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Abstract: Bulk power grid interconnection and the access of various smart devices make the current
grid highly complex. Timely and accurately identifying the power grid operation state is crucial for
monitoring the operation stability of the power grid. For this purpose, an evaluation method of the
power grid operation state based on random matrix theory and qualitative trend analysis is proposed.
This method constructs two evaluation indicators based on the operation data of the power grid,
which cannot only find out whether the current state of the power grid is stable but can also find out
whether there is a bad operation trend in the current power grid. Compared with the traditional
method, this method analyzes the power grid’s operation state from the big data perspective. It does
not need to consider the complex network structure and operation mechanism of the actual power
grid. Finally, the effectiveness and feasibility of the method are verified by the simulations of the
IEEE 118-bus system.

Keywords: bulk power grids; stable operation of power grid; big data; random matrix theory;
qualitative trend analysis

1. Introduction

In recent years, with the continuous development of smart grid, the scale of the cur-
rent power system has become more and more monumental. The increasingly complex
operating characteristics make the potential problems of power grid operation more promi-
nent [1–4]. How to quickly and accurately assess the operation state of the power grid is a
significant problem today.

At the same time, as more intelligent devices have been connected to the power
system, the grid has stored massive and high-dimensional operational data during the
operation [5,6]. These data have the characteristics of 4Vs [7,8], which contain rich and valu-
able information and are closely related to the stable operation of the power system [9–11].

Exploiting the value of these electric power big data has become important research
content for current researchers. At present, the general research idea of using data to
analyze power system operation in power system stability analysis is to establish indica-
tors of power grid operation state from different perspectives, respectively, and then to
evaluate the system comprehensively by fuzzy comprehensive evaluation method [12],
analytic hierarchy process (AHP) [13], entropy theory [14] and so on. For example, in [15],
the authors first constructed the operational indicators of the distribution network from
three aspects: system operational risk, PV generation uncertainty and network topology
robustness; they then used the improved analytic hierarchy process (IAHP) to calculate the
weights of different indicators; finally, they summed up to obtain the operational safety
indicators of the distribution network. The accuracy of this comprehensive assessment
method to evaluate the operation state of the grid is highly dependent on the established
indicators system, so this method is not widely applicable.

Random matrix theory (RMT) is a data analysis method specifically designed to
work with high-dimensional data [16,17]. Like deep learning, RMT is also a very effective
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data analysis tool at present. Both of them have unique advantages in high-dimensional
space: the RMT has flexible and rigorous mathematical analysis capabilities, and the deep
learning has superior data modeling capabilities. Deep learning technology in engineering
applications usually requires labels and has specific requirements on the categories and
quantity of labels. But the data sets in the actual power grid often find it difficult to meet
the above conditions. RMT does not need to define labels, and there is no model training
as complex as deep learning; so it is more efficient and suitable for dealing with complex
power grids with complex models, strong uncertainty, unclear causality and high data
dimension. In [18], random matrix theory was first introduced into the field of power
systems. Subsequently, in [19], a correlation analysis method based on random matrix
theory was proposed, which can analyze the connection between various factors and grid
operation state in real-time and quantitatively. In [20], a method for analyzing and locating
system anomalies and disturbances based on random matrix theory was proposed. In [21],
for the distribution grid with high penetration of renewable energy with a high uncertainty
problem, the authors proposed a topology identification method using random matrix
theory to improve the effectiveness of topology identification. In [22], a method which can
effectively identify the abnormal state of power consumption by random matrix theory
was proposed. In [23], based on random matrix theory, a data-driven approach for fault
time determination and fault area location to avoid the influence of bad data was proposed.
In [24,25], the authors used the big data fusion technology of random matrix theory to
evaluate the static stability and transient stability of the power grid, ignoring the complex
physical model and making full use of the high-dimensional and massive data generated
during operation. These above studies show the excellent applicability of random matrix
theory for analyzing the operation state of the power grid.

For a power grid in operation, the causes of faults during grid operation usually can
be divided into two types: sudden faults and deterioration of poor operating conditions.
Identifying the former is relatively easy while identifying the latter is more difficult. If
we want to detect the deterioration of the state during the power grid operation, we
must analyze the trend of the grid operation and observe whether the current trend of
the grid operation is getting better or worse. Therefore, it is also essential to focus on
trends when assessing the stable operation of the grid. As a special method to study the
trend of data change, trend analysis is a crucial part of data analysis [26,27]. It effectively
identifies essential information embedded in the data and is now widely used for process
monitoring and fault diagnosis [28,29]. In [29], the authors state that using trend analysis
techniques to analyze data’s operational trends can help operators monitor and identify
potential problems.

Therefore, this paper uses a qualitative trend analysis technique based on the random
matrix theory to evaluate the current grid operation state and the trend of state change for
two causes of faults. Firstly, a random matrix model that characterizes the operating state
of the power grid is built using historical data and current real-time data. Secondly, based
on the Marcenko-Pastur(M-P) law and ring law of random matrix theory, two indicators are
defined to evaluate the current stable operation state of the power grid. Thirdly, compare
two indicators, and determine the more suitable indicator to reflect the integrity of the
system according to the characteristics of the two indicators. Fourthly, the qualitative trend
analysis technique is used to analyze the indicator sequence that can show the integrity of
the system. Its trend represents the trend of the power grid operation state. By analyzing
the trend change of the indicator, we can judge whether there is a bad trend affecting
the stable operation of the current power grid and realize the effective monitoring of the
operation state of the power grid. Finally, the effectiveness and feasibility of the proposed
method are verified by simulations based on IEEE 118-bus test system.

The rest of the paper is as follows: Section 2 introduces the random matrix theory
and matrix model based on grid operation data. Section 3 introduces the qualitative
trend analysis techniques. Section 4 shows the process of real-time grid operation state
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assessment. Section 5 contains two examples and discussions of the results. Finally, the full
text is summarized in Section 6.

2. Random Matrix Theory and Grid Matrix Model

In this section, the Random matrix theory and the matrix model construction method
based on real-time grid operation data are described respectively in detail.

2.1. Random Matrix Theory

The theory of high-dimensional random matrices belongs to the research field of
multivariate statistics. At present, random matrix theory has been widely applied in
finance [30], chemistry [31], medicine [32] and other fields. Two important laws that are
closely related to state evaluation are presented below.

2.1.1. M-P Law

Let a random matrix XN×M be a non-Hermitian matrix, where the elements are
independently and identically distributed. The mean of the elements of the matrix is 0, and
the variance is 1. Then we can obtain the corresponding covariance matrix S as follows:

S =
1
N

XXH (1)

where H denotes taking the conjugate transpose.
Let p = N/M, which requires 0 < p ≤ 1 in practical applications. According to random

matrix theory, when M, N→∞, the empirical spectrum distribution function of the covari-
ance matrix S converges non-randomly to the probability density function. The probability
density function is as follows:

f (λS) =

{
1

2πpσ2x

√
(b− x)(x− a), a 6 x 6 b

0 , others
(2)

where λS represents the eigenvalue of the covariance matrix S. a = σ2(1−√p)2, b =

σ2(1 +
√

p)2, a and b represent the upper and lower bounds of the eigenvalues, respectively.
σ2 is the variance of all elements in the random matrix XN×M.

2.1.2. Ring Law

Assume that there are a number of standard independent non-Hermitian matrices of
matrix Xi(i = 1, 2, 3, . . . , l), Xi ∈ CN×M. In order to map the matrix to the complex plane,
each matrix is transformed as follows:

Xu,i = U
√

XiXi
H (3)

where Xu,i is the singular value equivalence matrix of Xi. U is a Haar distributed unitary
matrix.

Let W =
L
∏
i=1

Xu,i, then the standard matrix product Ŵ is obtained by normalizing W

according to Equation (4).

ŵi =
wi√

Mσ(wi)
(4)

where ŵi, wi denote the row vectors of row i in matrices Ŵ and W, respectively, and σ(wi)
is the standard deviation of wi.
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According to random matrix theory, when M, T→∞, the empirical spectral density of
the Ŵ will converge in the circle of the probability density functions on the complex plane.
The probability density function is given by:

f (λŵ) =

{
1

πpL

∣∣∣λŵ

∣∣∣ 2
L−2

, (1− p)
L
2 ≤

∣∣∣λŵ

∣∣∣≤ 1

0, others
(5)

where p = N/M, and p ∈ [0, 1]. λŵ is the eigenvalue of Ŵ. The inner ring of the circle has a
radius of (1− p)L/2, and the outer ring has a radius of 1.

2.2. Grid Matrix Model

The actual grid is a system with a highly complex topology. In order to sense the
current state of the grid, measurement devices are usually deployed in the system. In this
paper, we assume that each node in the system is equipped with a measurement device.

Suppose there is a power system with N nodes, where each node has k volumes to
measure at a given time. Then the system has M = N × k state volume data in total. The
system at the moment can be represented by a vector x(t) as follows:

x(t) = [x1(t), x2(t), x3(t) , · · · , xM(t)] (6)

As the sampling time increases continuously, a two-dimensional matrix X describing
the state of the system is formed:

X =


x1(t1), x1(t2), x1(t3), · · · , x1(tn), · · ·
x2(t1), x2(t2), x2(t3), · · · , x2(tn), · · ·
x3(t1), x3(t2), x3(t3), · · · , x3(tn), · · ·

...
...

...
...

xM(t1), xM(t2), xM(t3), · · · , xM(tn), · · ·

 (7)

Intercepting X in a time window of width T forms an M × T system state matrix
XM×T , which contains both system state data at the current tn moment and historical data
for the previous T−1 lengths:

XM×T =


x1(tn−T+1), x1(tn−T+2), · · · x1(tn)
x2(tn−T+1), x2(tn−T+2), · · · x2(tn)
x3(tn−T+1), x3(tn−T+2), · · · x3(tn)

...
...

...
xM(tn−T+1), xM(tn−T+2), · · · xM(tn)

 (8)

The data in XM×T is constantly updated as the grid operation time is updated, so that
the real-time state of the grid can be monitored in time. Meanwhile, in order to eliminate
the effects of different orders of magnitudes, it is necessary to normalize the matrix. The
standardized matrix X̂ is a standard non-Hermitian matrix, where each row satisfies a mean
of 0 and a standard deviation of 1. The row vectors of XM×T are normalized as follows:

x̂i,j =
(

xi,j − xi
)
× (σ(x̂i)/σ(xi)) + x̂i

1 ≤ i ≤ M, 1 ≤ j ≤ T
(9)

where x̂i,j, xi,j are the elements in row i and column j of X̂ and XN×M, respectively. xi

and σ(xi) represent the mean and standard deviation of row i in XN×M, respectively. x̂i
and σ(x̂i) represent the mean and standard deviation of row i of X̂, respectively. x̂i = 0;
σ(x̂i) = 1.

Assume that a certain power system is known, and make its load proportionally
increasing. As the power system operates, the state data at each node are collected. Then
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the original data state matrix of the system is formed according to the method presented in
this paper. Then the raw data state matrix is pre-processed. The sliding window technique
is used to intercept the pre-processed matrix; the sample matrices in different states can
be obtained separately. The random matrix theory is used to analyze the sample matrix of
the power grid in two different states, and the visualization results are shown in Figures 1
and 2.
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Figure 1. Analytical results of the M-P law. (a) Normal state, (b) Abnormal state. 
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Figure 2. Analytical results of the Ring Law. (a) Normal state, (b) Abnormal state. 
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Figure 2. Analytical results of the Ring Law. (a) Normal state, (b) Abnormal state.

As shown in Figures 1 and 2, the difference between the system in the normal and
abnormal states can be clearly found. When the grid is operating steadily, the sample
covariance random matrix of the system obeys the M-P law. The distribution of the
eigenvalue spectrum of this matrix converges to the M-P law curve. Also, the singular
value matrix of the sample matrix of the system obeys the ring law. The eigenvalues of the
singular value matrix are distributed in the circular ring in the complex plane. However,
when the load increases until the stable operation of the system is destroyed, the sample
covariance random matrix of the system no longer obeys the M-P law, and isolated and
large eigenvalues appear. Meanwhile, the eigenvalue distribution of the corresponding Ŵ
of the system will no longer obey the ring law; the eigenvalues of Ŵ will cross the inner
circle. It can be seen that these two laws of random matrix theory are good for detecting
anomalies in the stable operation of the system.

2.3. Statistical Evaluation Metrics

According to the analysis in Section 2.2, the difference between the normal and ab-
normal grid operation can be easily reflected by random matrix theory. To quantify the
nature of the grid when it deviates from a stable operation, it is necessary to define rea-
sonable evaluation indicators by selecting appropriate statistics according to the two laws
mentioned above.
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2.3.1. Maximum Eigenvalue of Sample Covariance Matrix

According to the M-P law: When the system is abnormal, the law in stable operation is
broken, and the eigenvalues of S no longer converge to f(λs), where the largest eigenvalue
will exceed the boundary of the normal eigenvalue.

Let the maximum eigenvalue of S be λs(max). In the normal state, λs(max) ≤ λs(lim)(where

λs(lim) = σ2(1 +
√

p)2. In abnormal state, λs(max) > λs(lim). So, an indicator ∆λ can be de-
fined to describe the difference between the normal and abnormal states, and the indicator
∆λ is given by:

∆λ = λs(max) − λs(lim) (10)

when ∆λ > 0, it means that there is an abnormality in the system; otherwise it means that
the system is stable.

2.3.2. Mean Spectral Radius

Let the radius of the eigenvalues of the standard matrix product Ŵ be λi (i = 1, 2, 3,
. . . , M) and the radius of the inner loop of the ring law be Rinner. The mean spectral radius
Rmsr is a linear eigenvalue statistic that can be used to describe the overall distribution of
eigenvalues. Rmsr is given by:

Rmsr =
1
M

M

∑
i=1

λi (11)

When the state of the physical system changes, the elements in the matrix change,
causing Rmsr to change accordingly. When Rmsr > Rinner, it means that most of the eigenval-
ues are distributed inside the circle; then the system is stable. If the value of Rmsr is larger
than the value of Rinner, the more stable the system is; conversely, the system is unstable.
The indicator d is proposed to determine whether the eigenvalues are distributed within
the circle as follows:

d = Rmsr − Rinner (12)

when d > 0, it means that there is an abnormality in the system; otherwise it means that the
system state is stable.

2.4. Discussion of Indicator ∆λ and Indicator d

According to the above analysis, it can be seen that both index ∆λ and index d can
distinguish the normal operation state and abnormal operation state of the power grid.
Therefore, both indicators can be used to evaluate the grid operation state. However, the
roles of the two are different. The ∆λ reflects the deviation of the maximum eigenvalue
of the corresponding covariance matrix of the system, which is more prominent in terms
of variance. The d reflects the overall average of the eigenvalues of the standard matrix
product of the system’s random matrix, highlighting the overall nature more. Therefore,
the trend analysis of index d can be considered as the basis for analyzing the trend of power
grid stability.

3. Qualitative Trend Analysis

In this section, the qualitative trend analysis technique is introduced. It is a data-
driven, semi-quantitative analysis technique that has been successfully applied to process
monitoring and fault diagnosis field [27,33,34]. The general idea of qualitative trend
analysis is to extract qualitative information from quantitative process data and to represent
it in a symbolic language [27,28]. And the process of qualitative trend analysis consists of
two stages: (1) trend extraction and (2) trend identification.

3.1. Trend Extraction

The trend extraction process is to split the target curve into some data segments, then
to fit each data segment with a function separately and, finally, to extract the trend of that
segment according to the fitting function.
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In order to obtain better results for trend extraction, it is necessary to ensure sufficient
accuracy and fast enough computation speed. In addition, it is also considered that the
length of the data segment has an impact on the fitting effect. Therefore, in this paper, the
trend extraction is performed by combining the F-test based on the time-sliding window
technique, and the fitting function uses a quadratic polynomial. It is worth noting that the
size of the time window used in this paper is variable, and its length is changed adaptively
according to the fitting effect. This way, the data segment’s optimal segmentation result
can be obtained.

Suppose there is a time series data D(t), and the starting moment is noted as t0. The
trend extraction process for D(t) is as follows.

(1) Set the length of the initial time sliding window to L, and feed the values of the first L
data into the time sliding window in turn.

(2) Using a binomial function to fit the data in the time window, the obtained binomial fit
function takes the form of the following equation:

f (t) = A(t− t0)
2 + B(t− t0) + C (13)

where A, B and C are the coefficients of the binomial function. The values of these
three parameters are determined according to the ordinary least squares. The specific
process is to minimize the sum of squares of the error between the fitted curve and
the actual curve to find the best fitting function parameter combination of the data.

(3) In order to judge the fitting effect of the data in the time sliding window, it is necessary
to test the significance of the fitted model using the F-test. If the fitting effect meets
the requirements, the window is expanded to include the data at the moment of
tL+1, refitted and the F-test is performed again until the F-test no longer meets the
requirements. If the fitting effect does not meet the requirements, the fitting is re-fitted
by reducing the window until it just meets the requirements of the F-test.

(4) Check whether the fitted model in the window contains extreme value points in the
interval. If so, split the data segment in two at that point, refit the two data segments
separately and then perform the F-test.

(5) After the previous data segment is determined by steps (3) and (4), a new time sliding
window is used to fit the remaining data. To ensure that the data segments are
continuous, the start moment of the current time sliding window should be the end
moment of the previous data segment. Let the length of the time window remain the
initial length. Then repeat steps (2), (3) and (4) to determine the new data segment.
When the final number of remaining data is less than L, the remaining data are
fitted directly.

(6) Calculate the first-order derivatives and second-order derivatives of all extracted data
segments in the interval to which they belong, respectively, and determine the signs
of the first-order derivatives and second-order derivatives.

3.2. Trend Identification

Trend identification is to match the results of trend extraction with trend primitives,
each of which can be described by a tuple consisting of the first-order derivative and
second-order derivative symbols of the fitted model [35], as shown in Figure 3, where seven
different trend primitives reflect seven different patterns of variation.
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Figure 3. Primitives of the trend.

4. Process of Real-Time Grid Operation State Assessment

The grid operation condition evaluation in this paper focuses on the two causes of grid
operation that lead to faults mentioned above. Combined with the analysis in Section 2 of
this paper, indicator ∆λ is more sensitive to the variability of the system, and indicator d
reflects the overall performance of the system. Based on the characteristics of these two
indicators, this paper proposes an evaluation method that can evaluate both whether the
current operating state of the grid is normal and whether there is a bad trend in the normal
operating state.

Suppose there is an N-node grid with k state variables at each node; then the specific
process is shown in Figure 4.

Figure 4. Flowchart of real-time grid condition assessment method.
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To make it easier to judge the operating trend, the security trend level can be defined
according to the trend shape, as shown in Table 1.

Table 1. The table of safety level.

Primitives of the Trend Trend Security Levels

A(+,+)

Safe
B(+,0)
C(+,−)
D(0,0)

E(−,+)
DangerousF(−,0)

G(−,−)

5. Experiment and Discussion

In order to verify that the proposed method is able to evaluate the current grid
operation state for abnormalities as well as to detect the bad operation trends during
normal grid operation, this paper designs simulations based on the IEEE 118-bus system.
The simulations consist of two cases, one of which is a short-circuit fault in the grid and the
other which is an abnormal load change in the stable operating range of the grid.

5.1. Example 1: Case of Short Circuit Fault Calculation

In this example, the state matrix of the grid (M = 118) is constructed with the voltage
magnitude data of 118 nodes in the whole network. The data sampling step is set to 0.02 s,
and a total of 1000 times are sampled, in which the grid operates normally from t1 to t400,
and a short-circuit fault is set to occur at node 29 at t401, which continues until the fault
is cleared at t500. Then the grid resumes stable operation. In order to simulate the error
in the real sampling process, add Gaussian white noise of suitable size on the basis of the
simulation data. The changes of the voltage of the whole network nodes during the whole
process are shown in Figure 5.

Figure 5. Variation of node voltage.

Sample data are extracted with a time sliding window of length T (T = 200), which
is then used to reconstruct a sample random matrix of system states for analysis. After
analysis, the M-P law diagrams of the system in stable operation and in case of failure are
obtained, respectively, as shown in Figure 6.
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Figure 6. M-P law at stable (left) and at fault (right).

Figure 6 shows that after a short-circuit fault occurs, the system state changes and the
state random matrix no longer obeys the M-P law. There are isolated eigenvalues with
large values. Correspondingly, the ∆λ > 0. During the simulation, the variation of the state
assessment indicator ∆λ of the grid is shown in Figure 7.

Figure 7. Change curve of ∆λ.

The value of the length of the time window is 200, and we need to wait for 200
sampling moments to enter the time window before we can get the state random matrix
of the system. Therefore, the starting moment of a should be t200 of the actual sampling
moment because ∆λ will return to the value at the normal operation of the grid only when
the historical data of the system random matrix no longer contains the data of the abnormal
state. Then the stop moment of the fault should be t700−T .

Similarly, we can obtain the results of the analysis of the ring law and the variation
curve of the indicator d. The results are shown in Figures 8 and 9.

Figure 8. Ring law at stable (left) and at fault (right).
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Figure 9. Change curve of d.

From the above results, it is clear that both ∆λ and d can accurately assess whether
a fault has occurred in the current grid during grid operation. Then, comparing the
change curves of indicator ∆λ and indicator d in Figures 6 and 8, we can get the following
information:

• In Figure 7, when the sampling moment is at t401, the curve coincides with the line
drawn at the moment t401, while in Figure 8 the curve deviates from the drawn line.
This indicates that the value of ∆λ changes immediately after the system fault occurs,
while the indicator d does not. It means that ∆λ is more sensitive to capture the
abnormal system state.

• In Figure 9, the curve of d is still greater than 0 for a short period of time after the fault,
which indicates that the value of indicator d does not change to a value less than 0
immediately after the fault. It changes slowly. Thus, the operating state of the grid is
still normal for a short period of time after the fault occurs, and the abnormal state of
the grid can be detected only after a short period of time.

Therefore, the above results verify that ∆λ is more sensitive to the perception of
anomalous states than d, which is more suitable to reflect the holistic level of the system.

5.2. Example 2: Case of Abnormal Load Changes in the Stable Operating Range

In this case, the load at each node is varied in the range of normal and stable operation
of the system, and the grid state matrix is still constructed with the voltage magnitude data
of each node of the system.

The load is changed in the manner of Figure 10. A total of 1000 sampling points are set
in the simulation process. The system keeps normal stable operation before t300. From t301,
the load gradually deviates from the normal operation interval and continues until t800.
From t801, the disturbance is cleared, and the system resumes stable operation. The length
of the time window for intercepting data is set to 200. Then the state matrix obtained from
each time window interception is analyzed and calculated in turn.

Figure 10. Load change curve.
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During the simulation, the values of ∆λ and d have been in the interval of stable
operation, which indicates that the system state has been stable. Then the change of d value
is used to reflect the change of system operation state, as shown in Figure 11.

Figure 11. Change curve of d.

Since the value of T is 200, the start moment of d is t200. The fluctuations of the curve in
Figure 11 are due to errors caused by the data processing and the statistical characteristics
of the random matrix. In order to reduce the noise interference and the influence of random
matrix on the data, this paper uses wavelet transform to filter the curve of d. Then the curve
of d was fitted according to the method in Section 3.1, and the initial value of L was set to
40. Then the adaptive segmentation points of the curve were obtained. The final results are
shown in Figure 12, and the MSE error of the fitting results is 1.94 × 10−6.

Figure 12. Variation curve of indicator d after denoising.

When the data in the matrix remain stable, the value of d also remains broadly stable;
when the stability law of the data in a dimension of the matrix is broken, the value of d
decreases, and the greater the difference from the original data change law, the more the
value of d decreases. From Figure 12, it can be seen that the system operates stably in the
normal interval before moment t300, and since moment t301, the system is disturbed and
the load deviates from the normal interval, which makes the data in the normal interval in
the matrix decrease, and the value of d decreases as a result. When the load value changes
again close to the normal interval, the value of d will increase slightly. It can be seen that
the change of d reflects the change of grid operation state. Therefore, the trend of d is the
trend of the operating state of the grid. Thus, the trend extraction results of d are shown in
Table 2.
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Table 2. Trend extraction results table.

Data
Segment
Number

Time
Interval Trend Shape

Data
Segment
Number

Time
Interval Trend Shape

1 (200, 211) C 27 (600, 620) C
2 (211, 220) G 28 (620, 636) C
3 (220, 223) E 29 (636, 640) G
4 (223, 240) A 30 (640, 660) G
5 (240, 253) E 31 (660, 680) G
6 (253, 260) A 32 (680, 700) G
7 (260, 280) G 33 (700, 720) E
8 (280, 287) C 34 (720, 734) E
9 (287, 300) G 35 (734, 740) A
10 (300, 320) A 36 (740, 760) A
11 (320, 334) E 37 (760, 780) A
12 (334, 340) A 38 (780, 800) A
13 (340, 360) G 39 (800, 809) C
14 (360, 380) G 40 (809, 820) G
15 (380, 400) E 41 (820, 840) G
16 (400, 420) E 42 (840, 860) G
17 (420, 431) C 43 (860, 867) E
18 (431, 440) G 44 (867, 880) A
19 (440, 460) C 45 (880, 900) A
20 (460, 480) E 46 (900, 920) C
21 (480, 500) E 47 (920, 940) C
22 (500, 520) G 48 (940, 960) A
23 (520, 540) G 49 (960, 963) E
24 (540, 560) A 50 (963, 980) A
25 (560, 580) A 51 (980, 994) E
26 (580, 600) A 52 (994, 1000) A

As shown in Table 2, the trend shape changes with the operation of the grid. In Table 2,
some of the trend shapes have a short duration (e.g., data segments with serial numbers 3,
6 and 8). The change of d in these time periods is not obvious, so it can be considered as
the fluctuation that occurs when the system is operating normally and belongs to the data
segment that has little effect on the value of d. Therefore, the trend behavior of this part can
be ignored in the analysis. What is really worth attention is the data segment with a long
duration of the dangerous trend level. The longer the duration of the dangerous trend, the
more the system deviates from the normal operation interval, which indicates that there
may be some hidden danger in the system, causing the stable operation state of the system
to deteriorate. In order to present the changes of the safety trend more visually, it can be
plotted as the safety trend distribution shown in Figure 13.

The safety level is defined for each trend segment according to Table 1, and the trend
shapes of different safety levels are distinguished by color. As shown in Figure 13, the top
of the safety level divider is the danger trend (red area), and the bottom is the safety trend
(blue area). Also, red and blue colored progress bars are set at the bottom of the graph for
tracking the duration of the safety and hazard trends. Because there are fluctuations in the
system with a short duration of the trend shape, the dangerous trend time set must have
a lower limit in order to avoid the small trend segments in the system that do not affect
the d. Considering the error and margin, Example 2 sets this lower limit value of duration
to 60. It means that the part of the dangerous trend duration exceeding 60 moments is
considered as a bad trend where the load does exist. From Figure 12 it can be found that
there are four dangerous trend segments that last for a longer period of time. By comparing
with the load variation curve, it is found that the first three long dangerous trend segments
correspond to the part of the load when it is outside the normal interval, so it can be seen
that the abnormal load variation can be captured more accurately by analyzing the trend of
d. At the fourth dangerous trend segment, it is found that the load has returned to within
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the normal interval but still shows a dangerous trend, which is due to the fact that the
random matrix still contains a large amount of historical data with load perturbations when
the data within the random matrix has just reached the t800 moment. Therefore, it can be
considered that, whenever there is a long period of dangerous trend segments, there is a
bad operating trend indicated in the current system.

Figure 13. The curve trend distribution diagram of the d.

In summary, Example 1 compares two state assessment indicators ∆λ and d. Through
analysis, it is found that indicator ∆λ is more sensitive to the abnormal state of the grid
and is more suitable as a basis for assessing the abnormal behavior of the grid, while
indicator d focuses on the overall state of the grid and is therefore more suitable as a
trend assessment indicator. The results of Example 1 verify the discussion in Section 2.4
of this paper. Example 2 is focused on whether there is a bad operating trend of the grid
under normal conditions. Based on the assessment of the stability of the grid operation by
using indicator ∆λ, further simulation experiments verify that the trend of d can reflect the
operating trend of the grid well, and the analysis of the trend of d by using the qualitative
trend analysis technique can effectively find the unstable operating trend during operation.

6. Conclusions

The causes of faults during grid operation can be broadly divided into two types: one
is sudden faults, and the other is deterioration of poor operating conditions. To address
this issue, this paper proposes an evaluation method that can determine both whether the
current state of the power grid is stable and whether there is a bad operating trend in the
current power grid. Firstly, two indicators are defined separately by random matrix theory:
∆λ and d. By comparison, it is found that the former can sensitively determine whether the
system is stable or not, and the latter, combined with qualitative trend analysis technique,
can effectively discover the undesirable trends in the grid operation process. Thus, the
method in this paper uses both indicators to evaluate simultaneously, and if ∆λ is greater
than 0, it means that the current grid is unstable and an alarm signal should be issued. If
∆λ is less than 0, a trend analysis is performed on d. If the decomposition results determine
that the current d is in a dangerous trend segment and the duration of the danger exceeds a
given value, then an alert signal is issued. If ∆λ is less than 0 and there is no dangerous
trend segment for d, then it means that the current state of the grid is stable. The feasibility
of the method proposed in this paper is verified by the simulations of two examples.

Compared with the traditional analysis method, the method proposed in this paper
ignores the complex physical structure of the power grid and uses the data generated
during the operation of the power grid more effectively, which provides a new research
idea for understanding the operation law of the power grid. The simulation results show
that the method cannot only accurately evaluate the current operating state of the power
grid but can also find the bad trend in the operation of the power grid. It is worth noting
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that the work in this paper is mainly to evaluate the current state and trend of the power
grid. It is not yet possible to locate the location of the anomaly, so the subsequent research
can continue to focus on fault location and fault cause analysis.
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