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Abstract: Solutions for the maintenance of safety in an isolated working face has not been well
achieved; this is attributed to its unique overburden structure and the strong mining-induced stress
during the advancement. This paper is devoted to filling this research gap and is based on the case
study of LW 10304 in the Xinglongzhuang Coal Mine, in China. The overburden structure and stress
distribution characteristics of this isolated working face were theoretically investigated, followed
by the development of a comprehensive identification method. The research results showed the
following: (1) The overburden strata of LW 10304 is in the form of a short “T” shape and the stress
increment is featured with the overall “saddle” shape before the extraction of the isolated working
face. During this period, the lower key strata and main key strata affect the stress level at the two
ends and the central part of the working face, respectively; (2) Both the frequency and energy of
micro-earthquakes in the working face account for more than 95%, which is positively correlated
with roof damage and rib spalling, associated with some overlaps between the damaged zones;
(3) The fracture movement of inferior key strata near the coal seam plays a dominant role in affecting
microseism activity and mining-induced stress. The microseism energy attributed to roof breakage
accounts for 43.34% of the overall energy; (4) A comprehensive indexing system, covering microseism
frequency, microseism energy, and support resistance, was established to identify the mining-induced
stress intensity of the isolated working face. The early warning efficiency of the “strong” degree of
mining-induced stress is 0.94, which is believed to provide an option for other isolated working faces
with similar geological and mining conditions.

Keywords: isolated working face; overburden structure; microseismic monitoring; mining-induced
stress behavior; weighting strength

1. Introduction

Affected by specific geological conditions, mining techniques, as well as insufficient
mine design, some isolated working faces, which are surrounded by goafs, are left in
underground mines [1,2]. Different from a normal working face, both the overburden
structures and the stress distribution of an isolated working face are complex. In particular,
strong mining-induced stress accidents, which may result in rock bursts, have drawn
much attention when the sudden breakage and instability of the hard roof are accounted
for [3–5]. For example, strong periodic weighting was suffered during the extraction of
the isolated working face in Tongxin Coal Mine, Shanxi Province. Except for the high
mining-induced stress applied on the hydraulic support, the cross section of the roadway
ahead of the working face decreased from 18.5 m2 to 4.62 m2 [6]. Moreover, the rock burst
accident that occurred in the 3112 isolated working face was associated with multiple roof
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collapses and injuries to three miners [7]. In 2015, a rock burst occurred in the 1305 isolated
working face in Zhaolou Coal Mine, Shandong Province, which also resulted in injuries to
three miners [8].

To date, a large amount of research has been carried out to investigate the development
of the overburden structure, distribution of stress, as well as the failure characteristics of
coal/rock mass in isolated working faces. Jia et al. [9] studied the spatial overburden
structure morphology of isolated working faces via numerical simulation and similarity
simulation methods. Chen et al. [10] explored the progressive failure of overlying strata,
the change law of induced displacement, as well as the stress distribution based on a
self-designed experimental apparatus and a stress monitoring system. Ma [11] analyzed
the spatial evolution characteristics of the stress field of rock mass, plastic strain field, and
fracture field during the extraction of an isolated working face. Tu et al. [12] constructed a
continuous overburden beam model to theoretically describe the distribution characteristics
of stress and the failure depth of coal/rock mass in an isolated working face. Liu et al. [13]
systematically investigated the deformation characteristics of surrounding rock of the
gob-side entry affected by an isolated working face. Xue et al. [14] proposed an effective
technique, including roof cutting and other coal-mining-induced stress relief methods, on
the basis of the in-depth understanding of irregular isolated coal pillars. Sun et al. [15]
comprehensively studied the overall instability mechanism of an isolated working face
with multi-coal seams and put forward a threshold advance distance for isolated working
faces. Reed Guy et al. [16] studied the influence of factors such as pillar w/h ratio and
overburden W/H ratio with regard to the stability of the coal pillar and roof system. Ranjan
Kumar et al. [17] proposed a method for analyzing the stability of a coal pillar based on the
instability of coal pillars in the coal fields of India. As indicated by the above discussion, the
overburden structure, stress state, and damage degree of coal/rock mass are significantly
affected by the geological and mining technical conditions of the isolated working face.

Moreover, some other research on strong mining-induced stress and rock bursts of
isolated working faces was also conducted based on the microseism technique, mainly
attributed to its abundant rock fracture information and its early warning rate. Among them,
Chen et al. analyzed the fracture propagation rule of overlying strata of the 8102 isolated
working face in Tongxin Coal Mine based on a spatiotemporal data analysis method [6].
Wang et al. [18] observed the attenuation characteristics of a mine earthquake caused by
roof breakage, proposed a vibration effect index based on real-time microseism monitoring
data, and then successfully applied it to the 7197 isolated working face of Xuzhuang Coal
Mine. Cao et al. [19] explored the dynamic evolution characteristics of the danger area on an
isolated working face based on the vibration wave CT detection technique and microseism
monitoring. Zhang et al. [20] quantified the microseism data and analyzed the response
characteristics of different monitoring parameters before and after the occurrence of two
rock burst accidents.

Although current research has made solid contributions to the safe mining of isolated
working faces, only limited research has been conducted to identify the mechanism of large-
area roof damage and rib spalling of isolated working faces. Correspondingly, the effective
and targeted identification of mining-induced stress is not well established. Against this
background, the present research aims to develop innovative identification factors to
effectively predict strong mining-induced stress on an isolated working face based on the
understanding of the spatial overburden structure and movement characteristics of the
given mine site.

2. G2 Site Characteristics
2.1. Layout of the Working Face

LW 10304 is the typical isolated working face, which is in the middle of No. 10 mining
area of Xinlongzhuang Coal Mine. The strike length of LW 10304 is 2490 m and the dip
length gradually changes from 235 m to 185 m along the advanced direction. As depicted
in Figure 1, there are five goafs with the inclination width of 654 m~708 m around the east



Energies 2023, 16, 2839 3 of 18

side of LW 10304, which were formed from April of 2005 to June of 2014. On the west side
of LW 10304, there are two other goafs with an inclination width of 494 m to 500 m, formed
from September of 2014 to August of 2018. The north side of LW 10304 is the protection
coal pillar of the mining boundary, while the south side is the unexploited area. It should
be note that no coal pillar, the initial designed width of which is 4 m, was left in the goaf.
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Figure 1. Working face location diagram.

The dip angle of the coal seam in LW 10304 is 2~17◦, with an average value of 8◦.
The average thickness and the buried depth of the coal seam is 9.21 m and 370~500 m,
respectively. As can be seen from Figure 2, the immediate roof and the main roof of the coal
seam are siltstone and medium-coarse sandstone, respectively. In general, the overburden
strata can be classified into two groups, the sandstone ranging from 0~187.66 m, and the
sandy clay, clay, and interbedded strata from 187.66 to 73.24 m. As per the key strata
theory [21], both the inferior strata and main key strata were determined; more detail
information is referred to Figure 2.

2.2. Mining-Induced Stress of the Isolated Working Face

The roof damage and the coal rib spalling area occurred during the advancement of the
working face mining from 3 October 2019 to 24 June 2020; the field staff recorded statistics
on the damage length during each mining cycle and plotted them on the mining plan. For
ease of accounting, the damaged roof areas smaller than 1 m are merged together. As can
be seen from Figure 3, there are a total of 8 damage areas of the roof and 10 concentration
areas of coal rib spalling. Note that most of the coal rib spalling and roof damage areas
overlapped inside the working face. Particularly, these observations are more obvious
ranging from 458.0~843.0 m. The real-time monitoring data recorded by the SOS microseism
monitoring system covering the periodic extraction of LW 10304 are discussed and critical
information about five representative cycles are listed in Table 1 for reference. The hydraulic
support in the working face is ZZ13000/28/60.
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Figure 3. Roof damage and coal rib spalling distribution map (the blue number 1–8 is the serial
number of the roof damage area, and the red number 1–10 is the serial number of the concentration
areas of coal rib spalling).

Table 1. Critical information of five representative cycles.

No. Period Pressure Date Period Pressure Step/m Support
Resistance/kN

Microseism
Energy/J

Microseism
Frequency

Coal Rib
Spalling/m

Roof Damage
Range/m

6 5 November 2019 20.0 7114.2 1.84 × 104 130 12.25 218.75

10 12 December 2019 9.1 6842.5 1.67 × 104 81 42.21 204.75

20 3 February 2020 24.8 8692.6 1.15 × 105 510 47.25 385.12

31 27 March 2020 23.7 6713.3 3.02 × 105 861 131.25 439.25

36 3 May 2020 24.3 7287.3 3.95 × 105 851 239.45 651.56
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3. Characteristics and Microseism Activities of Isolated Working Face
3.1. Characteristics of the Overburden Structure for Isolated Working Face

The working face can be divided into full subsidence and insufficiency mining, mainly
according to the maximum subsidence of the ground surface under the geological and
mining conditions. In general, the maximum surface subsidence coefficient is closely related
to the mining depth (H) and mining size (D). Herein, the mining size can be described by
the strike length (DL) and inclination length (DW). It has been well noted that the larger the
value of D/H is, the greater the influence of mining activity is. Because the strike length
is much larger than that of the inclination length of the goaf, as illustrated in Table 2, the
mining degree of the goaf is mainly controlled by the inclination length. Previous research
revealed that the aforementioned full mining will be achieved if the value of DW/H is
larger than 1.2–1.4, for which no more subsidence will occur [22]. As a result, the goaf on
the east side of LW 10304 is fully mined, while the goaf on the west side will be further
evaluated in the following section.

Table 2. Judgment table for goaf mining adoption level.

Location Strike Length DL/m Inclination Length DW/m Mining Depth H/m DW/H

Eastern goaf 2450~
3620

650~
710 425 1.53~1.67

Western goaf 1450~
1980

490~
500 440 1.11~1.14

Before the initial extraction of coal resources in No. 10 mining area, multiple surface
subsidence observation lines have been allocated. Among them, the observation zone of
the line numbered Q1~Q22 covered LW 10305 and LW 10306. Figure 4 is the subsidence
curve of these working faces measured on 6 September 2019, which can be theoretically
judged by Equation (1) via the probability integral method [23].

Smax = km cos β (1)

where k is the surface submersion coefficient, k = 0.4~0.95; m is the coal seam thickness,
m = 9.21 m; and β is the dip angle of the coal seam, β = 8◦.
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Figure 4. Surface subsidence curves of the western goaf.

As per Equation (1), the empirical maximum subsidence value (Smax) of the goaf area
along the west side of LW 10304 ranges from 3.65 m to 8.66 m, which is smaller than that of
the measured maximum subsidence value. It is thus inferred that the main key strata in the
western goaf were damaged already.

Based on further observation of Figure 4, the overburden strata of LW 10304 is in the
form of a symmetrical “T” shape along the vertical direction [14], as depicted in Figure 5. It
is apparent that the overburden strata near the goaf were fully broken. As a result, both the
breakage and collapsing of strata generally concentrated in the working face.
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Figure 6 depicts the spatial distribution of microseism energy and frequency during
extraction in LW 10304 from 15 September 2019 to 15 June 2020, with a constant inclination
statistical interval of 10 m. In accordance with the response of mining pressure, the
curves shown in Figure 6 are divided into three portions: (1) the initial mining stage
(0~149.8 m); the obvious mining pressure stage (149.8~468.4 m); and the strong mining-
induced stress stage (468.4~856.8 m). It is clear that the variation of energy and frequency of
LW 10304 is similar. It is apparent that the correlation coefficients of microseism energy and
frequency is 0.99, except in the first stage, which is affected by the solid coal boundary. This
observation indicated that the microseism events were mainly in the form of small energy
events (99.33% events with energy less than 5 × 103 J). As can be seen from Figure 6, the
microseism energy and frequency account for 16.11%, 3.59%, and 1.73%, and 18.80%, 3.54%,
2.14%, respectively, within the eastern goaf of LW 10304 (0~80 m along the inclination).
The same parameters of LW 10304 (81~330 m along the inclination) are 82.82%, 95.48%,
and 97.25%, and 79.84%, 95.70%, and 96.41%, respectively. The energy and frequency
monitored in the western goaf (331~400 m along inclination) are 1.06%, 0.92%, and 1.03%,
and 1.36%, 0.76%, and 1.45%, respectively. That is, microseism events are concentrated in
LW 10304 rather than the goaf. Because there are no geological structures in LW 10304 and
the adjacent goaf, both the spatial frequency and energy of microseism events are caused
by the breakage and collapse of the roof [24].

Energies 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 6. The spatial distribution of microseism energy and frequency in the inclination direction. 

3.2. Analysis of The Relationship of Microseism Events with Roof Damage and Coal Rib Spalling 
On-site monitoring showed that the microseism events with energy less than 103 J 

were dominant (90.15%) during the advanced LW 10304, while only two microseism 
events with greater energy (>104 J) were captured. This indicates that the movement of LW 
10304 probably occurred in the lower strata upon the coal seam [25,26]. 

As indicated by the definition of the key strata, the breakage of the key strata associ-
ated with rotation and sinking will result in spalling and roof collapse [7,27]. As discussed 
earlier, both the microseism energy and frequency are mainly affected by low roof activity. 
The statistical date captured from 3 October 2019 to 24 June 2020 are illustrated in Figure 
7 for reference. Note that the roof damage within the working face is more obvious than 
that of the coal rib spalling. This also indicates that the microseism energy has a linear 
positive correlation to the frequency, regardless of statistical errors attributed to the mi-
croseism network [28], even though the fitting correlation coefficient is slightly lower, the 
value of which ranges from 0.62 to 0.77. Conversely, the correlation between energy and 
damage scope is closer (108.04% and 122.22% of the frequency), suggesting that high-en-
ergy microseism events are mainly caused by the roof damage. Moreover, the coal rib 
spalling is more sensitive to the microseism energy and its frequency is stronger, at 
114.93% and 101.62%, respectively, of the roof damage. 

 
(a) Frequency and roof damage, coal rib spalling. 

M
ic

ro
se

ism
 e

ne
rg

y/
J

0

0

1.0 × 105

0

300

225

150

75

0
800

600
400
200

0
1200

900

600

300

0

M
ic

ro
se

ism
 fr

eq
ue

nc
y

200 400350300250150100500

LW10304Goaf Goaf
Return 
airway

Transport 
roadway

2019.09.15~2019.11.15

2019.11.16~2020.03.15

2020.03.16~2020.06.15

2.0 × 105

3.0 × 105

4.0 × 105

0.6 × 105

1.2 × 105

1.8 × 105

2.4 × 105

2.5 × 105

5.0 × 105
7.5 × 105

1.0 × 106

750

600

450

300

150

0

900

1000 200 300 400 500 600 700

y=0.20x−18.73  
R2=0.63

y=0.58x+11.05  
R2=0.62Fitting curve

Roof damage
Fitting curve
Coal rib spalling

Th
e 

ra
ng

e 
of

 ro
of

 d
am

ag
e 

an
d 

co
al

 ri
b 

sp
al

lin
g/

m

 

 

800 900 1000

Figure 6. The spatial distribution of microseism energy and frequency in the inclination direction.
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3.2. Analysis of the Relationship of Microseism Events with Roof Damage and Coal Rib Spalling

On-site monitoring showed that the microseism events with energy less than 103 J
were dominant (90.15%) during the advanced LW 10304, while only two microseism events
with greater energy (>104 J) were captured. This indicates that the movement of LW 10304
probably occurred in the lower strata upon the coal seam [25,26].

As indicated by the definition of the key strata, the breakage of the key strata associ-
ated with rotation and sinking will result in spalling and roof collapse [7,27]. As discussed
earlier, both the microseism energy and frequency are mainly affected by low roof activity.
The statistical date captured from 3 October 2019 to 24 June 2020 are illustrated in Figure 7
for reference. Note that the roof damage within the working face is more obvious than that
of the coal rib spalling. This also indicates that the microseism energy has a linear positive
correlation to the frequency, regardless of statistical errors attributed to the microseism
network [28], even though the fitting correlation coefficient is slightly lower, the value of
which ranges from 0.62 to 0.77. Conversely, the correlation between energy and damage
scope is closer (108.04% and 122.22% of the frequency), suggesting that high-energy micro-
seism events are mainly caused by the roof damage. Moreover, the coal rib spalling is more
sensitive to the microseism energy and its frequency is stronger, at 114.93% and 101.62%,
respectively, of the roof damage.
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Figure 7. Correlation between microseism events and roof damage, coal rib spalling.

To further explore the relationship between the microseism spatial distribution and
damage scope, a grid calculation was introduced to describe the accumulation degree of
microseism energy and frequency. As shown in Figure 8, microseism frequency, energy
distribution area, and damage scope within the working face are highly overlapped. With
the frequency of 0.05/m2~0.35/m2 and energy of 30 J/m2~170 J/m2 as the boundary area,



Energies 2023, 16, 2839 8 of 18

the roof damaged zone accounts for 86.41% and 80.43%, respectively. Apart from six coal
rib spalling areas within this zone, the other three coal rib spalling areas are partially
overlapped. The highest microseism frequency and energy accumulation zone is within
the range of 500~800 m, as shown in Figure 7. In these areas, the accumulation degrees are
0.35/m2 and 170 J/m2, respectively.
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Figure 8. Spatial distribution characteristics of microseism accumulation and roof damage, coal
rib spalling.

3.3. Analysis of Mining-Induced Stress Characteristics of Isolated Working Face Mining
3.3.1. Overburden Structure and Stress State of Isolated Working Face

The stress distribution of an isolated working face is affected by the overburden
structure of the goaf. As indicated by Figure 5, both sides of LW 10304 were fully extracted,
with a large roof fracture angle (around 65.9◦). In this case, the integrity of the overburden
strata of LW 10304 was damaged. In detail, the unilateral inclination damaged length of the
main key stratum is 76.8 m, with another 82 m remaining. The main roof of LW 10304 was
then supported by the coal gangue with progressive vertical compaction. The suspended
roof part takes the gangue and uses the solid coal as the fulcrum, respectively. Then, 50% of
the overall weight of the hanged roof was transmitted to the coal seam of the isolated
working face [29].

The stress (σs) of the coal/rock mass in the isolated working face is the sum of the
self-weight stress (σγ) and the stress increments (∆σ1 and ∆σ2) transmitted by the overlying
strata on both sides of the goaf [30],

σs = σγ + ∆σ1 + ∆σ2 (2)

The stress increments (∆σ1 and ∆σ2) transmitted from the overlying strata upon the
goaf can be expressed by the following equation:
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∆σ1,2 =



∆σmaxix tan α
Hi

(
0, Hi

tan α

)
∆σmaxi

(
2 − x tan α

Hi

) (
Hi

tan α , 2Hi
tan α

)
0

(
2Hi

tan α , +∞
) (3)

where α is the fracture angle; Hi is the distance from the center of the key strata of the ith
layer to the coal seam; and ∆σmaxi is the maximum stress increment generated by the key
strata of the ith layer, ∆σmaxi = Qitanα/Hi.

The load Qi can be obtained by the following equation:

Qi =
qi
2

=
γLi(Mi + mi)

2
(4)

where qi is the weight of the key block of the ith layer and the overlying block controlled
by it; Li is the length of the key block in layer i; and Mi and mi are the thickness of the key
block of the ith layer and the overlying block controlled by it, respectively.

Based on the geological data of the LW 10304 isolated working face, the mechanical
parameters required for calculating the stress distribution of the working face are as
follows: H1 = 17.03 m, L1 = 17.30 m, M1 = 10.85 m, m1 = 5.59 m; H2 = 33.62 m, L2 = 30.74 m,
M2 = 11.15 m, m2 = 2.83 m; H3 = 53.31 m, L3 = 45.07 m, M3 = 18.57 m, m3 = 95.03 m;
H4 = 171.14 m, L4 = 114.37 m, M4 = 31.04 m, m4 = 185.58 m; α = 65.9◦, γ = 25.5 kN/m3, and
the roof breaking angle is 70◦ [31]. From this, the stress increment distribution curve of the
isolated working face is shown in Figure 9.

Energies 2023, 16, x FOR PEER REVIEW 10 of 19 
 

 

increment. As a result, the large stress increment of the isolated working face before ex-
traction will lead to coal rib spalling and roof damage during the extraction of the working 
face. 

 
Figure 9. Stress increment distribution map of isolated working face. 

3.3.2. Relationship between Strata Movement and Microseism Activities 
There are one or more key strata for the isolated working face. The structure and 

motion characteristics of the key strata near the coal seam always affect the distribution of 
mining-induced stress. Based on theoretical calculation, there are three key strata upon 
the coal seam. After the totally extraction of the working face, the new support structural 
form will be generated by the combination of the bended overburden strata and coal 
gangues from the direct roof. The field-measured caving–mining ratio of the isolated 
working face is 3.1~4.4, and correspondingly the height of the caving zone should be 
28.55~40.52. With the consideration of strata movement [32], IKS 1 and IKS 2 broke into 
the caving zone and formed a cantilever beam when LW 10304 was mined. The theoretical 
calculated step distance of the key strata (IKS3, 43.02 m away from the coal seam) is 
16.30~17.79 m. In this situation, there will be a “masonry beam” where the breaking step 
is 30.24 m. As shown in Figure 10, the on-site measured periodic weighting interval is 
about 17.30 m, which is basically consistent with the weighting intervals of IKS1 and IKS2. 
That is, the mining-induced stress behavior of LW 10304 is also affected by the IKS1 and 
IKS2. 

 
Figure 10. Diagram of overlying strata during working face mining fracture. 

The microseism information was systematically collected with the constant statistical 
step of 5 m. As illustrated in Figure 11, the microseism events were mainly distributed 
within the range of 0~80 m, and they decreased with distance apart from the working face. 
According to the decreasing trend of the energy and frequency, the curves are divided 
into three states: (1) The high-level stage of microseism energy and frequency around 0~20 
m, in which the energy and frequency accounts for 43.34% and 40.12%, respectively, 

5.0

4.0

3.0

2.0

1.0

0

6.0

500 100 150 200 250

Total stress increment of working face

Stress increment controlled by IKS

St
re

ss
 in

cr
em

en
t/M

Pa

Stress increment controlled by MKS

IKS1
IKS2
IKS3

24m77m

4.11MPa 4.16MPa

IKS1

IKS2

IKS3

11
.6

0m28
.0

4m42
.0

2m

Figure 9. Stress increment distribution map of isolated working face.

LW 10304 is affected by the symmetrical “T”-type spatial overburden structure, and
its stress increment shape is in the form of the “saddle” shape. The total stress increment
curve can be divided into four parts. Combined with the stress increment curves of four
key strata on one side of the working face, peak area 1 is close to the goaf boundary, mainly
affected by the inferior key strata 1, 2, and 3. The peak stress of this part is 4.16 MPa, which
is 24 m away from the goaf boundary. Peak area 2 is in the middle of the isolated working
face, which is affected by the main key strata. The peak point in this area is 77 m away
from the goaf associated with the peak stress value of 4.11 MPa. The central area is the
superposition part of the stress increment, affected by the main key strata on both sides.
The coal seam is under high stress, which is 93.18% of the maximum stress increment. As a
result, the large stress increment of the isolated working face before extraction will lead to
coal rib spalling and roof damage during the extraction of the working face.
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3.3.2. Relationship between Strata Movement and Microseism Activities

There are one or more key strata for the isolated working face. The structure and
motion characteristics of the key strata near the coal seam always affect the distribution of
mining-induced stress. Based on theoretical calculation, there are three key strata upon the
coal seam. After the totally extraction of the working face, the new support structural form
will be generated by the combination of the bended overburden strata and coal gangues
from the direct roof. The field-measured caving–mining ratio of the isolated working face
is 3.1~4.4, and correspondingly the height of the caving zone should be 28.55~40.52. With
the consideration of strata movement [32], IKS 1 and IKS 2 broke into the caving zone
and formed a cantilever beam when LW 10304 was mined. The theoretical calculated step
distance of the key strata (IKS3, 43.02 m away from the coal seam) is 16.30~17.79 m. In
this situation, there will be a “masonry beam” where the breaking step is 30.24 m. As
shown in Figure 10, the on-site measured periodic weighting interval is about 17.30 m,
which is basically consistent with the weighting intervals of IKS1 and IKS2. That is, the
mining-induced stress behavior of LW 10304 is also affected by the IKS1 and IKS2.
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Figure 10. Diagram of overlying strata during working face mining fracture.

The microseism information was systematically collected with the constant statistical
step of 5 m. As illustrated in Figure 11, the microseism events were mainly distributed
within the range of 0~80 m, and they decreased with distance apart from the working face.
According to the decreasing trend of the energy and frequency, the curves are divided into
three states: (1) The high-level stage of microseism energy and frequency around 0~20 m,
in which the energy and frequency accounts for 43.34% and 40.12%, respectively, occupied
a dominant role. Herein, the first and second breaking steps of inferior key strata are
all within this part; (2) The decreased stage of microseism energy and frequency around
20~50 m, the value of which accounts for 32.13% and 27.12%, respectively, indicating that
the third inferior key stratum is within this range; (3) The lower stage of microseism
energy and frequency ranging from 50 m to 80 m, which accounts for 24.50% and 32.16%,
respectively. In the first two stages, the proportion of frequency decreased compared
with the energy, indicating that the first two stages are mainly dominated by high-energy
microseism events. Note that the microseism energy increases significantly when the main
key strata breaking distance reached 67.96 m. In summary, the activity of IKS1 and IKS2 is
much higher than that of IKS3 and MKS. That is, the microseism data within the 0~20 m
zone can reflect the motion state of IKS1 and IKS2.
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4. Identification of Weighting Strength of the Isolated Working Face
4.1. Selection of Critical Parameters for Identification

Previous experience obtained from daily production indicated that the normal mining
activity will be disturbed if the cumulated coal rib spalling and roof damage zone (number
of cycles × width of the working face) exceeds about 25% of the total area of the working
face. It will threaten the safety of miners if it exceeds 50%. Therefore, it is necessary to
identify the weighting strength based on field-monitoring data. As discussed above, the
microseism frequency and energy are closely related to the mining-induced stress behavior
within the range of 0~20 m behind the working face. The larger the advanced speed,
the longer the hanged roof is. Correspondingly, the side effect of overburden strata will
be much more obvious. Moreover, the mining-induced stress resisted by the hydraulic
support can reflect the mine’s mining-induced stress. Thus, four indexes including the
microseism frequency, microseism energy, mining speed, and support resistance were
selected to identify the mining-induced stress strength of the isolated working face.

The results of 21 periodic weighting periods (458.0–842.9 m) covering the coal rib
spalling and roof damage are presented in Figures 12 and 13. The statistical results showed
that the microseism frequency is positively correlated with the mining speed and energy dis-
tribution. However, the support resistance is negatively correlated with other parameters,
especially when the 9th and 11th cycle were analyzed.
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4.2. Identification of Weighting Strength of Isolated Working Face

During these 21 periodic weighting periods, the average advancing rate and the
cutting depth of LW 10304 is 4 m and 0.8 m, respectively. In the present research, the
cumulated coal rib spalling and roof damage exceeding 25% (294 m) and 50% (588 m) of
the statistical range (the number of cycles × the width of working face) are determined as
the threshold to differentiate the medium and the strong mining-induced stress separately.
To eliminate the dimensional influence between variable parameters, each parameter is
synthesized as per the following equation:

Xi =
xi − ximin

ximax − ximin
(5)

where Xi is the normalized parameter; xi is the initial parameter before the normalization;
ximax and ximin are the maximum and minimum values of each parameter, respectively;
and 1 − Xi was used for normalization when the negative relationship between the support
resistance and the damage range is accounted for.

4.2.1. Analysis of Single Index Identification Efficiency

The earthquake prediction value R proposed by Xu [33], as expressed in Equation (6),
was used to evaluate the effectiveness of these warning indexes.

R = R1 − R0 =
n1

1
N1

−
n1

0
N0

(6)

where R1 is the accuracy rate and R0 is the false rate. R = 1 means all approval; R = 0
indicates that the forecast does not work; N1 represents the total number of earthquakes
predicted; N0 represents the total number of seismic-free forecasts; n1

1 is the number of
earthquakes predicted correctly; and n1

0 is the number of earthquakes predicted incorrectly.
Note that the value of R is closely related to the threshold value. Taking the “strong

pressure” as an example, when the threshold is 0, the index of each “strong pressure” is
strong and the value of R1 is equal to 1. Meanwhile, if the non-strong mining-induced
stress is predicted to be strong, the R1 is also 1. On the contrary, when the threshold is 1,
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the values of R1 and R0 will be zero. Because R1 and R0 all decrease with the increased
value of the threshold, the values of R1-R0 can be adopted to reflect the early warning rate,
which can also be seen in Figure 14.
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Figure 14. The relationship between critical value of index and early warning effectiveness.

Taking the “strong pressure” as an example, Figure 15 illustrated four indexes (i.e., microseism
frequency, microseism energy, daily advancement, and support resistance) together for
further discussion. The threshold values of these four indicators are 0.49~0.61, 0.57~0.69,
0.65~0.68, and 0.85~0.97, respectively. Correspondingly, the optimal effectiveness of warn-
ings are 0.89, 0.67, 0.50, and 0.67, respectively. Similar to other observations, the microseism
frequency, microseism energy, and advancement rate are all positively correlated with the
damage range, whereas the support resistance is negatively correlated with the damage
range. The effectiveness of the microseism frequency indicated that the microseism events
can reflects the activity of the lower key strata. The frequency exceeded the threshold
value when the 8th, 9th, and 11th strong pressures occurred. However, the values of these
indexes approximately reach the threshold value at the 9th and 11th. Considering the
overestimated advancement rate, integrating the above indicators to comprehensively
identify the mining-induced stress strength is requested.
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Figure 15. Critical interval and effectiveness of early warning index of mining-induced stress intensity
(taking “strong” as an example).

4.2.2. Indicators Affecting Weight Distribution

Considering the early warning effectiveness of different indicators, the weight dis-
criminant model was established. As can be seen from Equation (7), the model consists of
a target C and n evaluation indexes a1, a2, ..., an and the evaluators. The scale method is
applied to compare the effectiveness of indexes to each other and then used to construct
the weight discriminant matrix.

A =


a1
a1

a1
a2

· · · a1
ana2

a1

a2
a2

· · · a2
an

· · · · · · · · · · · ·
am
a1

am
a2

· · · am
an

 =


A11 A12 · · · A1n
A21 A21 · · · A2n
· · · · · · · · · · · ·
Am1 Am2 · · · Amn

 (7)

The maximum eigenvalue of judgment matrix (A) is calculated as per AW = λmaxW.
The consistency test can be performed in accordance with the following equation:

CR =
CI
RI

=
λmax − n
(n − 1)RI

(8)

where n is the order of the average judgment matrix; and RI represents the average random
consistency index, the values of which can be seen from Table 3.

Table 3. Evaluation of random consistency index assignment criteria.

Order 1 2 3 4 5 6 7 8

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.14

If the calculated CR value is less than 0.1, the consistency of judgment matrix (A) is
acceptable, the eigenvector (W = [w1, w2, . . . wn]) corresponding to the maximum eigen-
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value is the weight matrix of each factor, and w1 + w2 + · · ·+ wn = 1, wn represents the
weight of the early warning effectiveness of the nth index in the lower layer.

Followed by the evaluation on the influence of each index in terms of the mining-
induced stress intensity and the comparison scale criterion, the influence judgment matrix
of each index is given. Taking “strong pressure” as an example, the effectiveness of the
four indicators (i.e., microseism frequency, microseism energy, daily footage, and support
resistance) are 0.89, 0.67, 0.50, and 0.67, respectively. Considering the lower effectiveness of
the daily advancement, only the microseism frequency, microseism energy, and support
resistance were selected to construct a judgment matrix, as shown in Table 4. Based on the
theoretical analysis, it can be seen that λmax = 3 and CR = 0 < 0.1, satisfying the consistency
test. Furthermore, the weight matrix W = [0.714, 0.143, 0.143].

Table 4. Judgment matrix of each index.

Index Microseism
Frequency Microseism Energy Support Resistance

Microseism frequency 1 5 5

Microseism energy 1/5 1 1

Support resistance 1/5 1 1

4.2.3. Comprehensive Index to Mining-Induced Stress

The comprehensive index of weight parameters is adopted in this research to identify
the mining-induced stress of LW 10304. The fusion formula is listed below for reference:

Istrong = 0.714I1 + 0.143I2 + 0.143I4 (9)

where I1 represents the microseism frequency; I2 is defined as the microseism energy; and
I4 is the support resistance.

According to the relationship between the critical value of the index and the early
warning efficiency, the optimal index critical interval of the “strong” comprehensive index
is determined, and the best early warning efficiency is obtained. As can be seen from
Figure 16, the accuracy of two indexes is three times, but the number of false alarms
of microseism frequency is four times. In this case, the comprehensive early warning
efficiency is 0.94, which is 5.62% higher than when the single index (microseism frequency)
was adopted.
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Figure 16. Comprehensive index early warning critical interval and effectiveness (“strong”).

According to the analysis of Sections 4.2.1 and 4.2.2, the early warning efficiency and
critical interval of each single index when the degree of mining-induced stress behavior
in the 10304 isolated working face is “medium” is shown in Table 5. Considering the low
early warning efficiency of support resistance, the early warning efficiency of microseism
frequency, microseism energy, and daily footage indexes were selected to construct the
judgment matrix and determine the weight matrix.
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Table 5. Early warning effectiveness and weight analysis of each index.

Index Accuracy Rate R1 False R0 Optimal Effectiveness R Index Threshold

Microseism frequency 1.00 0.36 0.64 0.33–0.36

Microseism energy 0.57 0.07 0.50 0.28–0.40

Daily footage 0.86 0.43 0.43 0.37

Support resistance 0.43 0.07 0.35 0.75–0.81

Similar to the comprehensive index fusion formula, the “medium mining-induced
stress” identification of the 10304 isolated working face is as follows:

Imedium = 0.637I1 + 0.258I2 + 0.105I3 (10)

where I1 represents microseism frequency; I2 represents microseism energy; and I3 indicates
daily footage.

According to the relationship between the critical value of the index and the early
warning efficiency, the optimal critical interval of the “medium” comprehensive index is
determined, and the optimal early warning efficiency is obtained, as shown in Figure 17.
When the mining-induced stress intensity is “medium”, the early warning efficiency of
the comprehensive index “medium” is only 0.64, which is lower than that of “strong”.
According to the comprehensive index of “strong” and “medium”, the weight of microseism
frequency is the largest, indicating that the roof activity in the goaf of the 10304 isolated
working face is severe, which is more likely to induce microseism events, and the mining-
induced stress is strong. At this time, the early warning efficiency of “medium” is higher.
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Figure 17. Comprehensive index early warning critical interval and efficiency (“medium”).

5. Conclusions

(1) Through the analysis of mining size and subsidence, the overlying strata structure
of the isolated working face surrounded by two goafs presents a “T” shape before extraction,
and the inferior key strata near the coal seam dominantly controlled the microseism activity
and mining-induced stress response;

(2) The distribution of the stress increment is in the form of a symmetrical “saddle”
shape before the extraction of the isolated working face, mainly influenced by the inferior
strata near the coal seam. Influenced by the main key layer, the overall stress increment in
the middle area is higher than that of its counterparts;

(3) Microseism events are mainly distributed within the isolated working face during
the mining process. There is a strong correlation between microseism events and the
damage range of stope. The frequency and energy of microseism events are positively
correlated with roof damage and coal rib spalling. Moreover, the frequency and energy of
microseism events are highly overlapping with the damage range;

(4) Based on the relationship between microseism events and overburden movement,
a comprehensive index of weighting pressures including microseism frequency, microseism
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energy, and support resistance was set up, which has a good effect on the identification of
“strong pressure”.
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