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Abstract: Monitoring the partial discharge (PD) activity of power equipment insulation is crucial
to ensure uninterrupted power system operation. PD occurrence is highly correlated to weakened
insulation strength. If PD occurrences are left unchecked, unexpected insulation breakdowns may
occur. The comprehensive PD diagnostic process includes the detection, localization, and classification
of PD. Accurate PD source localization is necessary to locate the weakened insulation segment. As a
result, rapid and precise PD localization has become the primary focus of PD diagnosis for power
equipment insulation. This paper presents a review of different approaches to PD localization,
including conventional, machine learning (ML), and deep learning (DL) as a subset of ML approaches.
The review focuses on the ML and DL approaches developed in the past five years, which have shown
promising results over conventional approaches. Additionally, PD detection using conventional,
unconventional, and a PCB antenna designed based on UHF techniques is presented and discussed.
Important benchmarks, such as the sensors used, algorithms employed, algorithms compared, and
performances, are summarized in detail. Finally, the suitability of different localization techniques for
different power equipment applications is discussed based on their strengths and limitations.

Keywords: partial discharge; localization; machine learning; deep learning; fault diagnostic

1. Introduction

The insulation of power equipment plays a crucial role in ensuring the safe and proper
operation of the power system. However, power equipment insulation deteriorates over
time, and its ageing process is accelerated by abnormal surrounding activities, such as
chemical, electrical, and mechanical stresses. These factors ultimately reduce the insu-
lation’s performance [1]. The continual insulation degradation on high-voltage power
equipment will lead to a local insulation breakdown known as partial discharge (PD). This
phenomenon results from the very irregular distribution of the electric field, which places
stress on the insulating components at certain defect spots [2]. Prolonged PD occurrences
on the weak points of power equipment insulation can increase the discharge intensity [3]
which ultimately leads to catastrophic insulation breakdown [2]. PD diagnostic can be
applied to any electrical equipment that has insulation, as long as the PD inception voltage
(PDIV) is lower than or equal to its operating voltage [4]. To prevent serious accidents that
may cause significant economic losses and threaten the safety and stability of the power
system, it is essential to conduct a PD diagnostic test with proper PD source detection,
locating the PD sources, and identification of the PD source type in the power system. This
will allow for the scheduling of maintenance actions on power equipment [3,5,6]. Based
on a case study by a German cable diagnostic company [7], by performing PD testing on a
2.5 km long paper-insulated cable, the faulty segment can be narrowed down to a length
of 20 m. Consequently, it is estimated that up to 80% cost savings are possible due to the
improved localization of the faulty segment.

Before applying maintenance measures to the correct defect location, it is essential to
conduct high-quality PD measurements. During PD activities, commonly emitted signals
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include electric, electromagnetic, and acoustic signals. Therefore, various PD detection
sensors can be utilized in PD condition monitoring, such as high-frequency current trans-
formers (HFCTs), epoxy-mica capacitors, Rogowski coils, UHF, and acoustic sensors [8].
PD measurement, defined using IEC-60270 [2] and IEC-62478 [9] standards, includes con-
ventional techniques for monitoring PD activities in power equipment. The conventional
technique involves the measurement of current and voltage and the measurement of electro-
magnetic signals (EM) (0.3–3 GHz). In contrast, the unconventional technique includes the
measurement of acoustic (20 kHz to 1 MHz), optical (300 GHz to 3000 THz), and chemical
signals. In the past, several works have conducted PD diagnostics for power equipment
applications in transformers, substations, and cables, including PD detection [10–12], classi-
fication [13,14], and localization [15–17], using the above-mentioned techniques. Different
measurement techniques have their strengths, especially in accurately locating PD sources
in various power equipment applications.

Using UHF measurement in transformers is an effective way to locate weak PD or
PD that exists in the winding. The transformer tank provides electromagnetic shielding,
which makes it immune to external noise interferences. However, due to limitations
in UHF calibration and sensitivity, there can be interference from sources such as WIFI,
TV, or radio when measuring outside the transformer tank. The UHF sensing technique
for PD detection is more frequently used in wide or open areas such as switchgear and
substations [18–20] because it offers noncontact PD detection, greater anti-interference
capability, and better sensitivity [3]. In contrast, the acoustic sensing technique is more
favoured for use in transformers [1,21,22], as it is not influenced by external electromagnetic
interference (EMI). Acoustic sensors can be attached on the wall of the transformer tank for
noninvasive detection. Nevertheless, the acoustic signal may be polluted by noise from the
environment, such as vibrations from the transformer [23]. Optical measurement has the
benefit of being resistant to mechanical, electromagnetic, and noise interferences, which
are typical problems experienced in acoustic and UHF detection. However, the signal
detection range is smaller, and a large number of sensors must be installed to achieve
satisfactory measurement.

Once the ability to detect PD signals is achieved, the process of locating the PD
source becomes equally important to ensure fast and efficient maintenance. For three-
dimensional PD source localization, the time-difference of arrival (TDOA) method can be
used, utilizing either acoustic or UHF signals [1,8,24]. However, this method requires at
least four sensors to collect signals synchronously, establish the equations set, and solve
for the PD source coordinate [3]. When taking PD measurements for the transformer, the
TDOA-based electromagnetic technique has limitations due to the obstacles created by
the transformer windings and core that block the direct signal path [25]. The technique is
also affected by inaccuracies resulting from inhomogeneities and scattering, such as signal
reflection and refraction inside the transformer. In contrast, the TDOA-based acoustic
technique does not require a direct line of sight, allowing for better localization accuracy
by taking into account the different propagation speeds of transformer tank materials
and the multiple suitable paths for the acoustic signal to spread from the source to the
sensors through proper signal processing. However, the time of arrival of acoustic signals
from different transformer materials can lead to time arrival errors and affect localization
accuracy [23]. Thus, exploring different solutions for this issue is of great research interest.
Additionally, several reports have presented the identification of PD sources by identifying
the angle of the PD signal from the source to the sensor, but the localization performance
is greatly dependent on the relative position between the PD and the sensors. Therefore,
studying the optimal sensor arrangement for different power applications is necessary.
Overall, TDOA techniques are highly sensitive to noise, with signal arrival errors adversely
affecting localization accuracy [23]. Recently, there has been a trend in exploring machine
learning (ML) techniques for PD localization, which have shown promising performance.

When provided with the appropriate features, the ML model can perform very well
in numerous applications including PD localization. It can potentially avoid the typical
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issues faced using the conventional localization approach such as a higher tendency to
get stuck in local minima and being highly dependent on iterative calculations. The
ML techniques can also be enhanced when incorporated with other suitable algorithms
such as Principle Component Analysis (PCA) [26,27], clustering algorithm [17], Canny
image edge detection [28], and S-Transform [29] which help with the feature extraction
processes. However, ML techniques depend on handcrafted solutions to extract important
features, making it crucial for humans to select the correct model when dealing with
noise-contaminated data in real-world scenarios that may compromise PD localization
accuracy. In contrast, DL, a subset of ML that employs deeper structures such as deep
neural networks (DNN) to enhance the feature extraction process, can offer a more robust
approach with higher noise resistance. With the recent advancements in computation
technology and data storage, DL has gained popularity in various applications to automate
decision-making processes with minimal human intervention. A well-tuned DNN model
can provide more effective automation techniques than traditional ML models.

Based on the popularity of PD condition monitoring, there are several review papers
in the relevant field. The excellent review in [30] covers PD detection, localization, and
classification. However, the bulk of the emphasis is on PD classification instead of PD
localization techniques. Another recent study in [31] reviews PD signal processing and
localization, but is primarily focused on conventional PD localization techniques such as
TDOA, DOA, RSSI, and others. Therefore, it is essential to conduct a comprehensive review
of recent research works in PD localization to identify future potential and challenges in
using both conventional and machine learning techniques.

In this paper, the different PD source localization techniques used in various power
equipment applications are discussed and summarized in detail. The paper compares the
localization techniques, including the conventional approach of solving TDOA or AOA
equations using iterative or noniterative algorithms, optimization algorithms used for
localization algorithm enhancement, ML techniques using feature extraction techniques,
and DL techniques using a variety of DNNs. This paper comprises six sections, including
the introduction. Section 2 reports on the PD measurement approach for different regimes
and UHF-based antenna detection. Section 3 presents the conventional approach to PD
localization. Section 4 reports on the ML approach and its deeper structure of using DL.
Section 5 discusses the future of PD localization works. Finally, Section 6 is the conclusion.

2. PD Detection

PD detection is the primary step in PD diagnostics, as it ensures that accurate and
reliable PD signals are obtained before applying further signal processing techniques for PD
source localization and PD type classification. A list of commonly encountered insulation
defects detectable via PD diagnostic for different power equipment is tabulated in Table 1.

High signal-to-noise ratio (SNR) of the captured PD signals greatly enhances the
diagnostic evaluation since it avoids the need for complex signal denoising techniques. PD
detection can be categorized into conventional and unconventional measurements. Conven-
tional measurement involves the measurement of apparent charge displacement based on
IEC 60270 and electromagnetic measurement according to IEC 62478, while unconventional
measurement employs acoustic and optical signal sensing. In this section, different PD
detection techniques were discussed and summarized, including their suitability, strengths,
and limitations in various power equipment applications, which are tabulated in Table 2.
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Table 1. Common defects for power equipment.

Equipment Type of Defect

Substation Tip discharge in oil [3], corona discharge [18,32–37]

Transformer

Sphere cavity, cylindrical cavity, bubble in the oil, fixed
metal particle [38], needle tip [24,39,40], surface

discharge [38,41,42], corona discharge [1,17,21,38,43–46],
void discharge, and floating discharge [42]

Transformer bushing Corona discharge, suspension discharge, creeping
discharge, and interior discharge [47]

Cable Inner semiconducting layer breakage, internal cavity,
insulating surface scratch [48], corona discharge [26,49]

Gas Insulated Substation (GIS) Metal tip, free particles, surface discharge, floating
electrode [50], corona discharge [28]

Table 2. Strength and limitations of PD detection for different applications.

Regime/
Common Measurement In Strength Limitation

HV test
(any) Suitable in commission test

Experience electrical noise
Contact measurement only

Not portable

Electromagnetic
(substation)

Online and offline
Noncontact and nonintrusive

Smaller sensor

Required high sampling rate
Tendency to have
detection errors
Experience EMI

Acoustic
(transformer)

Noncontact and
nonintrusive measurement
Immune against electrical

noise and EMI

Signal attenuation at
different medium

Influenced by temperature,
pressure, and external acoustic

Limited by sensors’ distance

Optical
(cable)

Immune to EMI and
acoustic interference

Excellent signal detection in
air and SF6

Isolate between LV and
HV equipment

Poor signal detection in liquid
or solid insulation

Contact-type measurement
Limit to small-range

PD detection

2.1. Conventional PD Detection

Accurate measuring circuits are required for detecting PD activities, which generate
fast transient current pulses with different rise times and pulse widths. The conventional
PD measurement technique is based on the IEC 60270 standard which is applicable to PD
measurement at DC or AC up to 400 Hz. The test circuit, as shown in Figure 1, consists of a
coupling capacitor Ck, measuring impedance Zm, and test object Ca, and the PD activities
at the test object capacitor can be captured by measuring the impedance. Additionally, in
the data preprocessing stage, the measured signal can be represented in the time-domain
or frequency-domain. The Phase-Resolved Partial Discharge (PRPD) plot is a popular
representation of PD, as shown in Figure 2. The PRPD plot shows the apparent charge
amplitude (q) versus the respective phase position (ϕ) at which the PD occurred and the
number of PD occurrences (n) [51].
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The PD measurement approach using high-voltage instruments is suitable and re-
liable for offline commission tests of power equipment [8]. However, it is susceptible to
electrical noise from the capacitor-based measuring equipment, making it inconvenient
for on-site measurements since a suitable high-voltage coupling capacitor is needed [8,52].
Furthermore, the conventional method requires contact type measurement, making it
unsuitable for use in substations or transformers unless openings are available on the
transformer tank, or intrusive measurement is employed. Hence, other methods to detect
PD activities such as electromagnetic, acoustic, and optical measurements are discussed in
the next section.

2.2. Radio Frequency Detection

When PD occurs, it induces electromagnetic (EM) waves at various high frequency
ranges, and the propagation speed is the speed of light. According to IEC TS 62478, the
frequency range for PD detection in the radio frequency band are high frequency (HF) from
3 to 30 MHz, very high frequency (VHF) from 30 to 300 MHz, and ultra-high frequency
(UHF) from 0.3 to 3 GHz [51]. Hence, PD signal can be measured using sensors based
on the electromagnetic detection principles or near-field antennas. The UHF-based PD
measurement is more favourable compared to HF and VHF due to the higher SNR from its
higher frequency band which provides more immunity to surrounding noise generated
at the lower frequency band. The high robustness against external noise allows it to be
suitable for both online and offline PD localization which makes it a complementary tool
for PD diagnosis in addition to the conventional method [24]. This technique can achieve
accurate PD localization in transformers due to its sensors being smaller in size, so the
sensors can be placed into the equivalent oil drain valve or dielectric windows [30]. The



Energies 2023, 16, 2863 6 of 31

UHF technique provides noncontact and nonintrusive PD measurements, making it a
versatile method compatible with different power apparatus [8]. The EM signal is capable
of propagating over a distance, making it ideal for detecting PD signals, particularly in
substations. However, due to the fact that UHF signals propagate at the speed of light, a
fast sampling rate is required to capture the PD signals accurately down to the nanosecond
level [53]. Additionally, the higher demand of the detection device to quickly respond
to the signals can lead to errors in the detection [49]. Apart from that, the presence of
EMI from sources such as radio, TV, or mobile communications signals can result in false
signal detections being interpreted as PD sources, particularly when measuring from a far-
field [52]. For transformers, the UHF-based technique may experience attenuated signals
due to the presence of windings and cores, resulting in PD signals being reflected and
refracted, even with denoising algorithms in place [24,41].

2.3. Acoustic Detection

During PD occurrence, acoustic signals are also emitted due to the mechanical wave [54]
resulting from small changes in the surrounding air pressure [55] caused by excessive
electron vibration. The covering frequency range is between 20 kHz and 1 MHz [56],
and this technique provides noncontact PD measurement and localization using multiple
acoustic sensors to detect high-frequency sound generated by the PD source [52]. The
technique is less affected by electrical interference, which is why acoustic sensors can be
mounted externally. The frequency content of the acoustic waves and electromagnetic
signals emitted from PD sources shows that the smallest sampling frequency for the acoustic
regime is far lower compared to the EM regime (2 GHz versus 6 MHz) [23]. Therefore,
the application of the acoustic method to localize PD within a transformer tank is less
costly than the EM method. However, the acoustic signals may suffer from attenuation and
reflection in the transformer when the signals propagate through different mediums such
as from air to oil or solid steel tank [52]. Aside from that, acoustic signal distortion is also
affected by different factors such as temperature, pressure, acoustic vibration, surrounding
air pressure, and propagation distance, which limits its sensing range [49].

2.4. Optical Detection

When PD happens, a different optical spectra of light is emitted due to different
ionization, excitation, and recombination activities occurring at the PD site. Optic fibre
sensors or probes [57] can be used to accomplish optical PD measurement and convert the
receiving light into an electrical signal for data analysis. The medium for light travelling,
such as solid, liquid, or gas, and surrounding factors such as temperature or pressure,
will be the main factor determining how much light emitted by the PD source will be
received by the sensor [58]. The optical detection approach has better sensitivity than the
conventional PD detection approach and is immune to environmental noise such as EMI
and acoustic interferences. The measurement can achieve excellent PD detection under
air or SF6 at larger distances. However, the optical measurement performs poorly under
liquid or solid insulations because the emitted light will be absorbed by the surrounding
medium. Since the optical PD measurement method uses light coupling, it is unaffected by
electromagnetic interference and provides isolation from HV equipment. One drawback is
that each sensor must be physically attached to the test equipment [57].

2.5. Antenna Detection

The improvement of existing PD UHF sensors through better antenna design is an
ongoing research effort by many researchers. Currently, several designs of printable
antennas are available, which can be fabricated using low-cost thin substrate materials for
PD detection. The printable antenna is a component that can exhibit the characteristics of
radiating and receiving electromagnetic signals. The transformation of the electromagnetic
coupling by the PD source into the respective current or voltage signal is achieved within
the antenna, which can be used as a UHF sensor to carry out PD detection for power
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equipment. However, the optimization of antenna design parameters is highly important
in improving the quality of PD signal collection. Hence, the antenna’s gain, bandwidth,
radiation pattern, and physical size have been studied and experimented with by many
researchers. The following subsections discuss the different antenna designs considering
the parameters studied, and the type of antenna used is summarized in Table 3.

2.5.1. Spiral Antenna

The PD signal is able to travel in any direction with any type of polarization. Hence,
spiral antennas have been considered for use as UHF detectors for PD diagnostics due to
their polarization-independent pattern of radiation [33,59]. In [60], the Archimedean spiral
antenna (ASA) was used for PD detection from mineral oil. Figure 3 shows a simplified
sketch of a spiral antenna design and its design parameters are given in Equations (1)–(6).
An actual front and back view of a spiral antenna can be found in [60].

r = Ri + Gθ (1)

flow =
c

2πR f
(2)

fhigh =
c

4Ri
(3)

G =

(
R f − Ri

)
2πN

(4)

θi = 0 (5)

θ f = 2πN (6)

where Ri is the initial radius, r is the radial path of the spiral travelling wave structure,
G is the growth rate of the spiral, and θ is the spiral rotation limited to vary between
θi and θ f . The parameter G regulates the spiral’s growth rate. The initial radius Ri and
final radius R f establish the lowest ( flow) and highest ( fhigh) frequencies supported by the
antenna, respectively. Lastly, N denotes the number of turns to flare from Ri to R f . The
spiral antenna exhibits low profile and planar construction, low polarization loss factor,
and wideband operation making it good for PD detection [59,61]. The spiral antenna is
highly directional and can be used to focus a signal in one direction or to receive signals
from a particular direction [62,63].
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The cosine slot Archimedean spiral antenna (CSASA) with a small aperture size and
unidirectional radiation pattern was introduced in [64]. A pair of planar slot spiral arms are
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centre fed on the backplane of the dielectric substrate employing aperture coupling in place
of metal spiral arms. When compared to the current UHF spiral antenna-based PD sensors,
it has polarisation purity over the ultrawideband bandwidth (0.5–5 GHz). It eliminates the
requirement for a wideband unbalanced to balanced transition normally utilized to feed
the dual arms of the planar slot antenna. PD measurements showed that the CSASA sensor
could detect commonly occurring electrical discharges with 120% taller signal amplitude
than the reference UHF disc sensor and with higher sensitivity in PRPD analysis.

2.5.2. Planar Monopole Antenna (PMA)

PMA is an attractive option for real-world utilizations due to its cheap, omnidirectional
radiation pattern, ease of installation/construction, wide bandwidth, and condensed sizes
when going through the miniaturization process. They are sensitive enough to detect PD in
its early stages [65,66] and can identify different signal patterns for defect classification [67].
Despite their potential, PMAs have been scarcely studied for PD localization compared to
microstrip antennas [68]. The dimensions of a sample PMA are shown in Figure 4, where L
and W are the length and width of the antenna receiving element, Lg and Wg are the length
and width of the ground plane, W f is the signal transmission width, and h is the thickness
of the substrate.
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The efficiency of the PMA can be improved by maximizing the receiving element
perimeter. To achieve this, some bioinspired PMA designs such as leaf [69], butterfly [70],
and bee [71] have been explored. An antenna inspired by Jatropha Mollissima leaf was
developed in [66] for PD localization in [72]. With a −5 dB limit of reflection coefficient, it
has a PD detection range from 772 to 1272 MHz, with an approximate 70% power signal
transmitted. The detected PD levels were higher than 35 pC, which showed that the
sensitivity is satisfactory when taking measurements in power transformers. Additionally,
this sensor is protected against corrosion by using the epoxy coating while its aluminium
enclosure provides increased mechanical support. This makes it compatible for use with
dielectric windows, with a lifespan that matches the transformer. This design is easy to
manufacture and has a low cost, with the potential to utilize other bio-inspired shapes
to optimize one or more parameters. PMA can handle the problems of the directional
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radiation pattern, irregular narrow bandwidth, and huge size for a UHF antenna. PMA can
be a good option to increase the bandwidth of the antenna [73,74] as, with the approximate
patch perimeter, the operating frequency can be calculated using [72] Equation (7):

f (GHz) =
300

p√εre f
(7)

where εre f is the relative permittivity of the dielectric substrate and p is the perimeter of the
radiator element, and then approximated as in Equation (8):

εre f =
(εr + 1)

2
+

(εr − 1)
2

(
1 + 12

h
w f

)− 1
2

(8)

2.5.3. Fractal Antenna

The fractal antenna is a popular choice for creating UHF sensors that are small in
size while maintaining similar impedance and radiation pattern characteristics as larger
antennas. This allows them to fit within the commercially recommended area for PD
diagnostics. The Hilbert fractal antenna’s contours enable the compactness of antenna
design, where the length of the fractal contour depends on the antenna order. The higher
the antenna order (n), the larger the length of the fractal contour [54]. Figure 5 shows the
different antenna representations when different orders of Hilbert antenna are used.
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Several design considerations are necessary to ensure the antenna performs effectively
in the right power applications. This includes the physical size consideration of the antenna
which involves the side length (l) and the length of each line segment (d), where d can be
obtained by Equation (9):

d =
1

2n−1 (9)

Setting the design parameters’ purpose is to maximize the allowable area of detection,
such as antenna design for PD detection in a transformer may become restricted due
to the limited space available. Furthermore, the number of antenna orders becomes a
consideration when the cost of antenna fabrication becomes a concern. The higher the
number of orders used will result in a larger segment total length (s) and reduces the value
d, where s can be obtained by Equation (10):

s =
(

22n−1 − 1
)

d (10)

Consequently, the complexity and the cost of fabrication increase. Meanwhile, using
a suitable number of antenna orders also guarantees that the antenna’s lowest resonant
frequency value is above 300 MHz for noise elimination. PD detection adopts the 4th Hilbert
fractal antenna design with bending deformation developed for UHF signal detection in
GIS [75]. The fact that the physical antenna’s bandwidth is not as significantly impacted by
bending is evidence that the flexible antenna has strong physical stability. At 2.3 GHz with a
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350 mm antenna bend radius, the antenna’s gain magnitude and directional characteristics
still satisfy the criteria of UHF PD detection.

Table 3. Antenna designs and their respective variations.

Design Variations Reference

Spiral

Cosine slot Archimedean spiral antenna [64]

Archimedean spiral antenna [76]

Log-periodic spiral slot antenna [77]

Archimedean spiral antenna [61]

Two-arm equiangular spiral antenna [78]

PMA

Ultra-wideband microstrip patch antenna [79]

Bio-inspired by the Jatropha mollissima (Pohl) Baill leaf [66]

Wing-shaped ultra-wide band monopole antenna [73]

Bio-inspired by Inga Marginata leaf [65]

Ultra-Wide Band Antenna [80]

Fractal

4th-order Hilbert antenna [75]

4th-order Hilbert antenna [54]

Moore fractal antenna [81]

3rd-order stacked Hilbert antenna [82]

4th-order Hilbert antenna [83]

3. Conventional Localization Technique

The previous section discussed the type of signals emitted during PD activities with
their measurement strength and limitations for different applications. Additionally, several
popular antenna designs based on EM detection and the respective design parameters
were examined. In this section, different PD localizations using the conventional approach
are discussed and tabulated in Table 4. During the PD event, emitted signals from the
PD sources can be captured by the UHF, acoustic, or optical sensors positioned at various
known positions. Many scholars have conducted widespread research on PD localization
techniques using popular methods such as time difference of arrival (TDOA), angle of
arrival (AOA), time of arrival (TOA), and received signal strength information (RSSI) to
achieve the desired performance. Among them, TDOA-based localization is popular due to
its better accuracy compared to other methods [84]. The AOA method is used for far-field
sensor placement, which will reduce localization performance [52]. RSSI information-
based methods have limitations when signals are contaminated with external noise signals,
particularly when travelling in open space or within an air-insulated substation [52]. For PD
detection and localization in a 3D space, at least four sensors are needed, while at least three
sensors are required for 2D space. The arrangement of sensors also plays an important
role in improving sensing capability, so different researchers have included studies on
different sensor configurations [36,84]. However, the conventional techniques involve the
solving of nonlinear equations to obtain the PD coordinate; hence, researchers also explored
algorithms to linearize the equations [17,20,33,85]. Furthermore, an iterative algorithm
such as Newton Raphson is needed to solve the equations to locate the PD source, and
choosing an initial value is crucial to determine whether the algorithm can achieve local
minima or global minima. The computation will be more complex and time-consuming as
more sensors are used for PD measurement. Several widely used conventional techniques
are described in the following sections.



Energies 2023, 16, 2863 11 of 31

3.1. Time Difference of Arrival (TDOA)

When the PD occurs, the EM and acoustic signal generated will travel and be detected
by the sensors located at different locations, and, hence, the time difference of signal arrival
to each of the sensors can be integrated into a geometric triangulation algorithm to obtain
the PD coordinate. Using the TDOA at each sensor, a set of nonlinear equations can be
constructed to obtain the PD location using Equations (11)–(14):

d1 =

√
(x− x1)

2 + (y− y1)
2 + (z− z1)

2 = c(T1) (11)

d2 =

√
(x− x2)

2 + (y− y2)
2 + (z− z2)

2 = c(T1 + t12) (12)

d3 =

√
(x− x3)

2 + (y− y3)
2 + (z− z3)

2 = c(T1 + t13) (13)

d4 =

√
(x− x4)

2 + (y− y4)
2 + (z− z4)

2 = c(T1 + t14) (14)

where (xi, yi) are the sensor’s coordinates and i = 1, 2, 3, and 4; c is the speed of light;
T1 is the time of signal arriving sensor 1; t1n is the time reference of another sensor to
sensor 1 and n = 2, 3, and 4. When there are numerous PD sources, there is a set of TDOAs
among every PD source and two antennas [6,24,86]. The predicted localization error can be
computed with Equation (15) [8].

e =
√
(x− xc)

2 + (y− yc)
2 + (z− zc)

2 (15)

where (xc, yc, zc) are the computed PD coordinates and (x, y, x) are actual source coordinates.
In [6], a modified clustering algorithm called the 3σ- two-step clustering algorithm was

used and followed by the Newton Raphson iterative to solve the localization equations for
an air-insulated substation. The proposed clustering method localization performance was
compared with [19,87,88], and it showed overall better performance in terms of iteration
time and the number of PD sources located, and did not easily fall into local minima. The
author used four omnidirectional RF antenna sensors to capture the PD signal and applied
the TDOA technique for the PD dataset. The proposed algorithm achieved multiple PD
localizations in both simulation and field tests with the performance of 0.21 m error for
2 PDs, 0.45 m error for 3 PDs under lab test, and 0.6–2 m error in a field test.

The performance of PD localization under the influence of transformer oil was eval-
uated in [40] via simulation and experimental works. Due to the thermosiphon effect,
the top of the transformer tank region has a higher temperature than the lower region
which subsequently influenced the acoustic wave propagation speed and increased the
localization error. Hence, a correction-iterated method was used to overcome the acoustic
wave TDOA error, and the performance showed more robustness in the localization than
the Newton Raphson, imperial competitive algorithm, and genetic algorithm.

The PD localization in a 15.7 km transmission cable was established in [89] using dual-
loop Sagnac interference-type optical fibre for PD detection. The PD detection sensitivity
was studied from 110 sets of PD signal to investigate the influence of the length of the delay
fibre, where delay fibre was directly related to changes in phase and optical power when
PD occur, and the PD source sensitivity was the highest when delay fibre of different length
was at 12.352 km. The cross-correlation function was used for finding the PD position along
the cable, and the localization accuracy showed ±80 m for 6 km of cable.

An estimation filter algorithm of the extended Kalman-smooth variable structure
filter (EK-SVSF) was used to find the PD location under a lab environment for the trans-
former [21]. With different case studies carried out, the filter enhanced the localization
performance with noise-optimal nonlinear measurement, where it showed a faster con-
vergence rate and minimum root mean square error (RMSE) when benchmarked with
four other filter techniques, which are EKF, UKF, smooth variable structure filter (SVSF),
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and unscented Kalman-smooth variable structure filter (UK-SVSF). Hence, the filter has
exhibited immunity to modelling uncertainties, while others’ performances were reduced.

In [24], the captured signals by UHF probes were preprocessed by the time window
contrast function (TWCF) technique which acts as a window shifting method, scanning
through the captured signal and calculating the mean values of each window at different
samplings; hence, the new signal sets were generated which carry the signals’ arrival time
(AT) sequences. The PD source localization was accomplished by considering the signal
sets from both denoised and not denoised, and in the case of multiple PD occurrences,
the fuzzy C-mean clustering method was used to create the clusters. However, even with
the preprocessed data, the localization error complied in the range of 10 cm, and the
accuracy was influenced by signal distortion and attenuation when the PD source was in a
metal barrier.

The influence of varying noise distributions from different noise sources on PD local-
ization error was studied in [1] involving the noise from the system’s model and sensors’
measurement. The maximum likelihood estimation and extended Kalman filter (EKF) were
used for identifying the true noise statistics and to estimate the PD location, respectively.
Placing an obstacle in front of the sensor was established to evaluate the change of time
arrival error from the PD source to sensors, and the performance of EKF-MLE was better
than the standalone EKF method.

A noniterative PD localization method-based TDOA was constructed in [8] for the
transformer. The obtained TDOA calculation was refined by performing recurrence quan-
tification analysis (RQA) on the cross-recurrent plot (CRP) matrix with the self-similarity
parameter to reduce the TDOA calculation error which may introduce a large error influence
in the source location. The algorithm was verified through the localization performance
in the lab environment and showed better TDOA estimation compared to CRP using
cross-correlation even under lower SNR.

3.2. Angle of Arrival (AOA)

AOA estimation on the PD source location had been widely established from the
multiple signal classification (MUSIC) approaches. High-resolution AOA estimation can be
obtained using the orthogonality between the noise subspace and the signal subspace, and
it showed better efficiency than the maximum likelihood estimation (MLE) approach under
a low SNR status. The flowchart in Figure 6 shows the MUSIC algorithm processes.

An enhanced particle swarm optimization (PSO) algorithm was applied in [3] on
the 3D localization for substation application. An antenna array which consists of two
UHF sensors was used to take the measurement for DOA and followed by TDOA. PSO
was first used to optimize the 2D (x and y axis) before proceeding to optimize the height
(z-axis), which is the distance between the sensors’ array and the PD source. The algorithm
avoids falling into the local optimal with the equation with the highest weight in the plane
coordinates. The suggested algorithm showed greater performance for the localization
error and time taken to complete the localization calculation as compared to [32,90–92].

A work in [18] used the N × N sensor array with N < 5 to locate (N − 1) number of
PD sources. The effort of compressive sensing (CS), MUSIC algorithm, and peak search
were involved by virtually extending the 2 × 2 UHF sensor array to a higher dimension
array, constructing the PD source spatial spectrum and locating the PD directional angle,
respectively. Both simulations and experiments were conducted, and the localization
performance improved when the sensor array increased; however, the estimation error
increased significantly when the sensor array extended to 5 × 5. The algorithm has the
strength to identify and locate multiple PD sources with great accuracy, but it needs more
sensors and a larger array size for cultivation.
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3.3. Time Reversal (TR)

The time reversal technique uses time reversal invariance to diverge the transmitted
signal back to its emitting source to locate the source [25]. PD source localization using the
TR technique can be applied to acoustic (ATR) or electromagnetic (EMTR) signals and the
processes of TR are summarized below [23,86]:

1. During the forward time step, PD signals are emitted from one or multiple sources at
a distance and captured by single or multiple sensors.

2. The captured signal undergoes time reversing.
3. The time-reversed signal is back injected into the medium in the backpropagation step.
4. The criterion algorithm such as maximum field, minimum entropy, or cross-correlation [25]

can be applied to locate the focal spot created by constructive interference to locate
the PD coordinate, based on the notion that the waves will refocus at the primary
source site both in time and space.

In [23], a time reversal (TR) technique was used to localize the PD source in the trans-
former in 3-dimensions using a single acoustic sensor located outside of the transformer
tank. The localizations were simulated in MATLAB toolbox (k-Wave), and different scenar-
ios were tested to show the performance of the proposed method including PD source(s)
inside the transformer winding, in between the windings, two simultaneous PD sources,
and between a vertical branch and a coil of the magnetic circuit. The performance showed
accurate localization in the normalized pressure figures. The first two cases showed better
performance as compared to the simulation from [22] which used 2D simulations. The
reason is that 3D provided more paths between the PD source and the acoustic sensor as
compared to 2D.

A 3D simulation for PD localization in a transformer using the acoustic time reversal
(ATR) method was presented in [86] using an individual acoustic sensor. The 3D numerical
model of the transformer was evaluated using the finite element method (FEM) which
aims to analyse the acoustic wave propagation in the transformer. Seventeen different
case studies were carried out to assess the ATR performance including against the TDOA
technique to locate multiple real PD sources in a lab environment. The ATR method
performed better than the TDOA in all the studies.



Energies 2023, 16, 2863 14 of 31

A 2D simulation in a transformer for PD source localization was carried out using the
time reversal (TR) technique [22] with one sensor. A combination of a 2D finite-difference
time domain (FDTD) and a minimum entropy criterion (MEC) was used to investigate
how acoustic waves propagate and determine the focal spot to identify the PD location,
respectively. Different scenarios were simulated such as PD source within the transformer
windings and between two transformer windings, and the localization accuracies showed
accurate PD location which was presented in a normalized distribution plot.

The electromagnetic time reversal (EMTR) technique was applied to identify the PD
source location in the transformer under both simulation and lab environments [25]. The
2D finite-difference time domain (FDTD) was used to evaluate the electric field inside
the transformer tank in the backward and forward time steps when different PD source
locations were studied, and the maximum field criterion (MFC) was applied for obtaining
the PD coordinates. The performance of EMTR with a single sensor was compared with
the TDOA method with three sensors; the EMTR method showed better results when the
PD source in between the transformer windings was involved.

The electromagnetic time reversal (EMTR) PD source localization was accomplished
in [93] for a 33 kV power line in between the two substations without the need for any
denoising algorithm. The 1D transmission line matrix (TLM) model was used to describe
the PD signals’ propagation in the reversed time, and the PD source location can be
identified from the guessed PD locations (GPDLs) with the highest energy concentration.
Different levels of SNR noises were artificially added into the PD signal, and the algorithm
achieved 0.5% of error for an SNR of −7 dB using lesser computational time. In contrast,
for the method to work properly, the line length and the PD signal propagation speed must
be known.

3.4. Received Signal Strength Index (RSSI)

The benefits of using the RSSI technique over TDOA or AOA are due to its simplicity
in hardware requirements, it being less expensive [94], and its suitability for large-scale de-
ployment [16]. The RSSI technique can be implemented using two different approaches: the
transmission model and the fingerprint map approach. The transmission model approach
utilizes the RSSI information to acquire the signal transmission loss between the known
and unknown position before transforming it into a distance according to the model [16].
The RSSI value of transmission can be expressed as in Equation (16):

RSSI (d) = RSSI(d0)− 10n.log(d) + Xσ (16)

where d0: reference distance; n: attenuation factor; and Xσ: Gaussian random variable.
Ignoring the Gaussian random variable, the RSSI value at distance d can be expressed in
Equation (17):

RSSI (d) = A− 10n.log(d) (17)

where A = RSSI(d0) with the reference signal is 1 m.
In the fingerprint map approach, the PD localization processes involve both the offline

and online stages. During the initial offline stage, the PD will be simulated multiple times
in a specified test zone to obtain sufficient fingerprint data from the captured RSSI value
by the sensor. The fingerprint information collected is used to train the machine learning
model for future PD location recognition. When PD occurred during the online stage, the
trained model was able to identify the PD location using the measured RSSI value. The
fingerprinting approach is more reliable compared to the transmission model approach
because it works effectively under a complex spatial environment.

3.5. Reflectometry

The fundamental principle of reflectometry is to inject a low-voltage pulse (reference
signal) into the test cable; the reflection signal generated can be calculated to indicate the
point of reflection. By measuring the difference in time between the reference signal and the
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reflected signal, and knowing the propagation velocity of the pulse, the reflection point can
be identified. The reflection point is the impedance discontinuity point and is where PD
activities occur or is open-ended cable [95]. The time-domain reflectometry (TDR) technique
is the most established and widely used measuring technique for the identification of cable
impedance discontinuity. The distance of fault from the signal-injecting-end as shown in
Figure 7 can be calculated by Equation (18):

x = l − v
t2 − t1

2
(18)

where v = c√
∈r

; l: cable length; t1: time taken of signal travel from defect point to
signal-injecting-end; t2: time taken of signal travel from defect point to cable end and
to signal-injecting-end; v: wave propagation speed; c : 3 × 108 m/s; and ∈r: relative
permittivity of the dielectric [96].
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In [96], multiple PD sources in the cable were distinguished by using the spectral
power ratio (PR) which separated the signal into higher and lower frequency bands. PSO
was used to further distinguish the PD sources by increasing the cluster centroid distance of
each PD source. The PD source location was found by determining the relative propagation
between the incident and reflected pulses which is known as TDR. By computing the time
difference of arrival (TDOA) of the incident and reflected pulse, the PD location was found
with a worst error of 5%.

3.6. Others

Researchers in [42] used the energy distribution from mathematical morphology (MM)
to locate two different types of PD sources simultaneously at the transformer terminals.
The denoising and clustering technique known as hard-thresholding and ordering points
to identify clustering structure (OPTICS) was used for noise reduction and PD source
separation, and the location was determined based on the energy contained in both of the
sensing points which are located at the bushing and neutral measurement points. However,
it only provided the indication either near the bushing tap-point or near the neutral-to-earth
tap-point or at the centre of both, which does not indicate which terminal is the origin of
the PD.

In [97], PD source localization using the lumped parameter ladder network model
was used to locate PD up to the disc-to-disc level of the transformer. The location of
the PD was identified by having a maximum correlation value between the reference
and test signals. The reference signal was obtained from the simulation on the ladder
network model while the test signals were acquired by exciting the laboratory winding
with PDs of 5 pC to 5000 pC using a PD calibration kit. However, the localization focuses
on identifying the PD source at the predefined section of the winding turns. The PD source
identification and localization were established using the pulse compression technique
and linear frequency modulation (LFM) [95]. The combination of algorithms provided the
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optimization between detection distance and high localization accuracy by improving the
fault detection resolution from the reflected signal in the leaky coaxial cable (LCX). The
algorithm performance was evaluated and compared in a lab environment with the TDR
technique, and it had the lowest error at the furthest distance of 130 m.

There are other reports in [44] using a noniterative algorithm which can show satisfac-
tory results using lesser computational power and time. The combined acoustic–electrical
detection used the signal absolute time instead of time arrival for the PD location mea-
surements, and the performance was compared with the noniterative method using four
acoustic sensors (time difference approach) and the Newton Raphson iterative method. The
algorithm showed the ability to locate the PD source accurately. However, the performance
of the algorithm may be affected by electrical noise and the influence of varying transformer
insulating oil temperatures.

Table 4. Conventional PD localization.

Ref. Application Type of Sensors Method
(Algorithm)

Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[23] Transformer 1 Acoustic sensor
(TR) ATR (3D) ATR (2D) Simulation

Correctly identified in
a simulated

0.4 × 1 × 0.4 m space

[86] Transformer 1 Acoustic Sensor
(TR) ATR TDOA Both

Correctly identified
PD in the presence

of noise

[39] Transformer 4 Acoustic sensors
(TDOA)

Singular spectrum
analysis-independent
component analysis

(SSA-ICA) with cumulative
energy function

Customed SSA
Ensemble empirical mode

decomposition-
independent component

analysis (EEMD-ICA)

Both Lowest error of
132.20 mm

[98] Transformer
8 fibre-optic

acoustic sensors
(TDOA)

Levenberg–Marquardt
algorithm using FEM

simulation results
No comparison performed Simulation 5 cm error

[40] Transformer 4 Acoustic sensors
(TDOA) Correction-Iterative Method

Newton’s method
Genetic algorithm (GA)

Imperial competitive
algorithm (ICA)

Both Maximum error:
49.97 mm

[99] Transformer lattice-rogowski-
coil sensor

Measuring and identify the
highest voltage value

among different location in
transformer as the PD

No comparison performed Experimental

Maximum peak value
of voltage showed the
closest distance from
sensor to PD source

[85] Transformer 5 Acoustic sensors
(TDOA) Optimized L-TSVD Direct TSVD method

Newton iteration method Experimental 15.52 cm error

[41] Transformer 4 UHF sensors
(TDOA) CHAN algorithm No comparison performed Both 15 cm error

[43] Transformer 8 Ultrasonic sensors
(TDOA)

Semidefinite Relaxation
Convex Optimization

CHAN
PSO Both Localization error of

0.1 m

[42] Transformer 2 RFCTs OPTICS + MM No comparison performed Experimental

The RD values able to
identify the near or
far between sensor

and PD source

[21] Transformer
1 RF antenna + 3
Acoustic sensors

(TDOA)
EK-SVSF

Extended Kalman filter
(EKF)

Unscented Kalman filter
(UKF)

Smooth variable structure
filter (SVSF)

UK-SVSF

Experimental

EK-SVSF achieved
faster convergence
and lower RMSE

than others

[25] Transformer 1 sensor (TR) 2D-FDTD + MFC TDOA Both

Localization error of
10 mm

(corresponding to
λ_min/10)
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Table 4. Cont.

Ref. Application Type of Sensors Method
(Algorithm)

Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[22] Transformer 2 Acoustic sensors
(TR) 2D-FDTD + MEC No comparison performed Simulation

Accurately located PD
in a simulated

0.4 × 1 m dimension

[24] Transformer 4 UHF probes
(TDOA)

Time Window Contrast
Function (TWCF)

Average time window
threshold (ATWT)
Modified Dynamic

cumulative sum (DCS)

Experimental Error in the range of
10 cm

[44] Transformer 3 Acoustic + 1
Electrical sensors

Noniterative
acoustic-electrical

Newton iterative method
Non-iterative method
(used in all-acoustic

system with 4 sensors—
time-difference approach)

Experimental

Correctly identified the
PD with less than

2.23× 10−4

computational time

[8] Transformer 4 UHF sensors
(TDOA)

CRP based
Self-Similarity-RQA of
non-iterative method

Cross-correlation-CRP Both
Efficient TDOA

estimation under
low SNR

[97] Transformer PD detector Ladder Network Model No comparison performed Both
Accurately located PD

from the
maximum correlation

[1] Transformer 3 Acoustic sensors
(TDOA) EKF-MLE EKF Experimental

MLE-EKF performed
better in the presence

of barrier in front
of sensor

[3] Substation 2 UHF sensors
(DOA + TDOA) Improved PSO

Direct PSO
Iterative grid

search solution
Spatial grid search
Error Probability

Distribution- localization

Experimental 0.21 m error

[6] Substation 4 UHF sensors
(TDOA) 3σ-Two Step algorithm

PSO
Hybrid DE-PSO

Probability-based
combine K-means

RSSI

Experimental

Lab test:
0.21 m error for 2 PDs
0.45 m error for 3 PDs

Field test:
0.6–2 m error

[19] Substation 3 UHF sensors
(AOA + RSSI) MUSIC AOA + RSSI

without MUSIC Experimental error less than
1 degree

[32] Substation 4 UHF sensors
(TDOA)

generalized S-transform
(GST) + Newton Iterative

Without denoising
WT (db2)
WT (db8)

Both
Errors in 3D and 2D

are 1.59 m and
0.11 m respectively

[20] Substation 5 UHF Antennas
(TDOA)

Tikhonov Regularization
Method (with centralization

and row balance)

Gaussian elimination
direct

regularization method
Both

Simulation:
2.99 m error
Experiment:
2.33 m error

[33] Substation 5 UHF sensors
(TDOA)

Truncated
singular value

decomposition (TSVD)
Regularization

with generalized
cross-validation (GCV)

Gaussian
elimination method

direct TSVD
regularization method

Tikhonov regularization
method

Both

Simulation:
2.02 m error

Experimental:
2.07 m error

[18] Substation

N × N UHF
sensor array;

1 < N < 5
(DOA)

CS + MUSIC + Peak Search No comparison performed Both Error reduced from
12 degree to 4 degree

[93] Cable 1 HFCT
(TR) EMTR-1D TLM No comparison performed Both Without/With noise:

0.14%/0.5% error

[100] Cable -
(EMTR) TLM No comparison performed Simulation Error < 1.5%

[89] Cable 2 Photodetector
(TDOA) Cross-Correlation No comparison performed Experimental ±80 m for 6 km cable
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Table 4. Cont.

Ref. Application Type of Sensors Method
(Algorithm)

Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[96] Cable 1 HFCT
(TDR)

Power Ratio (PR) with PSO
+ TDR No comparison performed Experimental Maximum of 5% error

[95] Cable -

Linear
frequency modulation

(LFM) + Pulse
Compression technique

TDR Experimental

LFM: error from
0.09–1.43 m

TDR: error from
0.48–4.77 m

4. Machine Learning Localization

The previous section summarized the conventional localization techniques. On the
other hand, there is an emerging trend of using ML in PD diagnosis to automate complex
tasks and increase the accuracy of predictions. ML approaches can reduce the tendency
to get stuck in local minima and avoid computation-intensive iterative calculations. The
benefits of machine learning include better decision-making, enhanced efficiency, and cost
savings. In this section, several popular machine-learning models used for PD diagnostics
are discussed and tabulated in Table 5.

4.1. Fuzzy Logic (FL)

Fuzzy logic is a computing technique of fuzzy logic theory in which the decision is
made based on “how likely it will happen” rather than from the Boolean logic (0 or 1), and
the mapping of input to the output space is nonlinear. The fuzzy logic to locate the PD can
be categorized into three steps [30,45]:

1. Fuzzification: convert the crisp input set into a fuzzy set using the predefined mem-
bership function.

2. Inference: apply the antecedent (IF) and consequent (THEN) rules using different
fuzzy operators onto the “If” condition.

3. Defuzzification: the output value (PD location) can be obtained.

In [45], the technique of TOA-first peak with the combination of fuzzy logic Takagi–
Sugeno (FLTS) was used for the PD source(s) localization in transformer oil. The acoustic
emission sensors followed by a preamplifier gain unit were used to capture the PD source
at two different locations in the transformer separately. The signals were preprocessed
using discrete wavelet transform (DWT) for denoising. The processed signals were further
analysed and compared among different localization techniques including TOA, fuzzy
logic Mamdani (FLM), and FLTS. FLTS showed better results compared to FLM and TOA
by having the lowest percentages of differences in the two separate PD locations. This is
because the mixture of crisp function and firing strength in FLTS can simplify the best two
locations’ classes, where overall accuracy is between 96% and 97% for the two locations.

In [49], the adaptive neuro-fuzzy inference system (ANFIS) accompanied by virtual
sensors (VS) and an optical simulation fingerprint were used for predicting the detection
values for the sensors in PD source localization in gas-insulated transmission lines (GIL).
The optical simulation localization was based on [101] which used four actual sensors (AS)
and five simulated VS to generate the optical PD detection fingerprint. The sensors at the
nine locations were simulated in the same GIL model, which solves the difficulty of finger-
print collection in actual equipment. The ANFIS greatly reduces the amount of AS while
maintaining the desired localization accuracy. The localization error showed lower values
as compared with UHF, optical, and acoustic, and further showed superior localization in
the z-axis direction, which indicates it satisfied the fault location of equipment with long
axial lengths such as GIL.
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4.2. Support Vector Machine (SVM)

SVM is a supervised machine learning technique used in classification problems. The
classification can be done by obtaining the hyperplane that differentiates between the two
distinct classes, and by maximizing the margin distance between the classes’ data points,
the accuracy can be improved when dealing with new test data. Figure 8 illustrates the
classification between two different classes using SVM.
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The loss function that aids in maximizing the margin between the data points and the
hyperplane is called hinge loss. If the projected value and the actual value have the same
sign, then the cost is zero. Otherwise, the loss value can be obtained from Equation (19):

c(x, y, f (x)) =
{

0, i f y× f (x) ≥ 1
1− y× f (x), else

(19)

The feasibility of a real-time PD monitoring system was investigated in [102] with
the utilization of the ML technique. A low-cost wireless sensor network (WSN) was
used to autonomously and continually build the spatial RSS map itself in the lab test
environment to simulate the substation. Four different ML algorithms were used and
compared [103–106] where the least-square support vector regression (LSSVR) outper-
formed the rest with an error of less than 2 m.

The S-Transform and random forest (RF) algorithms were used in [29] for detecting
single and multiple PD sources in a simulated transformer under a lab environment
using optical sensors. Sixteen features were extracted using the S-Transform from a single
PD source. Several simulations were conducted using recursive feature elimination to
investigate how the PD localization performance is affected by different numbers of features
used. The important features selected were used to train the random forest classifier to
predict the PD source coordinates, where the simulated 5, 10, and 15 features showed an
accuracy of 95.6%, 98.2%, and 100%, respectively. The RF algorithm accuracy was compared
and showed superiority over three other algorithms [107–109]. However, the results did
not show a clear performance comparison of single and multiple PD sources.

Locating the PD source in the GIS bus bar is presented in [28] with a lesser number
of sensors, hence, avoiding the need for high sampling synchronization. The use of the
Canny algorithm involved feature extraction by detecting the ranges of edges in images to
locate the PD in the longitudinal location (TDOA), while SVM as a classifier was trained
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to determine the circumferential position of the PD source (AOA). The proposed method
achieved PD circumferential localization accuracy of 100%.

4.3. Ensemble Model—Decision Tree (DT) and Random Forest (RF)

A decision tree is a nonparametric supervised learning algorithm and is widely used
in classification and regression applications. It has a hierarchical tree structure, which
consists of a root node, branches, internal nodes, and leaf nodes. The decision making can
be achieved by establishing the attribute and category relationship in the flowchart-like
structure. PD classification using a decision tree is illustrated in Figure 9.
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While decision trees are typically supervised learning algorithms, they have a tendency
for overfitting and bias. Hence, the random forest algorithm with the ensemble of multiple
decision trees can predict more accurate results, particularly when the individual trees are
uncorrelated from each other. Each tree in the random forest separates a class prediction
and the class with the greatest votes ends up being the model’s final output.

The ML ensemble of regression random forest (RRF) for a single PD source localization
was implemented in [27] for the substation. The signals captured in the lab environment by
the omnidirectional antennas were preprocessed using wavelet packet transform (WPT)
and principal component analysis (PCA) to separate the signal and the noise based on the
extracted features, which is an important step to facilitate the ML learning process and gen-
eralization steps for a better localization performance. During testing, RRF outperformed
the regression tree and bootstrap aggregating algorithms.

4.4. Others

The probability grid search (PGS) was used in [52] for reducing the negative influ-
ence on the estimated TDOA values and improving the PD localization performance in a
medium-sized distribution substation. The captured PD signals were first fed into a 10th
order infinite impulse response (IIR) bandpass filter to remove unwanted noises. Addition-
ally, a clustering algorithm known as a self-organizing feature map (SOFM) was used to
group the data into four clusters of TDOA sets based on the four UHF sensors used. The
physical layout of the test area needs to be known to allow the algorithm to perform at
its best, and hence, the localization errors will decrease when the number of points, i.e.,
grids within the specified test areas, increases. The algorithm was shown to have better
performance than active search (AS) without nearest neighbour (NN) and AS with NN in
both lab and field tests.

The unsupervised classifier of the self-organizing feature map (SOFM) for detecting
the number of PD sources without training data and the cross-correlation (CC) method for
PD localization was used in [34] at a substation. The collected TDOA data from the UHF
sensors were analysed by continuous wavelet transform and extracted into a feature matrix
before presenting into SOFM for the number of PD detections. The multiple PD recognition
and localization error performance showed satisfying results in both lab and field tests.
However, there is a lack of localization algorithms used for the performance comparison.
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A low-cost PD localization technique using purely RF-received signal features was
used in [110]. The PD localization performance using the RF-received signal features
was better in K-nearest neighbour with correlation-based feature selection (KNN-CFS)
than in KNN without CFS. The CFS acts as a feature selector for choosing the important
feature parameters and avoiding computational complexity with dimension reduction for
improved accuracy. The ML algorithm KNN with CFS for localization evaluation which
employs the significant features rather than directly using the uncorrelated PD features
can avoid having a larger data size by reducing the feature space by 80% while improving
the accuracy.

A novel PD source localization algorithm utilized the strength of large fingerprint
mapping in back propagation (BP) to offset the limitation of compressed sensing (CS) pre-
sented in [35] where it can overcome the influence of the complex substation environment.
For the preliminary localization, the BP was trained in the offline stage to establish a small
RSSI fingerprint map, and PSO was adopted to improve the initial weight selection of
the BP before the actual localization was conducted in the online stage because the RSSI
intensity will be different in both stages. For the actual localization in the online stage, the
CS algorithm was used to obtain more accurate results, and it shows a better performance
than just using PSO-BP and BP alone. The fingerprint map requires revision from time to
time because the UHF signal will be sensitive to the detection area, and it may become a
time-consuming process. Hence, a reconstruction algorithm based on CS theory was used
to rebuild the fingerprint map by using only a subset of the original fingerprint data.

Table 5. ML PD localization.

Ref. Application Type of Sensors Method
(Algorithm)

Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[52] Substation 4 UHF sensors
(TDOA) PGS

Active Search
with Nearest-

Neighbour (NN)
Active Search

without Nearest-
Neighbour (NN)

Both

Laboratory errors:
Active-Set without

NN: 5.98%
Active-Set with NN: 3.83%
Probabilistic Grid-Search:

2.12%

[110] Substation 3 RF
monopole antenna CFS + KNN KNN without CFS Experimental Error reduced by 36.54%

[27] Substation 3 UHF sensors WPT + RRF
Regression tree algorithm

Bootstrap aggregat-
ing method

Experimental 91% accuracy within
0.31–3.0 m error

[34] Substation 4 UHF sensors
(TDOA) SOFM + CC No comparison performed Experimental

Multiple PD detection
lab: average 94.9%

field: average 91.6%
Localization error

lab: 1.3%
field: 1.33%

[102] Substation
3

omnidirectional antennas
(RSS)

LSSVR

Multilayer
perceptron (MLP)

Radial basis function
(RBF) neural network

Experimental Error less than 2 m

[35] Substation 4 UHF sensors
(RSS) PSO-BP + CS PSO-BP

BP Experimental
0.89 m and 90.4%

localization errors are less
than 2 m

[45] Transformer 3 Acoustic Sensors
(TOA) FLTS

TOA
Fuzzy logic

Mamdani (FLM)
Experimental

Accuracy is between 96%
and 97% for locations 2

and 1
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Table 5. Cont.

Ref. Application Type of Sensors Method
(Algorithm)

Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[17] Transformer 8 Acoustic Sensors
(TDOA) AFC-DPC

Simulation:
Density-Based Spatial

Clustering of Applications
with Noise (DBSCAN)

K-Means
DPC

Experimental:
Newton-Raphson

CHAN
GA
ICA

Both
Simulation error 1.7 cm

Experimental error
5.30 cm

[29] Transformer 5 Optical sensors S-Transform +
Random Forest

Inductive
inference algorithm
Wavelet Transform
Rough Set theory

Both
5 features: 95.6%

10 features: 98.2%.
15 features: 100%

[26] GIL 9 Optical sensors

Bagging—kernel
extreme learn-

ing ma-
chine (KELM)

Traditional KELM
Back propagation neural

network (BPNN)
Both Error of 0.93 cm

[49] GIL 4 Actual Sensors +
5 Virtual Sensors ANFIS

UHF
Optical

Acoustic
Both

~Error reduced by 54.8%
by adding virtual sensors
with localization error of

19.69 mm

[28] GIS 2 UHF sensors
(TDOA + AOA)

Canny
algorithm + SVM No comparison performed Both 100%

circumferential accuracy

4.5. Deep Learning

In the previous subsection, the PD localization-based ML approach was reviewed.
However, ML requires a lot of preprocessing work to obtain accurate PD coordinates. In
contrast, the DL approach can reduce the amount of preprocessing required. This subsection
presents the widely used DL models and is tabulated in Table 6. DL uses deep neural
networks (DNN), which are artificial neural networks (ANN) with two or more hidden
layers. DNNs process data in complex ways by employing sophisticated mathematical
modelling. They have the ability to reduce the need for manual feature engineering, handle
large amounts of data, and increase efficiency [37] as compared to the ML approach. The
high number of hidden layers in the DL model enhances the model generalization and
reduces the tendency of overfitting [30].

The combination of the Newton Raphson iteration and ANN methods was used in [46]
to find the optimal piezo-acoustic sensors’ locations and PD localization in the transformer,
respectively. The optimal sensor locations were selected by evaluating the mean and
standard deviation of the maximum and minimum error which were based on the TDOA
from the 87 simulated PD sources’ locations with 13 suggested sensor locations. Based on
the selected sensors’ locations, ANN localization performance with 75 hidden layers was
evaluated with different noise levels (0% to 20%) and compared against [111,112], GA/PA,
and fmin algorithms where it showed superior localization performance in all noise levels.

A low-complexity PD localization using ANN techniques was applied in a lab en-
vironment [113]. The experiment constituted constructing a database using the table of
fingerprints correlated with a set of known PD pulses and transmission power. As deterio-
ration may continue and influence the nature of PD severity, the signal strength ratio (SSR)
between pairs of sensors is used instead of the received signal strength (RSS) as the location
fingerprint. The PD source is approximated by matching the fingerprints in the database
with the real-time RSS using ANN. The computation complexity and the number of sensors
used to affect the localization performance were investigated. The generalized regression
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neural network (GRNN) had less complexity compared to KNN when the number of
training points was more than the dimension of the SSR vector and performed better when
more sensors were used.

Sets of N number of PDs and their respective time delay amongst sensors were sim-
ulated using a virtual measurement model (VMM) in [36], and the obtained dataset was
used to train the multideep neural network model (MDNNM). Six TDOA measurements
between four UHF sensors were considered and the algorithm was compared with [84]
and [114], which showed satisfying performance with a location accuracy of 1◦ being
achieved for a system error value of time difference up to 10 ns in the test field environ-
ment. The findings also showed that the antenna array setup played an important role in
contributing to the low localization errors.

PD localization simulation with data-driven-based DNN was used in [84] for substa-
tion application. The training and testing dataset samples were generated by randomly
creating PD source coordinates and incorporating the generated PD source coordinates and
the coordinates of the sensor. The generated dataset was fed into a simple DNN and an
improved preclassified multi-DNN; the improved DNN achieved global optimal solutions
instead of local optimal in the simple DNN. Furthermore, different studies were simulated
to enhance the nonlinear TDOA equation-solving process without diminishing the accuracy
of the results including antenna array arrangement, antenna array radius, and the number
of antennas used.

A combination of ML and DL was used in [37] to locate PD sources at power equip-
ment’s bushings with L-shaped ultrasonic sensors. ML was involved in distinguishing
between signal and noise based on nine statistical features, and three classification al-
gorithms were used to select the important features. The SVM classifier showed better
performance in terms of sensitivity and specificity because of the nonlinear classification
boundary nature of SVM. A pretrained DL known as convolutional neural network (CNN)
was used to detect suspicious discharging assets from the optical images to identify the
location of discharging HV assets and provide a visual representation of the PD location.

Recurrent Neural Network

The recurrent neural network (RNN) is formed by a chain of repeating neural net-
work modules, where the input of the previous neural network at x(t− 1) is stored and
subsequently fed into the next neural network together with the current input at x(t). A
single layer of RNN is shown in Figure 10, where a, b, and c are the network parameters,
x is the input layer, h is the hidden layer, and y is the output layer. Hence, RNN can deal
with sequential data by receiving the present input data and previous input data. RNNs
can remember earlier inputs thanks to their internal memory. Long short-term memory
(LSTM) is a variant of RNN that is adept at learning long-term dependencies by remember-
ing information for longer periods as the default behaviour. LSTM also has a chain-like
structure, but the repeating module is different. Instead of having a single neural network
layer, there are four layers that are interacting. In standard RNN, this repetitive module
has a very simple structure, such as a single tanh layer as depicted in Figure 11.

The offline identification and localization of PD sources for a previously in-service
cable were conducted in [115] where the fault discharge involved both PD direct (PDD)
and first reflection (FR) discharge pulses. The neural network-based sliding windows
performed automated features extraction from the acquired signal and overcome the signal
attenuation and dispersion. The convolutional recurrent neural network (CRNN) was
then used for PD source localization using the extracted features, and it showed excellent
performance when compared to the standalone RNN.
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Table 6. DL PD localization.

Ref. Application Type of Sensors Method (Algorithm)
Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[36] Substation 4 UHF sensors
(TDOA) VMM + MDNNM MDNNM [84]

VMM + MDNNM [114] Both Location accuracy of 1◦ for
time difference up to 10 ns

[84] Substation 4 UHF sensors
(TDOA)

Improved Pre-
Classified Multi-DNN Simple DNN Simulation

Achieved global optimal
solutions than simple DNN

from the random created
PD sources

[114] Substation 4 UHF sensors
(TDOA) VMM + MDNNM MDNN Simulation

Average error values ∆r, ∆θ,
∆Φ, and ∆d percentage

decrease by 32%, 24%, 39%,
and 44% respectively

[37] Substation 3 ultrasonic sensors
(TDOA + DOA)

RBF-SVM + Faster
R-CNN

Linear Discrimi-
nant Analysis

(LDA) classifier
Naïve Bayes

(NB) classifier

Experimental 0.1 m error with 0.2 m spacing
between L-shaped sensors
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Table 6. Cont.

Ref. Application Type of Sensors Method (Algorithm)
Proposed Method
Outperforms the

Following Algorithm

Simulation/
Experimental Performance

[113] Substation 3 RF sensors
(SSR) GRNN

MLP
K-nearest neighbour
Weighted K-nearest
neighbour models

Experimental

Errors
GRNN: 1.81 m
MLP: 2.07 m
KNN: 2.12 m

WKNN: 2.06 m

[115] Cable - Neural network + CRNN Standalone CRNN Experimental PDD: 99%
FR: 94~100%

[46] Transformer 4 pizo-acoustic sensors
(TDOA) Newton Iterative + ANN

Noniterative model
Cross

correlation function
Genetic/pattern
search (GA/PA)

Min Search
Function (fmin)

Experimental Maximum error of 2.74 cm at
noise level up to 20%

5. Discussion

Numerous research works related to different PD localization approaches for PD
diagnostics have been reviewed. It is apparent that transformers, substations, cables, and
other applications emit electrical, EM, acoustic, and optical signals during PD activities,
and the suitability of PD measurement for each application can lead to more accurate
localization. Traditionally, obtaining the PD coordinate through solving nonlinear equations
involved using an iterative algorithm [40], which requires more computational power.
However, by implementing suitable signal preprocessing techniques, such as denoising [32],
the localization performance may improve. Additionally, solving nonlinear equations using
a noniterative algorithm is possible and can overcome the need for more computational
power [44] while providing better localization accuracy under lower SNR [8]. However, the
solutions obtained through this approach may have a lower tendency to reach the global
optimal compared to the iterative approach. The ML approach has overcome the limitations
of conventional PD localization techniques, including the need for a large number of
iterations to achieve accuracy and the selection of an optimal initial value to begin the
iterations, resulting in better accuracy in complex environments. However, challenges such
as noise-contaminated PD signals and efficient computational works still exist. This section
covers some of these challenges and their potential solutions in PD localization for PD
diagnostics. Finally, Table 7 compares various PD localization approaches.

Table 7. Comparison of PD localization approaches.

Issues Conventional ML DL

Needs a large number of iterations Yes No No
Needs initial value to begin iterations Yes No No

Affected by signal arrival errors Yes Depends No
Needs denoising algorithm Yes Depends Optional
Manual feature extraction - Yes No

Training time - Medium Long
Deployment time Slow Fast Fast

Exploration of new solutions Limited Wide Wide

The performance of PD localization is influenced by the antennas used to capture PD
signals. When multiple sensors are used, signal distortion may occur due to unorganized
sensor distance and high surrounding interferences during the time of signal arrival from
different sensors to the reference sensor. Therefore, proper antenna array arrangement
studies are essential for optimal PD measurement. Several studies [36,84,114] have shown
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that the Y-shaped antenna array performs well in measurements. Furthermore, increasing
the number of antennas used increases localization accuracy and computation complexity.
However, accuracy is not guaranteed when there are greater signal arrival errors, and
computation complexity increases based on the number of nonlinear equations established
between the sensors. Likewise, it is important to study the optimal number of antennas used
to achieve optimal localization accuracy. Similarly, power applications have different sizes,
making optimal antenna location important for capturing PD signals with more sensitivity.

Noise contamination during measurement is unavoidable due to the presence of
natural noise around the measurement site. In the real world, the changing environment,
varying noise levels, and PD signal attenuation can hinder the collection of PD signals.
Therefore, it is essential to separate the noise from the signal, including extracting important
features that represent the original signal from the noise. ML-based techniques require
careful selection of the appropriate model as well as the type and number of features
to achieve optimal PD localization accuracy. Additionally, different noise levels can be
simulated to evaluate the algorithm’s noise resilience. If the algorithms are significantly
impacted by noise, ML-based PD localization approaches have various preprocessing
techniques to assess the noise with the desired accuracy. There is no predetermined
algorithm for accurately estimating the location of a PD source in either a known or an
unknown environment. Due to the unknown and varied complexity levels of different
power applications, the types, quantities, and levels of external interferences of PD sources
can be uncontrollable. As a result, when using the conventional PD localization approach,
it can be challenging to pinpoint the exact location of a PD source, especially within a
complex power system. PD localization in a transformer is more challenging due to the fact
that the PD signals are enclosed in the transformer tank and can become attenuated as a
result of the type of propagation medium used [52] or due to signal reflection and refraction
in the presence of winding or core [24,41]. On the other hand, ML has shown promise as a
tool for PD location estimation in power systems by training algorithms on large datasets
of PD data. However, the performance of most ML, especially ANN, will plateau despite
adding more data due to its shallow architecture of only one hidden layer. Furthermore, the
ML approach-based fuzzy logic involves human determinism when setting rules, further
limiting its capability as the ML model is not designed to select important features from
the raw data.

DL models have the ability to extract features from raw data automatically, which
can then be used to accurately locate the source of PD activity. Deeper neural network
structures can enhance the accuracy of PD source localization with the availability of
more PD measurements. Despite the potential introduction of noise-contaminated PD
measurements, DL models should be able to predict the PD coordinates accurately with
less error due to their better generalization capabilities which focus on key features while
ignoring signal-arriving errors due to noise. However, similar to ML techniques, the
accuracy of DL models relies heavily on the training data quantity and quality, as well as the
complexity of the monitored power equipment. By repurposing pretrained DNN models
that are efficient in specific computation tasks, the computation time for PD diagnostics
can be significantly reduced. The incorporation of proper hyperparameter optimization,
such as the learning rate or optimizer used during the training of DL models, can ensure
optimal PD localization performance. Due to the lack of large-scale public datasets and
the reluctance of companies to share fault data due to privacy concerns, DL-based PD
diagnostics have not been widely adopted in the industry yet. Moreover, the datasets
that are currently available are mostly laboratory-made and may not be sufficient for
industrial purposes [116,117]. However, as more devices are being implemented towards
the Internet of Things (IoT) to facilitate the continuous monitoring and control of power
equipment [118], the data collection from online measurement will become more common.

The comparison of existing PD localization methods is summarized in Tables 4–6
based on the type of equipment used, namely, substation, cable, transformer, GIS, and GIL.
In addition to the equipment type, other considerations such as power rating, voltage class,
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degree of responsibility, measurement accuracy requirements, list of diagnosed faults, and
polling period of the sensors must also be considered to justify the technical and economic
efficiency of the PD diagnostic system for each specific application.

6. Conclusions

This paper presents a comprehensive review of PD diagnosis, focusing on different
detection and localization approaches. The PD detection approach covers both conven-
tional and unconventional detection regimes, and the pros and cons of each approach
are highlighted. The paper also explores different types of PD sensors, discussing their
suitability for different power equipment as well as their strengths and weaknesses in
detail. In addition, a list of conventional localization methods is reviewed and compared
with artificial intelligence-based techniques, mainly, ML and DL. DL can resolve the typical
localization difficulties in the conventional approach through its automated feature extrac-
tion processes. DL-based methods are showing good potential and have further room for
improvement as better models and more data become available. Ultimately, the choice of
method for PD detection and location estimation will depend on the specific characteristics
of the power system being monitored and the goals of the monitoring program. Choosing
the appropriate approach will ensure higher quality PD diagnostics. This paper serves as a
good starting point for new researchers aiming to explore this research topic by providing
a quick overview of the current state-of-the-art in PD localization techniques.
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