater and its physicochemical char-
acteristics change, measurement data may be subject to errors [6]. Additionally, these
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sensors require calibration, so their use may be limited. With these problems in mind,
high-resolution images taken with cameras and multispectral cameras are used to analyse
the operation of WWTPs. These allow the microbiological composition to be identified
and the quality of the wastewater to be determined. Literature [7–9] shows that spectral
methods based on narrow spectral bands can also be used to identify effluent quality, but
this approach has currently found applications for laboratory-scale analyses performed
with synthetic wastewater. This solution seems to be interesting from the point of view
of identifying the operating conditions of a WWTP, which in turn, could enable a rapid
assessment of the conditions that occur in the individual compartments of a bioreactor.
This problem has not yet been analysed on a larger scale, which is interesting given the
relatively high agreement of the measurement results using spectral images [10].

The main objective of the research presented in this paper was to assess the possibility
of using UAV technology and multispectral images acquired with the Micasense Red-
Edge MX camera to analyse the performance of an activated sludge bioreactor on the
example of a municipal WWTP in Poland. This study used a bioreactor that operates with
activated sludge technology and consists of compartments for nitrification, denitrification,
and dephosphatation. In order to verify the results obtained from the multispectral camera,
measurements of the effluent quality indicators ammonium nitrogen (NH4-N), phosphate
(PO4-P), and nitrate nitrogen (NO3-N) were carried out in selected compartments of the
bioreactor. Spectral curves and spatial maps of spectral indices in the form of NDVI,
GNDVI, OSAVI, and derivatives of these indices were analysed for comparison.

UAV Applications in Wastewater Treatment Plants

In the review of the literature, several scientific studies related to the study of UAV
technology can be found in the context of improving WWTP operations and water manage-
ment. In the study [8], the authors conducted a number of UAV inspections to determine
the deformation state of the floating cover over WWTP bioreactors in Australia, identifying
a number of advantages over contact methods. In the study [10], the authors used multi-
spectral data from UAVs as a decision-making tool to improve irrigation management in
China. In [11], UAV technology was investigated in the context of reducing maintenance
costs of wastewater treatment facilities. The proprietary algorithm developed for the study
was able to identify resource failure with an accuracy of 55% to 81% for biological deposits
and with an accuracy of 95% for failures related to activated sludge processes. This means
that UAV imagery is able to help identify failures at WWTP sites and minimise the costs
associated with maintaining some of the equipment found at the plant site. A derivative
product of UAV data post-processing is a digital surface model (DSM), which, according
to [12], can be used successfully to create hydrological models in treatment plant areas and
urban areas for the analysis of drainage systems. However, it has not been possible to find
many papers focussing on the use of multispectral images from UAVs in the context of their
application to improve the operation of WWTPs and control the operation of bioreactors.

Significant developments in miniaturisation and advances in remote sensing imaging
made in recent years are encouraging the application of new sensors under UAVs [13,14].
As a result, it is becoming possible to monitor and manage crops efficiently or supervise
water facilities that require rapid response systems [15]. Remote sensing technologies
adapted to flying UAV platforms are less susceptible to weather conditions than the use of
satellite imagery for the same purpose. The high spatial resolution of UAV imagery, up to a
few centimetres, allows for the detection of even small changes around the survey object
being analysed [16,17]. Visual inspection of the object’s condition by independent observers
is not always feasible, especially for large-scale objects. In addition, visual assessment of
the test object based on the visible spectrum of electromagnetic radiation does not always
reveal all anomalies on the object. Increasing the number of spectral channels widens the
range of interpretation possibilities, and hence the acquisition of hyperspectral images is
becoming increasingly popular [14].
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The variability of the spectral curve—the spectral response of an object (or phe-
nomenon) as a function of electromagnetic wavelength—allows analyses to be carried
out in a noncontact manner and is reflected in the variable values of spectral indices. The
world literature has repeatedly focused on the variability of the spectral curve for vege-
tation, which shows a high instability in the red and infrared ranges of electromagnetic
wavelengths, depending on the condition of the plant under study. There are many scien-
tific papers in which the authors attempt to create rigorous mathematical models based
on the correlation of spectral indices with the physical and chemical parameters under
study [18]. Examples include models that closely relate the spectral response to heavy
metal content in soil [19–21], nitrogen content in agricultural fields [18], or qualitative
parameters that describe the status of describing surface water [22]. Such a large spectrum
of applications encourages testing the potential of remote sensing imaging in other scientific
disciplines than those cited earlier.

2. Study Area

A WWTP located in Starachowice, Świętokrzyskie Voivodeship, Poland, was selected
as the test area for this study. The location of the testing ground is shown in Figure 1.
There are two operational bioreactors at the plant, where analysers and probes have
been installed to measure selected nutrient compounds in real time. The WWTP uses a
system for the interlocked removal of nitrogen and phosphorus carbon compounds from
wastewater as a three-stage Bardenpho system, otherwise known as A2/O. The three-
stage Bardenpho is formed by compartments connected in series: anaerobic, aerobic, and
oxygen compartments.
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The WWTP in question began operating in 1963 and receives wastewater discharged
from the city of Starachowice. After modernisation in the 1980s, the hydraulic capacity of
the plant was increased to 24,000 m3/d. The last modernisation of the WWTP was carried
out between 2008 and 2011, during which all existing biological beds were decommissioned.
The effluent of the secondary settling tanks is discharged into the Młynówka river. The
indicated experimental facility was selected for this study due to problems with the correct
operation of the bioreactors and their planned modernisation. Thus, the results of the
research could find practical application in the implementation phase of the technology
studied during the modernisation of the facility.

3. Methods

The research methodology adopted included carrying out a flight with an unmanned
vehicle equipped with a multispectral camera, acquiring online data from sensors placed in
the bioreactor, and conducting spectral analyses using spectral index maps. The following
chapters provide a detailed description of the subsequent stages of the experiment.

3.1. UAV Flight

The measurement experiment was conducted on 6 April 2021. Three flights were
carried out over the test field by different UAV platforms with different optical sensors.
During the measurement day, there was total cloud cover of the sky, making it difficult to
fly the UAV in global positioning system (GPS) mode. However, the weather conditions
were positive in terms of registering the intensity of electromagnetic radiation. A schematic
of the experimental work associated with the UAV is presented in Figure 2.
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Figure 2. UAV image acquisition workflow.

Before the flight, chequerboard targets were set up to act as ground control points
(GCPs) for post-processing of the data. Each target was targeted with Global Navigation
Satellite System (GNSS) and Real-Time Kinematic (RTK) techniques using a Topcon HiPer
HR satellite receiver and the TPI NetPro network of reference stations. Ground control
points were measured in 30 continuous epochs. Flights were carried out using two UAVs:
Mavic 2 Pro and Matrice 210 RTK v2. The comparative specifications of the two UAV
platforms are presented in Table A1. The acquired images were processed in the Agisoft
Metashape software Version 1.8.2.
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In order to generate a high-resolution orthomosaic to determine geometric relation-
ships between characteristic points around the bioreactors, images were acquired with a
Mavic 2 Pro drone (DJI, China) with a field pixel of 1.8 cm/pix. The forward and cross-
sectional overlays a priori were set at 70%. Due to strong wind gusts, the speed of the
flying platform during the ongoing mission was set at 3 m/s, which allowed sharp images
to be obtained, with a quality image of more than 0.85. The generated orthophoto map was
helpful in interpreting multispectral data with a lower spatial resolution.

For the assessment of reflectance and spectral indices, a UAV flight was performed
with the Micasense Red-Edge MX (Micasense, WA, USA) multispectral camera. The
characteristics of the Micasense Red-Edge MX camera are presented in Table A2 [23]. The
UAV platform under which the multispectral sensor was adapted was the UAV Matrice
210 RTK v2. DJI Pilot software was used to create the photogrammetric mission and plan
the flight parameters. Due to the high cloud cover during the survey day, in addition to
a calibration panel with a white standard, a downwelling light sensor (DLS) was used to
determine the ambient irradiance from different directions for each registered channel. The
result of the in-camera work was a five-channel multispectral orthomosaic with a field
pixel of 4 cm/pix, which was used to conduct further spectral analyses.

3.2. In Situ Measurements

Online measurements of the chemical parameters monitored in the municipal wastew-
ater treatment process, using the example of the analysed WWTP in Poland, were made
using specialised metres that allow real-time measurements. In this study, the investigated
chemical parameters were ammonium nitrogen (NH4-N), phosphates (PO4-P), and nitrate
nitrogen (NO3-N).

For the determination of NH4-N, an ATMAX sensor was used with a diluted sample,
operating on the basis of a gas-selective electrode (GSE) with a screw-on membrane cap.
The ATMAX analyser is used both in influent wastewater—at the beginning of the nitrifica-
tion stage—and in effluent wastewater. For the measurement of PO4-P, the PHOSPHAX
orthophosphate analyser was used in this study. It uses a method based on the determi-
nation of phosphate concentration using colorimetric analysis with a molybdovanadate
reagent. The NITRATAX probe was used to determine NO3-N. The spectrophotometric
method of this sensor is based on the principle of absorption of electromagnetic radiation
from NO3-N and NO2-N compounds at a wavelength of 254 nm [24].

3.3. Spectral Analyzes

The in situ information obtained may not be representative of the entire study area
due to the point and too infrequent nature of the observations. This prevents reliable
interpolation of the data. The spatial distribution of the analysed parameters is thus more
favourable for finding patterns to understand phenomena or explain the occurrence of
anomalies. In the literature review, many references can be found to the implementation of
methodologies for spatial and temporal analyses based on remote sensing data at different
research levels [1,17,19,25]. Among these, spectral analyses based on spectral curves and
spectral indices can be distinguished.

The spectral curve expresses the value of the reflectance of electromagnetic radiation
with respect to the electromagnetic wavelength. In the case of spectral images taken with
radiometric sensors, the DN (Digital Number) pixel values are directly proportional to the
physical reflectance value of electromagnetic radiation and can thus be equated with the
reflectance of radiation. Depending on the structure of the object being analysed and its
physical and nutrient compounds, the reflectance value will vary. This phenomenon allows
local anomalies to be identified and radiometric values (or values of calculated spectral
indices) to be related to parameters characterising the object or process involved.

There are many spectral indices based on different spectral responses (using different
ranges of the electromagnetic radiation spectrum), allowing one to look for relationships
between the values of spectral indices and the physical and chemical parameters of interest.
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The calculated values of spectral indices can be visualised in the form of a composition of
spatial maps of the index distribution with a legend. The research presented here focuses
on six commonly used spectral indices that can be determined with the available Micasense
Red-Edge MX camera. These indicators are as follows: NDVI, OSAVI, and GNDVI, often
cited in studies by other authors [14,16,26], and NDVIRED-EDGE, OSAVIRED-EDGE, and
GNDVIRED-EDGE derivatives of the indices mentioned above. The indicated spectral indices
are most commonly used in relation to plant vegetation or the mode of photosynthesis.
However, in line with the experience of other authors [15,27], this does not exclude the use
of the listed spectral indices for other purposes.

The most recognisable spectral index is the NDVI calculated using Formula (1). It
is strongly related to the chlorophyll content of plant leaves and the productivity of
biomass [28]. The NDVI index values range from −1 to 1, which makes it possible to
separate areas not covered by vegetation (where photosynthesis does not occur) from areas
with dense vegetation and lush condition.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρNIR is the spectral channel with the recorded reflection of electromagnetic radiation
in the near-infrared range (~0.84 µm), and ρRED is the channel recording the red band of
optical radiation (~0.67 µm).

A modification of the NDVI index that allows even small changes in the plant assimi-
lation apparatus to be taken into account is the OSAVI index. In precision agriculture, it is
used at an early stage of crop development when most of the crop is not covered by lush
vegetation [26]. Similarly to the NDVI index values, the OSAVI spectral index values are
normalised and fall within the range (−1; 1), while 1 represents a high chlorophyll content
and strong photosynthesis. The rule of thumb for calculating the OSAVI index value is
presented in Formula (2).

OSAVI =
(

ρNIR − ρRED
ρNIR + ρRED + 0.16

)
(2)

The GNDVI index is used in precision agriculture to estimate photosynthetic rates and
to determine the uptake of water and nitrogen by upper levels of plants [17]. Formula (3)
describes the calculation of the GNDVI from two spectral channels and is as follows:

GNDVI =
ρNIR − ρGREEN
ρNIR + ρGREEN

(3)

where ρGREEN is the spectral channel with the recorded electromagnetic reflection in the
green range (~0.56 µm).

For each of the three formulas presented above, modifications can be made by replac-
ing the infrared channel ρNIR with a red-edge channel ρRED−EDGE, which allows a more
accurate examination of plant health by taking into account not only the crown of the crop
but also the lower tiers of the plant.

The limited number of spectral indices presented is due to the small number of spectral
channels registered by the Micasense Red-Edge MX camera. In the literature review, no
studies on the use of the presented spectral indices were found to assess the performance of
WWTPs and analyse the quality of wastewater. Although the spectral indices in question
are primarily related to plant monitoring, some researchers [22] have obtained satisfactory
results in the analysis of inland waters using the indices cited. Thus, for the purposes of
this article, the authors have made the assumption that the values of the indices: NDVI,
GNDVI, OSAVI, and derivatives of these indices can be used to monitor the processes
occurring in the bioreactor compartments. Each sector of the biological reactor, depending
on the aeration situation and the processes taking place in it, had a different chemical
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and microbiological composition, which reflected on the microbiological processes on the
surface of the reactor sector.

4. Results

The following sections present the results of spectral analyses based on UAV-acquired
data and in situ measurements.

4.1. Spatial Maps of Spectral Indices

By visually analysing Figure 3a–f, it is possible to observe the change in the values
of the spectral indices analysed between the different thematic compositions. For the
NDVI (Figure 3a) and NDVIRED-EDGE (Figure 3b) indicator maps, the range of values
presented in the legend is similar. Within the nitrification (CN), dephosphatation (CDP),
and denitrification (CDN) compartments of the bioreactor analysed, a greater variation
in the values of the NDVI, GNDVI, and OSAVI indicators can be seen in Figure 3a,c,e.
These maps are more visually contrasting than the derived maps of the listed indices,
where successive compartments of the bioreactor are similar with respect to each other.
This may indicate that the ρRED−EDGE channel recorded by the Micasense Red-Edge MX
multispectral camera analysed in this study is not sensitive to changes in the quality of the
biomass parameters in the bioreactor compartments.
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The search for anomalies in processed remote sensing images usually boils down to
the identification of local areas with different radiation characteristics or spectral indices.
Areas with anomalies stand out in relation to their surroundings and allow a preliminary
qualitative analysis to be carried out. Depending on the degree of aeration of the bioreactor
compartments, the texture of the biomass in the map compositions and the high-resolution
RGB orthophoto varies. Maps of the spectral indices NDVI (Figure 3a), GNDVI (Figure 3c),
and OSAVI (Figure 3e) allowed anomalies to be localised inside some of the CNs, as
presented in Figure 4. The area highlighted in red shows two compartments for which
a contrast in the values of the spectral indices can be seen. The compartment with the
biomass located higher up is more homogeneous in terms of indicator values than the
compartment located to its right, where the spread of NDVI, GNDVI, and OSAVI indicator
values is much greater. This allows us to conclude that the spectral indices analysed in this
paper in the form of NDVI, GNDVI, and OSAVI can be sensitive to changes in the chemical
parameters of the biomass in the bioreactor compartments.
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Figure 4. Location of detected anomalies inside the CNs of the bioreactor on a map base: (a) high-
resolution orthophoto, (b) NDVI, (c) OSAVI, and (d) GNDVI.

Figure 5 was created to visualise the distribution of the values of the spectral indices
analysed for the three compartment types. Within each bioreactor compartment, 200 points
were randomly generated, for which the values of the indices from the different map
compositions were read, and then the values of the spectral indices were averaged by
compartment type. The spectral indices presented have the same value domain, making
them possible to present in a single graph.
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For all six spectral indices analysed, a similar trend of index values was observed for
the compared types of compartments in the bioreactor. The highest values of all indices
were observed for the CDNs, and the lowest for the CNs (Figure 5). The derived indices in
the form of NDVIRED-EDGE, OSAVIRED-EDGE, and GNDVIRED-EDGE have less differentiated
values for CDNs and CDPs. The highest peak between the values of the spectral indices
was observed for the GNDVI index in the different types of bioreactor compartments.

Differences in the values of the analysed spectral indices for the compartment types
in the bioreactor may result from a number of factors. One factor that should be con-
firmed in further extended studies is the specificity of the predominant microorganisms
in each compartment. Differences in the structural structure of the microorganisms found
in each compartment may affect the wave reflection, as evidenced by the different values
of all indicators. In the case of CN, the dominant ammonium nitrogen oxidising bacteria
most extensively studied is Nitrosomonas europaea [29]. These bacteria carry out the
nitrification process, which requires the presence of appropriate specific enzymes and
energy transporters, i.e., ammonium monooxidase, hydroxylamine oxidoreductase, ni-
trite oxidoreductase, or specific cytochrome c. These proteins are contained in, among
others, periplasmic areas of the cytoplasm and also in the very thick—in the case of this
bacterium—cell membrane or, importantly, only in the periplasm of the cells of nitrifying
bacteria [30], which can directly affect the reflection of radiation and lower results of the
obtained indicators (Figure 5) compared to the dominant groups of bacteria in the CDP
or CDN. Confirmation from further in-depth research requires knowledge regarding the
specificity of microorganisms that dominate in all sectors. Another likely reason for the
differences in the values of the analysed spectral indices for the compared types of com-
partments in the bioreactor is that the amount of organic matter decreased sequentially in
the WWTP processes in the activated sludge compartments. These processes involved the
mineralisation of organic matter and the formation of humic and fulvic acids [31].

In order to fully summarise the statistics describing the distribution of spectral indices
in the bioreactor compartments, a boxplot based on quantiles was created (Figure 6). The
greatest scatter in the values of the spectral indices was observed for the CNs and CDNs,
which may be due to the activity of biological processes during the acquisition of aerial
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photographs. For this reason, the optimum option for acquiring multispectral images from
UAVs should be to carry out a UAV flight at a much higher altitude and with fewer images.
The values of all spectral indices are most closely grouped with respect to the mean value
for the dephosphatation compartment, which was the least variable during the raid in
terms of the visual organic matter observed in its top layer. This could be explained by
a lower concentration of phosphorus compounds and, consequently, a lower rate of the
dephosphatation process.
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4.2. Operating Conditions of the Wastewater Treatment Plant during the Experiment

As the operation of a WWTP requires simultaneous control of multiple processes,
a number of measuring devices mounted on its process facilities are used. A desirable
situation would be to measure the WQI in the influent and effluent of the treatment
plant and correct the bioreactor settings. Currently, most domestic facilities have online
monitoring of biological reactor settings [3]. Table 1 presents the results of the online
measurements of the bioreactor on the day the experiment was carried out using a UAV.

Table 1. Summary of results obtained for chemical parameters from online measurements for three
types of bioreactor compartments in Starachowice.

Wastewater Quality Index Designation Dephosphatation
Compartment

Denitrification
Compartment

Nitrification
Compartment

Ammonium nitrogen [mg/L] NH4-N 25.72 16.46 5.73

Phosphates [mg/L] PO4-P 48.13 25.86 0.00

Nitrate nitrogen [mg/L] NO3-N 0.14 0.17 4.35

The above results confirm the high efficiency of removal of biogenic compounds NH4-
N at 78% and PO4-P at 100%, respectively. At the same time, the results of measurements of
nitrogen forms, i.e., NH4-N or NO3-N, in the following intervals indicated that nitrification
and denitrification in the bioreactor were properly occurring.
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4.3. Spectral Analyses

Figure 7 presents the three spectral curves determined from the data acquired by
the UAV for the three types of compartments analysed in the bioreactor. The differences
obtained between the curves allow the different types of compartments to be distinguished
and, thus, the different processes taking place in each compartment to be identified.
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Based on Figures 6 and 7, it was found that the biomass accumulated in the different
types of compartments of the analyzed bioreactor had different reflectance. In wastew-
ater treatment technologies with simultaneous phosphorus and nitrogen removal, the
sludge is subjected to alternating anaerobic, anoxic, and aerobic conditions [32]. As a
result, a diverse bacterial flora develops in the biocenosis of activated sludge, capable of
increasing phosphorus accumulation in its cells and simultaneously reducing ammonium
nitrogen. Under anaerobic conditions, phosphorus is released into the environment as
a result of the decomposition of intracellular polyphosphates, and the resulting energy
is used by phosphorus bacteria for the biosynthesis of spare substances. Under aerobic
conditions, there is rapid uptake of converted and stored dissolved phosphorus to polyphos-
phates [33–35]. At the same time, Kern-Jaspern and Henze [36] formulated the hypothesis
that two types of phosphorus microorganisms can occur in anaerobic wastewater treatment
systems. One type of phosphotrophic bacteria can use only oxygen as an electron acceptor,
while the other group can use both oxygen and nitrate. Thus, under different aerobic condi-
tions, different groups of phosphorus bacteria will dominate in the different CDPs, CDPs,
and CNs. In the first anaerobic compartment, the denitrification and dephosphatation
system will release phosphate into the environment [37]. On the other hand, already under
anoxic conditions, a group of bacteria using nitrites and nitrates as electron acceptors in the
oxidation of poly-β-hydroxybutyric acid (PHB)—begin to accumulate phosphorus. Two
well-known processes then take place, that is, biological dephosphatation and heterotrophic
dissimilatory denitrification [38]. The existence of different groups of phosphorus bacteria
and, at the same time, their variable activity in accumulating or releasing phosphorus may
be the direct reason for the differences between the UAV spectral curves. The reason for the
large discrepancy between UAV spectra from CDP and UAV spectra from CDN and CN
may have been the activation of phosphorus-accumulating bacteria in the form of polyphos-
phates already in the anoxic compartment (in CDN). However, these are conjectures, and
this study would need to be expanded to include microbiological analyses.
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In order to verify this assumption, it was decided to relate the results of the chemical
analysis of the effluent to the spectral indices using a simple regression model and then to
determine the coefficient of determination R2. The results with the highest fit values are
presented in Figure 8.
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(a) ammonium nitrogen, (b) phosphate, and (c) nitrate nitrogen for the analysed bioreactor.

For all three effluent quality indicators, a linear relationship was observed in the values
presented in the study of the spectral indices. The strongest correlation was observed for the
GNDVIRED-EDGE indicator and NO3-N, for which the determination index was R2 = 0.98.
In the oxygen (nitrification) compartment, ammonia is oxidized to nitrate, and there is an
excess uptake of phosphate released in the anaerobic zone. The process occurs primarily
with the use of nitrifying bacteria, whose biological membrane structure differs from other
groups of bacteria, which may be the reason for the variation of GNDVIRED-EDGE values
in the CN. The large disparity between NO3-N values in biological compartments and
the variability of dominant bacterial groups in the different defosfatation, denitrification,
and nitrification processes may be the reason for the strong regression between the NO3-N
concentration and the GNDVIRED-EDGE coefficient. This process occurs primarily with the
participation of nitrifying bacteria, whose biological membrane structure differs from other
groups of bacteria, which may have been the reason for the variation of GNDVIRED-EDGE
values in the CN. The proliferation of biomass of bacteria (including filamentous bacteria),
protozoa, and invertebrates under aerobic conditions may also affect the reflectance and
lower results of the obtained GNDVIRED-EDGE index. However, the small amount of data
requires this study to continue to confirm the results obtained.

5. Discussion

The recorded spectral response by the remote sensing detector might have been dis-
turbed by a number of factors, such as illumination of the object from different angles,
objects around the object under study (introducing multiple reflections of electromagnetic
radiation), or variable atmospheric conditions during multispectral data acquisition. Never-
theless, UAV platforms have more flexibility in selecting optimal conditions for conducting
analyses than when working with satellite images, which for the latitude of Poland are
often unsuitable for conducting quantitative analyses due to frequent cloud cover occurring
in autumn–winter [7,16,17].

The analysis of the obtained spectral indices showed the greatest difference between
the results for the nitrification and denitrification compartments (Figures 5 and 6). This
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result was confirmed by the data obtained from the measurements at CDN and CN (Table 1).
The greatest difference was obtained between the effluent quality indicators tested in the
selected compartments for phosphate. In the case of ammonium nitrogen, a decrease in its
value was found in CN compared to CDN, indicating the correct course of nitrogen removal
from wastewater. As a result of the detailed analysis of spatial maps of spectral indices
(Figure 3), it was possible to locate an anomaly inside the CNs of the bioreactor analysed
(Figure 4). This might indicate the presence of a large variation in effluent quality within
the bioreactor compartments and, consequently, potential problems with its operation
in the form of the formation of so-called dead zones. However, the verification of the
hypothesis cited requires additional measurements and the creation of a hydrological
model of the bioreactor.

Measurements taken with a spectral camera showed differences in electromagnetic
reflectance values for the CNs, CDNs, and CDPs, as shown in Figure 8. These results
confirmed the data from measurements of selected WQI indicators for the bioreactor com-
partments (Figure 7). The data showed that the processes taking place in each compartment
influence the values of selected WQI indicators. This fact can be used in the construction of
the soft sensor, but there is a need to extend the scope of measurement studies using drones
and to perform laboratory measurements of selected indicators of wastewater quality. Thus,
further research is required.

WWTPs collect a large amount of data that can be used to develop process models
to support the operation of the plant. From the point of view of WWTP operation, it was
interesting not only to predict the wastewater treatment process but also to simulate it. It is
important to use mathematical models to control the processes occurring in the treatment
plant, that is, to determine these bioreactor settings to ensure the required effluent quality
with the lowest operating costs [4]. The research carried out in this paper demonstrates the
potential of UAV technology and multispectral imagery in the context of identifying the
operating conditions of WWTPs, and the research findings are in line with the experience
of other authors [27,39].

The results obtained showed correlations that can be used at the stage of WWTP opera-
tion control, operation, and monitoring of bioreactor performance. The proposed approach
can be an alternative to classical solutions (use of online sensors), including those based on
developed soft sensors. At present, continuous monitoring is used in many WWTPs, but it
is not possible to carry out measurements at the stage of system failure, sensor calibration,
replacement, or maintenance. The results obtained (Figure 8) significantly confirm the
relationships between the NDVI and GNDVIRED-EDGE spectral indices and ammonium
nitrogen (NH4-N), phosphate (PO4-P), and nitrate nitrogen (NO3-N. Presumably, these
relationships may have been due to the variable biomass of the dominant groups of or-
ganisms in the treatment compartments. In the aeration compartment, these will mainly
be nitrifying bacteria, protozoa, and invertebrates [40], which decompose organic matter
and contribute to the humus in the sludge, which may be reflected especially in the value
of the GNDVIRED-EDGE ratio. The supposition of the influence of biomass variation in
compartments on UAV spectral indices was attempted to substantiate with UV-VIS spectra
of the phosphorus bacteria Bacillus megaterium, where the absorption maximum occurred
at 550 nm [41]. In addition, the validity of the conjecture may have been evidenced by
the UV-VIS spectra of other microorganisms for which the absorption maxima were in
the red wavelength range [42,43]. These conclusions can be used in the operation stage of
the treatment plant and may provide a solution for obtaining data on the performance of
the bioreactor in emergency situations. The aforementioned correlation showed a strong
correlation (R2 = 0.98) between GNDVIRED-EDGE and nitrate nitrogen, which allows the
possibility of developing soft sensors. The tools used to create a computational model (in
the above case of WQI) from the collected data were used to identify selected indicators of
wastewater quality in bioreactor compartments. However, due to the number of experi-
ments carried out, these analyses must be continued in order to confirm the relationships
obtained and, on the other hand, collect enough data to determine a computational model.
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6. Conclusions

On the basis of the research carried out, it was concluded that it is possible to sepa-
rate the nitrification, defosfatation, and denitrification compartments for the bioreactor
analysed using the characteristics of the spectral curves. The values analysed of the spec-
tral indices are as follows: NDVI, OSAVI, GNDVI, NDVIRED-EDGE, OSAVIRED-EDGE, and
GNDVIRED-EDGE show a linear relationship with respect to the concentrations of ammonia
nitrogen, nitrate nitrogen, and phosphate in the analysed bioreactor. However, the small
number of observations in this study necessitates the continuation of this study. The re-
search conducted may find application in the construction of a soft sensor for monitoring
the operating conditions of a WWTP.

Given the potential of the results obtained, further analyses involving varying op-
erating conditions in the bioreactor (changing inflow, temperature, and quality in the
compartments) for different seasons are advisable.
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Appendix A

Table A1. Comparative characteristics of the UAVs used in this study.

Division Contents for Mavic 2 Pro Contents for Matrice 210 RTK v2

Weight 0.91 kg 4.90 kg

Flight time on one battery ~25 min ~34 min

IP tightness standards No IP43

Possibility to adapt many sensors (e.g.,
replaceable optics) No Yes

RTK corrections No Yes

Table A2. Characteristics of the Micasense Red-Edge MX multispectral camera used.

Weight (include DLS 2 system) 231.9 g

Dimensions 8.7 cm × 5.9 cm × 4.5 cm

Spectral Bands Blue, Green, Red, Red edge, Near-IR, 12-bit RAW for each

Wavelenght (nm)

Band 1 Blue—475 nm center, 32 nm bandwidth

Band 2 Green—560 nm center, 27 nm bandwidth

Band 3 Red—668 nm center, 14 nm bandwidth

Band 4 Red edge—717 nm center, 12 nm bandwidth

Band 5 Near-IR—842 nm center, 57 nm bandwidth

Ground Sample Distance (GSD) 8 cm per pixel (per band) at 120 m AGL

Field of View 47.2◦ HFOV
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