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Abstract: Even though generating electricity from Renewable Energy (RE) and electrification of
transportation with Electric Vehicles (EVs) can reduce climate change impacts, uncertainties of the
RE and charged demand of EVs are significant challenges for energy management in power systems.
To deal with this problem, this paper proposes an optimal energy management method using the
Virtual Power Plant (VPP) concept for the power system considering solar PhotoVoltaics (PVs) and
Electric Vehicle Charging Stations (EVCS). The Differential Evolution (DE) algorithm is applied to
manage energy in the power system to minimize the operation cost of generators and degradation
costs in Energy Storage Systems (ESS) and generators. The effectiveness of the proposed approach is
examined and tested on the IEEE 24 bus Reliability Test System (RTS 24) using the MATPOWER tool
on the MATLAB program for calculating Optimal Power Flow (OPF). In this study, two situations
before and after applying the proposed method are considered. The simulation results demonstrate
that a branch constraint violation occurs before using optimal energy management using the VPP
concept. In order to solve this issue, the DE algorithm for optimal energy management using the VPP
concept is applied by dividing the studied case into two subcases as follows. For the first subcase,
two objectives consisting of the minimization of the generator operation cost and the minimization of
the battery degradation cost in ESS are considered. In the second case, three objectives comprising
the two mentioned objectives with the minimization of generator degradation cost are considered.
The results demonstrate that branch constraint violations can be avoided by applying optimal energy
management using the VPP concept. This study also suggests considering the generator degradation
cost in the objective function, which can minimize the total costs by 7.06% per day compared with
the total cost of the first case.

Keywords: degradation cost; Electric Vehicles Charging Station (EVCS); Energy Storage Systems
(ESS); solar PhotoVoltaics (PVs); optimal energy management; Virtual Power Plant (VPP)

1. Introduction

In the near future, the demand for Electric Vehicles (EVs) in Thailand is expected to
increase, as stated in the Energy Efficiency Plan (EEP 2018) of the Thailand government [1].
Promoting Electric Vehicles (EVs) is one of the measures aimed at reducing pollution in
urban areas. However, to support the high demand for EVs, it will be necessary to increase
the installation of Electric Vehicle Charging Stations (EVCS) in the power systems. Ad-
ditionally, the Thai government has proposed a policy to promote the use of Renewable
Energy (RE), particularly solar PhotoVoltaics (PVs), for electricity generation through the
Alternative Energy Development Plan 2018 (AEDP 2018) [2]. Although generating power
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from Renewable Energy Sources (RESs) can reduce air pollution, there are limitations in
terms of time and weather conditions for power generation. Uncertainties such as the
uncertain generation of RE, grid instability, and variations in load operating situations in
a system may affect the stability of the power system, resulting in frequency and voltage
deviations. Aziz et al. (2019) [3] studied Load Frequency Control (LFC) using variable
universe fuzzy logic control to mitigate the impact of load disturbances on control perfor-
mance. This presents a challenge for the system operator in controlling the power system
operation. From previous research works, Cheng et al. (2022) [4] studied the issue of finite-
time dissipative asynchronous output feedback control for a wind turbine system using a
hidden Markov model to provide some estimated modes information for controlling. In
addition, Jiang et al. (2022) [5] studied the problem of adaptive optimal output regulation
with assured convergence rate requirements under the challenges posed by an unknown
system using the value iteration method. They proposed a different algorithm to achieve
optimal output control, which is a fundamental problem in control engineering, particularly
in the presence of power uncertainties. This presents a challenge for system operators in
controlling power system operations. However, having an efficient Energy Management
System (EMS) can deal with this uncertainty. Aziz et al. (2019) [6] proposed an algorithm
for the distributed optimization of a hybrid Multi-Terminal Direct Current (MTDC) power
grid using the Alternating Direction Method of Multipliers (ADMM) together with Optimal
Power Flow (OPF) designed to consider constraints for power systems and to achieve a
Smooth Operation Point (SOP) and minimal line losses. The main goal of OPF calculation is
to minimize the operational cost of the power system while ensuring that it meets various
operational constraints, such as power balance, voltage limits, and current limits at the
branch. This approach is suitable for use in conjunction with EMS for power systems.
One of the recent popular ideas to solve this problem is the Virtual Power Plant (VPP), a
technology that can gather dispersed energy sources in the form of DG, controllable loads,
and storage systems [7]. The DG can include both fossil fuel generators and Renewable
Energy Sources (RES). However, certain types of DGs, such as solar PV sources, may have
small capacity and uncertainty [8]. These factors can create challenges for power system
operation and market participation [9]. In order to maintain the stability of power systems
and address the issue of RE penetration in power systems, the system operator manages
the gathered power from diverse RES to ensure the consistency and reliability of the energy
supplied by renewable energy power plants. The coordination of power flows from DG,
controllable loads, and energy storage is the foundation of a VPP. The communication in a
VPP is two-way, allowing the system to transmit signals to dispatch power and receive the
status of each generator and controllable load [10].

In the modern era, VPP is a widely recognized idea to solve the uncertainty of RES
and has been presented by several works in the literature as follows. Kasaei et al. (2017)
proposed a metaheuristic algorithm to determine the optimal power management of a VPP
with RESs, battery energy storage, and controlling load [11]. Othman et al. (2017) proposed
the big bang big crunch method, an algorithm for solving the optimization problem to find
the suitable location and power dispatch of Distributed Energy Resources (DERs) installed
in a power grid [10]. Also, Naval et al. (2020) proposed a method to reduce the dependence
on electricity from the main grid by optimal management of VPPs consisting of various
RESs, such as wind power, hydropower, and solar power. This model was applied to the
operation of the irrigation power control center in Aragon (Spain) [12]. In addition, Wu et al.
(2020) studied the analysis of the electricity market trading mechanism and the cost risk
model of VPPs in the electricity market using the Stackelberg Game model to maximize the
VPP profits and reduce the purchasing cost for consumers [13]. Zhou et al. (2016) proposed
an optimal generation scheduling model for VPP, considering Energy Storage Systems
(ESS) degradation cost to optimize predicted profits for the VPP using two-stage stochastic
mixed integer linear programming [14]. The Binary Particle Swarm Optimization (BPSO)
algorithm was used by Hannan et al. (2019) to propose a novel optimal schedule controller
to manage RES in VPP [15]. Further, Liu et al. (2018) studied and compared various methods
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for allocating VPP, such as stochastic optimization, interval optimization, and deterministic
optimization. Yan et al. (2022) proposed a two-stage adjustable robust optimization
model for dispatching a Multi-Energy Virtual Power Plant (MEVPP) considering multiple
uncertainties and carbon trading, which reduces operating costs in the current energy
market [16]. Shafiekhani et al. (2022) proposed an Information Gap Decision Theory
(IGDT) model for dealing with uncertainty in market price, considering two objectives:
optimal bidding scheduling of the VPP in the day-ahead market for profit maximization
and emission reduction [17]. Sun et al. (2022) developed a day-ahead offering strategy
for the Concentrating Solar Power (CSP) market, accounting for renewable energy source
and market condition uncertainties and utilizing a bi-level optimization model to optimize
CSP plant profits while incorporating compressed air energy storage [18]. The objective of
mentioned methods is to maximize profits and speed up and simplify calculations which
can solve the uncertainties of renewable power generation [19]. As aforementioned, RESs
were commonly considered in the power dispatch of VPP. Furthermore, objective functions
consisting of the operation and maintenance costs of the power plant are usually taken into
account in the VPP task. However, the degradation costs of ESS and generators are still
minor utilized in the VPP task.

The metaheuristic method is usually used in energy management by applying the
VPP concept. The method is a high-level methodology made to tackle various optimiza-
tion problems without simplifying complex equations to get the best or closest optimal
solution [20]. Many metaheuristic methods were frequently used in VPP work, such as
the Genetic Algorithm (GA) [21,22], which is an evolutionary algorithm that mimics the
process of natural selection to evolve a population of candidate solutions. It is widely used
for optimization problems with discrete variables, but it may be slow in converging to the
optimal solution [23]. The Imperialist Competitive Algorithm (ICA) [11] is a population-
based optimization algorithm that models the competition between empires and colonies to
optimize a set of decision variables. However, it may require many iterations to converge to
the optimal solution, resulting in a long computational time due to using many equations
and complex operators [24]. Another frequently used method is the Particle Swarm Opti-
mization (PSO) algorithm [15,21,25], which is a population-based optimization algorithm
that simulates the behavior of a swarm of particles moving in a multidimensional space.
However, it may suffer from the premature convergence parameter selection problem
and easily get trapped in a local optimum [24]. Numerous methods have been presented
recently to address various engineering optimization issues. The differential evolution
(DE) algorithm proposed by Storm & Price (1997) [26] is an intriguing technique that is
quick convergence, has a straightforward structure, has a few control parameters, and
has high efficacy and dependability compared to other metaheuristic algorithms [27]. In
addition, many studies have employed the DE algorithm to solve problems in the power
system, as follows. Shaheen et al. (2019) suggested the DE algorithm for minimizing system
power losses, reducing the operation cost of generation and reactive power investment,
and improving the voltage profile at load buses [28]. Varadarajan & Swarup (2008) studied
reactive power dispatch in power system planning where the DE algorithm was used in
conjunction with OPF [29]. Sakr et al. (2017) proposed a method for solving the Optimal
Reactive Power Management (ORPM) problem based on a multi-objective function using
a modified DE algorithm to improve the voltage profile as well as decrease active power
losses [27]. Even though the DE optimization algorithm has been well-performed in many
studies on optimal power system operation, the above works reveal that the optimal energy
management of the VPP problem has not yet been solved using the DE algorithm [20].

Previous research on optimal energy management for VPP did not consider two sig-
nificant issues. First, the three main costs, including the operation cost of generators and
the degradation costs of ESS and generators, were not simultaneously taken into account.
Additionally, the earlier research works for the optimal energy management of the VPP
have used various metaheuristic methods to solve the problem. From reference [21], the
DE algorithm is a contemporary metaheuristic method that uses a powerful statistical tech-
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nique to deal with non-linear and non-convex optimization problems. Comparing the DE
algorithm to other metaheuristic methods, the DE has quick convergence, excellent efficacy,
and reliability, which increases the probability of discovering the global optimum [27,29].
Until now, the DE algorithm has not yet been applied to solve energy management in
power systems with solar PV and EVCS penetrations using the VPP concept. Therefore,
this study proposes the optimal energy management of the VPP considering solar PVs
and EVCSs using the DE algorithm as the optimization tool together with calculating OPF
taking into account the power flow constraints. The objective is to reduce the operation
cost of all generators, the cost of battery degradation in ESS, and the cost of degradation of
all generators. The main contributions of this study can be summarized in the following.

• This paper introduces applying the VPP concept integration with minimizing the
operation cost of generators and the degradation costs of the elements within the
power system, especially the ESS and generators. Considering these degradation costs
leads to the proper operation of the ESS and generators, which has not been studied
combined with the VPP concept in the previous research works.

• Deploying the DE algorithm to achieve the optimal ESS scheduling in the energy
management task considering the penetration of solar PV and EVCS is proposed.
A simple structure, a few parameters for control, and excellent effectiveness and
plausibility of the DE can guarantee that it is one of the most robust algorithms [27].
Additionally, to verify the performance of the proposed algorithm, the PSO algorithm,
popularly used in VPP tasks [15,21,25], is utilized in this work to compare the solution
with the proposed algorithm.

The rest of this paper is organized as follows. Section 2 introduces system modeling. In
Section 3, the problem formulation of this paper is presented. Section 4 proposes the optimal
energy management of VPP using the DE Algorithm. After that, the simulation results and
discussion are performed in Section 5, and the conclusion is presented in Section 6.

2. System Modeling

In this section, the system models, which consist of the VPP model, the solar PV model,
the EVCS model, and the ESS model, are introduced as presented below.

2.1. The VPP Model

The virtual power plant has three major components. The first component is the DER,
which integrates DG into a single network. The next component is ESS, an energy storage
system that can be utilized as an additional source or load to adapt the profile of power
demand to conform to power generation sources in power systems, volatile renewable
energy sources. The third component is the EMS of the virtual power plant, which is the
bidirectional communication technology for managing the powers of RES and ESS [7,10].

The principle of the VPP is energy management in a power system with DER, such
as solar energy sources, to enable the system operator to manage electric power properly
and securely under the uncertainty of renewable energy. Therefore, this paper proposes an
approach for managing RESs in the power system that tends to increase in the future with
the concept of the VPP, as shown in Figure 1. The proposed VPP model consists of a solar
PV source, EVCS, ESS, and information and communication systems.
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Figure 1. The structure of the VPP model.

2.2. The Solar PV Model

This paper uses the historical hourly solar radiation data collected from Khon Kaen
province, Thailand, in 2017. The solar PV model used in this work is presented in
Equation (1) [30].

Ppv(t) =



Psn ×
G2

bi(t)
Gstd×Rc

; 0 ≤ Gbi(t) < Rc

Psn × Gbi(t)
Gstd

; Rc ≤ Gbi(t) < Gstd

Psn ; Gstd < Gbi(t)

, (1)

where Ppv is the PV output power (W), Gbi is hourly solar radiation (W/m2), Gstd is solar
radiation in a standard environment set as 1000 (W/m2), Rc is a certain radiation point set
as 150 (W/m2), Psn is the equivalent rated capacity of PV (W), and t is the index of time in
each hour.

2.3. The EVCS Model

The charging profile of EVCS is modeled based on data from Beijing, China, which
is the demand charge for an electric bus charging station in 2010 [31]. The capacity of the
electric charging station is obtained from Equation (2).

PEVCS = PEVCS_pu × PEVCS_cap, (2)

where PEVCS is the power demand of the charging station (MW), PEVCS_pu is the hourly
EVSC charging profile (p.u.), and PEVCS_cap is the equivalent rated capacity of EVCS (MW).
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2.4. The ESS Model

The ESS operation and State of Charge (SoC) of ESS can be calculated by Equations (3)–(5)
subjected to the constraints from Equations (6)–(11) as presented below [10,32].

Discharge : EESS(t) = EESS(t− 1) + PESS(t)∆t/ηdis ; PESS(t) = −ve, (3)

Charge : EESS(t) = EESS(t− 1) + PESS(t) ∆t ηch ; PESS(t) = +ve, (4)

SoC(t) =
EESS(t)

Emax
ESS

, (5)

Power limits:
Pdis

ESS ≤ PESS(t)/ηdis ≤ 0 ; PESS(t) = −ve, (6)

0 ≤ PESS(t)ηch ≤ Pch
ESS ; PESS(t) = +ve, (7)

Storage energy limits:
0 ≤ EESS(t) ≤ Emax

ESS , (8)

State of charge limits:

SoCmin ≤ SoC(t) ≤ SoCmax, (9)

Starting operation of energy storage:

Eint =
SoCmin

Emax
ESS ,

(10)

Starting and ending of the state of charge:

SoCint = SoCend, (11)

where EESS is the stored energy in the ESS (MWh), PESS is the power output of the ESS
(MW), ∆t is the time duration of each interval which is equal to 1 h. ηdis and ηch are the
discharge and charge efficiencies, respectively, SoC is the state of charge of the ESS, Emax

ESS is
the maximum energy storage in the ESS (MWh), Pch

ESS and Pdis
ESS are the maximum charging

power (MW) and discharging power (MW) of ESS, respectively. SoCmax and SoCmin are
the upper and lower limits of state of charge, respectively. ve and −ve represent positive
and negative values, respectively, Eint is the initial stored energy in the ESS (MWh), SoCint

is the state of charge of the ESS at the end of yesterday. SoCend is the state of charge of the
ESS at the beginning of the day.

3. Problem Formulation

This paper presents the optimal energy management by the VPP concept in the power
system with solar PVs and EVCS. The objective function is to minimize the operation cost
of all generators, the cost of battery degradation, and the cost of all generator degradation.
The objective function and the corresponding constraints of optimal energy management
are described in this section.

3.1. The Objective Function

The objective function is given by:

min f =
24

∑
t=1

(
COpt

(
t) + CDep_ESS(t) + CDep_GEN(t

))
, (12)

where COpt is the operation cost of all generators (M$), CDep_ESS is the cost of battery
degradation (M$), CDep_GEN is the cost of all generator degradation (M$), and the 24 value
is the total number of hours of a day.
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The operation cost of all generators is detailed in Equation (13) [33].

COpt(t) =
Ng

∑
g=1

(aGen,g + bGen,gPGen,g(t) + cGen,gP2
Gen,g(t)), (13)

where PGen,g is the active power generation of a generator g (MW), aGen,g, bGen,g, cGen,g are
the cost coefficients of electricity generation of generator g, g is the index of a generator,
and Ng is the number of generators.

The cost of battery degradation is detailed in Equations (14) and (15) [32].

CDep_ESS(t) =
Ccap

ESS
Lcycle(t)

, (14)

Lcycle(t) = β0 × (1− SoC(t))−β1 × eβ2×SoC(t), (15)

where Ccap
ESS is the cost of the battery ($/kWh), Lcycle is the battery life in terms of cycle life, β2,

β1, and β0 are the curve fitting coefficients that can be calculated using the battery type and
the manufacturer supplied experimental data set as 0.016, 1.98, and 4,901 respectively [32].

The degradation cost of all generators is detailed in Equations (16) to (18) [34].

CDep_GEN(t) = max (
Ng

∑
g=1

Cphy
Dep_GEN,g(t),

Ng

∑
g=1

Crun
Dep_GEN,g(t)), (16)

Cphy
Dep_GEN,g = ∆t

ωgccap
GEN,g

tphy , (17)

Crun
Dep,g = p

ωgccap
GEN,g

Pli f e , (18)

where Cphy
Dep_GEN,g is the capital degradation cost based on physical lifetime ($), Crun

Dep_GEN,g
is the capital degradation cost based on the lifetime throughput ($), ∆t is the time duration
of each interval which is equal to 1 h, ωg is the size of a generator (kW), ccap

GEN,g is the capital

cost of a generator ($/kWh), tphy is the lifetime of a generator (h), p is the energy delivered
by the generator within the time interval ∆t in the operation plan (kWh), Pli f e is the energy
lifetime throughput of the generator (kWh).

3.2. Constraints

To minimize the operation cost of all generators, the cost of battery degradation and
the cost of all generator degradation without violation of power system constraints, bus
voltage, branch current, power generation, and power balance must operate within limits
as follows [10,11].

The voltage at each bus must be within the specified range of standards, as shown
below.

0.95 p.u. ≤ Vi(t) ≤ 1.05 p.u., (19)

The current flowing at the branch must be within the limit of the maximum current of
the branch shown below.

Ik(t) ≤ Imax
k (t), (20)

The active and reactive power generations must be within the limits of the maximum
and minimum generations of the generator unit, as presented below.

Pmin
Gen,g ≤ PGen,g ≤ Pmax

Gen,g, (21)

Qmin
Gen,g ≤ QGen,g ≤ Qmax

Gen,g, (22)
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The sum of active powers from all sources must equal the sum of active power
demands, including power loss, as presented below.

Ng

∑
g=1

PGen,g(t) +
Npv

∑
pv=1

Ppv(t) + PESS(t) = PD(t) +
Nevcs

∑
EVCS=1

PEVCS(t) + PLoss(t) , (23)

The sum of reactive powers from all sources must equal the sum of reactive power
demands, including reactive power loss, as presented below.

Ng

∑
g=1

QGen,g(t) = QD(t) + QLoss(t) , (24)

where Vi is the voltage at bus i (p.u.), Ik is the current at branch k (A), Imax
k is the maximum

current limit at a branch k (A), PGen,g and QGen,g are active power (MW) and reactive power
(Mvar) generations of generator g, respectively. Pmin

Gen,g and Pmax
Gen,g are the minimum and

maximum limits of active power generation of generator g (MW), respectively. Qmin
Gen,g and

Qmax
Gen,g are the minimum and maximum limits of reactive power generation of generator

g (Mvar), respectively. PD is the active power demand (MW), QD is the reactive power
demand (Mvar), PLoss is the active power loss (MW), QLoss is the reactive power loss (Mvar),
Npv is the number of solar PV, and Nevcs is the number of EVCS.

4. The Proposed Optimal Energy Management of VPP based on the DE Algorithm

Even though the DE occasionally offers solutions that are not globally optimal so-
lutions, it provides acceptable solutions that are suitable for solving non-linear and non-
convex optimization problems [35]. The DE has been successfully applied to power systems
in previous research works, as presented in references [27–29,33,36–38]. This paper uses
the DE algorithm to control the power of ESS to minimize the objective function under the
previously presented constraints. The control variable selected to minimize the total cost
is the amount of charge or discharge power of the ESS in each hour (PESS(t)). The DE is
used to find the best control variable starting from the initial group of randomized control
variables. The proposed DE process for solving the optimal energy management of VPP is
presented in Figure 2 and described as shown below.

Step 1: Input data consisting of the standard IEEE RTS 24 bus, load profile, solar PV
generation, and EVCS profile.

Step 2: Determine network operation constraints composed of the voltage limit at each
bus, the current flow limit at each branch, the active and reactive power generation limits,
the balance of active power and reactive power, and ESS operation constraints.

Step 3: Determine parameters and conditions of the DE algorithm composed of the
number of loops iteration (tmax), crossover rate (CR), scaling factor (F), and the number of
populations (npop) [29].

Step 4: Generate a random initial population (Xi) in the following form:

Xi = [xi,1, xi,2, . . . , xi,t], (25)

xi,t = rand(.)× (xi,t,max − xi,t,min) + xi,t,min, (26)

where i is an index of the population, xi,t is the decision parameter generated from the
population i at the hour t, xi,t,max and xi,t,min are the upper and lower bounds of the decision
parameter, which is set to −1 and 1, respectively, for the population i. rand(.) is a random
value between 0 and 1 [35].

Step 5: Take the random population into Equation (27) to obtain the power output
of the ESS and then run the OPF in the MATPOWER tool [39] to evaluate the objective
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function and check the constraints of the power system. After that, find the best decision
variable from the population that gives the minimum total objective function value.

PESS = Xi × Pmax
ESS , (27)

where Pmax
ESS is the maximum charging power or discharging power (MW) of ESS.

Step 6: Generate a new population using mutation as described in Equation (28) to
create offspring from parents.

ui = xbest + F(Xi,1 + Xi,2), (28)

where ui is the mutant vector, xbest is the best decision variable vector from step 5, Xi,1, Xi,2
are the decision variable vectors that are members in Step 5, which is randomly obtained
with the condition of Xi,1 6= Xi,2.

Step 7: Generate a new population using crossover as described in Equation (29) to
create offspring from parents.

vi,j =

{
ui,j ; randi,j ≤ CR
xi,j ; randi,j > CR

, (29)

where vi is the crossover vector, randi,j is a random value in [0, 1].
Step 8: After the crossover vector is obtained, the selection process is performed as

shown in Equation (30) between parent and offspring with the lowest value cost selection
criteria of the objective function.

xi =

{
vi ; f (vi) ≤ f (xi)
xi ; f (vi) > f (xi)

, (30)

Step 9: Record the minimum value from each iteration and go to step 5 until the
difference between the results of the previous and current iterations is zero and has been
repeated for 200 iterations. Then, output the best population and objective function value,
and stop the process.
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Start

Stop

No

Yes

Determined parameters and conditions of the DE algorithm 

Determined constraints of the VPP

 Generate a random initial population 

Take the population power output of 
the ESS and Run the OPF to evaluate 
the objective function and constraints 

Satisfy a stopping criterion?

Perform mutation process 

Record the minimum value from the objective function 

Iteration = 1

Iteration = Iteration + 1

Perform selection process to find the best population

Perform crossover  process

Output the best population and objective function value 

Input IEEE RTS-24 , load profile, 
solar PV generation, and EVCS profile.

Figure 2. The proposed optimal energy management of VPP based on the DE Algorithm.
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5. The Result and Discussion

There are three subsections in this section. The system description is presented in the
first subsection. The second subsection presents the effect of solar PVs and EVCS installed
in the power system without optimal energy management using the VPP concept, which is
defined as the first situation. Then, the final subsection is efficient energy management using
a VPP considering solar PVs, EVCS, and ESS, which is represented as the second situation.

5.1. System Description
5.1.1. Test System

The IEEE 24 Bus Reliability Test System (RTS 24) [40] is used as the test system to assess
the performance of the proposed technique. There are 38 transmission lines, 11 generator
buses, and 13 load buses. Bus 13 is designated as the reference bus. The study is split into
two situations, as previously described. In the first situation, the system has a solar PV and
EVCS installed on buses number 4, 5, 6, 8, and 20. The second situation differs from the
first situation in that the ESS is installed on bus 12, as depicted in Figure 3.
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5.1.2. Components of VPP

The load profile is determined based on the one-year electricity demand of North-
eastern Thailand in 2017. Figure 4 shows the daily average load curve of the test system,
with EVCS units sized at 5 MW installed on each bus. Figure 5 displays the typical EVCS
charging profile over a 24-h period.
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Figure 5. The typical curve of the EVCS charging profile for a day.

The Solar PV installed on each bus has a capacity of 200 MW. The daily curve of solar
PV power generation for each bus is shown in Figure 6. The ESS specifications are shown
in Table 1. In addition, the minimum SoC is determined as the initial SoC of ESS.
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Table 1. Necessary parameters of the ESS for the calculation.

Parameters Value

Ccap
ESS ($/kWh) 300
Pmax

ESS (MW) 300
Pch

ESS (MW) 300
Pdis

ESS (MW) −300
Emax

ESS (MWh) 1500
SoCmin (%) 20
SoCmax (%) 90

ηch 0.9
ηdis 0.9

5.1.3. Simulation Program

The program used in this research work is the MATPOWER tool with MATLAB
program, and the computer is an Intel (R) Core (TM) i7-7700 CPU @ 3.60GHz with 8 GB
RAM. The parameters of DE and PSO algorithms used for the simulation are summarized
in Tables 2 and 3, respectively.

Table 2. DE parameters used for the simulation.

Parameter Value

Number of populations (npop) 30
Crossover factor (CR) 0.9

Scaling factor (F) 0.6

Table 3. PSO parameters used for the simulation.

Parameter Value

Number of populations 30
Inertia factor (W) 0.9

Learning factors (C1, C2) 2
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5.2. The Effect of Solar PVs and EVCS on Power System

The impacts of PVs and EVCS on the power system are discussed in this subsection.
With the addition of the EVCS, the total demand for the system will increase. Furthermore,
with the addition of PVs, the system is unreliable and unstable due to the uncertainties
of solar PV generation. As mentioned above, the system constraints are estimated using
the Power Flow (PF) calculation in the MATPOWER tool to check constraints according to
Section 3.2. without the VPP concept. This situation leads to a branch constraint violation,
which can be shown in Figure 7. The 0 and 1 binaries are labeled, representing the “no
violation” and “violation” status of branches, respectively.
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5.3. Optimal Energy Management of VPP Based on the DE Algorithm

In order to solve the optimal energy management for the system with PVs and EVCS
from Section 5.2, the ESS is determined to be installed at bus 12. There is no branch
current violation after using optimal energy management with the VPP. Two cases for
optimizing energy management with the VPP concept are proposed in this second situation,
as presented below.

In the first case, the two objective functions consisting of the costs of all generator
operations and battery degradation are taken into account in the optimization tasks using
the DE algorithm. The SoC of ESS after solving the optimal scheduling for case 1 is
presented in Figure 8. The convergence characteristics of the proposed DE algorithm are
displayed in Figure 9.

Three objective functions in the DE algorithm are considered in the second case. The
degradation cost of the generator is the third objective that is also taken into account in
the DE algorithm. The technical data used in the computations are listed in Table 4. The
optimized SoC is presented in Figure 10. Figure 11 shows the convergence characteristics
of the result from the second case.
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Table 4. Necessary values for calculating the degradation cost of generators [40–43].

Type and Fuel
of Generator

Size of Generator
(MW)

Capital Cost
($/kW)

Lifetime
(Year)

Fossil Steam (Oil)

12

1300

35

20
100
197

Fossil Steam (Coal)
76 1800

155
350

Hydro (Water) 50 1050

Nuclear Steam
(Light water reactor) 400 1200
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The problem-solving using metaheuristic methods needs to run many times to verify
the solutions. To confirm the optimality of the solutions obtained for each study case, both
the PSO and DE algorithms are applied multiple times, and the convergence of the solutions
is monitored. Figure 12 illustrates the convergence characteristics for case 1 and case 2
when applying the PSO and DE algorithms. Figure 12a,b are the convergence characteristics
of the PSO and DE algorithms for case 1, respectively. Additionally, in Figure 12c,d are the
convergence characteristics of the PSO and DE algorithms for case 2, respectively.

This paper has compared the solutions obtained by the proposed algorithm and the
popular algorithm that is the PSO algorithm. To ascertain the reliability and consistency
of the recommended algorithm, Figures 9 and 11 show the convergences of fitness values
of both studied cases when applying the PSO algorithm and the proposed DE algorithm.
In this research work, the optimization process is stopped when the difference between
the result of the previous and current iteration is zero, and this condition has been met
for 200 consecutive iterations. The results show that the PSO algorithm is stuck in a local
minimum at the 180th and 90th iterations for case 1 and case 2, respectively. In contrast,
the DE algorithm in case 1 and case 2 provides the optimal fitness value at the 680th and
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320th iterations, respectively. Thereby, the DE algorithm can increase the opportunity to
discover solutions at the global minimum of each case compared with the PSO algorithm.
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Figure 12. Comparison for Optimal Solution Convergence; (a) the PSO Algorithms in Case 1. (b) the
DE Algorithms in Case 1. (c) the PSO Algorithms in Case 2. (d) the DE Algorithms in Case 2.

The outcomes of case 1 and case 2 are presented in Table 5. In addition, this table
includes the degradation costs of ESS and generators, as well as the operation cost of gener-
ators. The results show that the degradation cost of the generator in case 2, compared to
the first case, is reduced by 33.85% and 22.56% for the DE and PSO algorithms, respectively.
Because in case 2, the degradation cost of generators is determined as one of the objective
functions, which leads to a decreased operation of all generators while it increases the
operation of the battery in ESS discharges power to the system. As presented in Table 5,
the increased degradation cost of the battery in case 2 is more than the cost obtained by
case 1 at 6.90% and 3.68% when using the DE and PSO algorithms, respectively.

Table 5. The component of objective function after solving the optimal scheduling of ESS by the DE
and PSO algorithms for case 1 and case 2.

Algorithm Case Operation
Cost ($)

Battery
Degradation Cost ($)

Generator
Degradation Cost ($)

PSO
1 1,018,746.76 642,785.60 546,290.78
2 1,013,803.34 666,420.38 423,025.62

Cost difference (%) 0.49 3.68 22.56

DE
1 1,011,966.58 551,913.68 540,176.40
2 1,008,166.89 589,975.19 357,317.11

Cost difference (%) 0.38 6.90 33.85

In Table 6, the comparison between case 1 and case 2 revealed that when using the DE
algorithm for ESS energy management, the total cost in case 2 was 7.06% lower than the
total cost in case 1. Similarly, when using the PSO algorithm, the total cost in case 2 was
4.74% lower than the total cost in case 1. Additionally, the table shows that the total cost
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obtained from the DE algorithm was 4.70% and 7.03% lower than the total cost of the PSO
algorithm in case 1 and case 2, respectively.

Table 6. Comparison of the total cost of the objective function for case 1 and case 2 after solving the
optimal scheduling of ESS by the DE and PSO algorithms.

Case
The Total Cost of Objective Function ($)

Cost Difference (%)
PSO DE

1 2,207,823.13 2,104,056.65 4.70
2 2,103,249.33 1,955,459.19 7.03

Cost difference (%) 4.74 7.06 -

6. Conclusions

This paper proposes optimal energy management under the VPP concept. Power
systems take into account solar PV generation and the demand usage power of EVCS. The
DE algorithm is employed to dispatch the ESS operation. All generator operation expenses,
as well as ESS and generator degradation costs, are included in the objective function. On
an IEEE RTS 24 bus, the VPP concept was tested using the MATPOWER tool for calculating
OPF. In the result and discussion section, there are two situations considered. In the first
situation, the effect of solar PVs and EVCS on the power system is studied without using
optimal energy management of VPP. For the second situation, the proposed optimal energy
management with the VPP concept considering solar PVs, EVCS, and ESS installed in
power systems is demonstrated and discussed. The detail of these two studied situations is
explained below.

For the first situation, solar PV and EV penetrations are considered in the power
system, leading to some branch constraint violations. This research work recommends
optimal energy management using the VPP concept as presented in situation 2 to manage
the power of ESS using the DE algorithm for maintaining the power system operation
without any violations. The results show that there is no aforementioned violation and no
other violations when applying the proposed energy management with the VPP. In the
second situation, two cases are studied. The first case considers two objectives consisting
of the minimization of the generator operation cost and the battery degradation cost in
ESS. Minimizing the generator degradation cost is taken into account together with the
two mentioned objectives in case 2. In the second case, the minimization of generator
degradation cost is added to the objective function, which can reduce the operation of
all generators and optimize the operation of ESS to achieve the optimal outcome. As a
result, the total cost of the generator operation and the degradations of ESS and generators
is lower than the total cost of the first case. Additionally, the DE algorithm and the PSO
algorithm for solving the optimal energy management using the VPP concept are compared
in order to confirm the robustness and consistency of the DE algorithm. The results show
that the DE algorithm can provide a total cost lower than the total cost obtained from the
PSO algorithm for both case 1 and case 2.

One suggestion is to develop this work because this research work determines the
location and size of ESS by locating it at the center of the system to manage power flow
efficiently and sizing it by increasing ESS capacity step by step until the system operates
without any violations. The obtained ESS capacity is equal to the ESS capacity, as shown in
reference [44], which has the total solar PV capacity installed in the test system close to the
solar PV capacity in this work. In order to better minimize the total cost, the location and
size of ESS and EVCS should be determined by using the optimization method in future
works. Another mechanism that can develop this research work, using machine learning
for accurate forecasting of electricity demand, solar radiation, and EV charging behaviors
in EVCS, could be an excellent way to further improve the proposed approach for VPP
energy management. With accurate forecasting, the scheduling of the ESS can be more
precise, leading to better energy management and a more sustainable power system.
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