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Abstract: Electrification is considered an optimal long-term solution for the decarbonization of the
transport sector. However, in the medium period, propulsion systems will continue to dominate
urban mobility, thus requiring the shift from fossil fuels toward low carbon fuels. In this regard,
the request from the EU to achieve carbon neutrality by 2050 is encouraging the use of innovative
fuels and powertrains. Alcohols such as ethanol and methanol are particularly suitable for spark
ignition engines. This paper investigates the effect of ethanol/methanol blends on the performance
and emissions of a turbocharged direct injection spark ignition engine running on the worldwide har-
monized light vehicles test cycle. Three blends were considered, consisting of 10% v/v ethanol (E10),
25% v/v ethanol (E25) and 5% v/v ethanol with 15% v/v methanol (E5M15). Gaseous and particle
emissions were measured at the exhaust. The main novelty of the study regards the investigation of
the behavior of alcohol blends, especially those based on methanol, in transient conditions. It was
found that CO, THC and NOx emissions decrease with the increase in alcohol content in the blend,
with different contributions in the different phases of the cycle. Particle emissions decrease for E10
and even more so for E25. When methanol is added to the blend, particle emissions increase with
respect to E25 and they are characterized by a larger diameter.

Keywords: spark ignition engine; ethanol; methanol; particle emissions; gaseous emissions; WLTC

1. Introduction

In the attempt to reduce the use of the fossil fuels, and thus CO2 as well as other
pollutant emissions, the transport sector is undergoing a transition from internal com-
bustion engines (ICEs) to electric powertrain systems. However, these solutions are still
characterized by drawbacks that hinder their diffusion, such as the high charging time,
the lack of recharge infrastructure and the high costs of the vehicles [1]. Moreover, there
is an ongoing debate among scholars on whether and how electric vehicles are indeed
convenient in terms of greenhouse emissions with respect to ICEs vehicles [2]. However, it
is still presumed that ICE vehicles will be the protagonist of the urban transport sector in
the coming years [3].

In this scenario, it is crucial to continue research studies on ICEs to enable them to
handle the challenges related to energy security and environmental pollution. These goals
can be achieved through technological improvements [4], more efficient aftertreatment
systems [5] and new combustion strategies [6]. The use of low climate-impact fuels, such
as alcohols, ammonia, hydrogen, and e-fuels, also represents an effective way to make the
ICEs strategic in urban mobility.

Alcohols have a long history as fuels for spark ignition (SI) engines and they continue
to attract interest as automotive energy vectors because of their attractive properties and
renewable nature [7]. The most common alcohols used in automobiles are ethanol and
methanol [8]. They are characterized by a higher octane number (ON) than gasoline, thus
resulting in a better anti-knocking performance and a higher heat of vaporization (HOV)
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that helps the cooling of intake charge with a consequent improvement in volumetric
efficiency. Moreover, the oxygen content in their molecules promotes a more efficient, and
thus a cleaner, combustion. On the other hand, they have a lower energy content than
gasoline with a penalty in terms of fuel economy [9].

The main advantage of alcohol fuels is that they can be produced in a renewable
way. Ethanol can be obtained from alcoholic fermentation of animal and/or agricultural
waste [10]. Methanol can be produced from biomass or from fossil fuels. In the past it was
generally obtained from wood. However, it can be made from any carbon stock through
thermochemical processes. A technique of methanol synthesis has recently been developed
consisting of the combination of carbon dioxide (CO2) with the hydrogen obtained from
water electrolysis through renewable energy sources [11]. This process allows methanol to
be obtained through low- and zero net carbon processes using CO2 that can be extracted
from the atmosphere. Therefore, there is a direct effect on the mitigation of global warming
due to the increasing presence of greenhouse gases. This gives a good chance to methanol
to establish itself in the fuel landscape for automotive applications.

Another advantage of both ethanol and methanol is that they do not require a high
investment for their transportation, distribution and storage since they can use the same
infrastructure existing for petroleum fuels [12]. Moreover, when alcohols are mixed with
gasoline at low blend percentage, they can be used in the existing engine technology, thus
reducing the issues of corrosiveness and low lubricity that are typical when they are used
as pure fuels [13].

Several research studies addressed the topic of engine out emissions and performance
of SI engines fueled with alcohol blends. Studies on the use of oxygenated fuels highlighted
that alcohols represent a viable alternative for SI engines thanks to their properties that
closely resemble conventional gasoline [14,15]. In [16], focus was given to the effect of
their properties, such as the larger oxygen content, on the particle emissions. Among
the different biofuels, methanol was proposed as the most favorable fuel for replacing
conventional fossil fuels [17].

Turner et al. [18] carried out investigations in different research engines with blends of
gasoline, ethanol and methanol. They agreed that challenges exist in blending alcohols with
gasoline, such as material compatibility. However, they believed that such issues are not
insurmountable, thus allowing the gradual introduction of alcohols as transportation fuels.

Zhang et al. [19] investigated the effect of different ratios of methanol–gasoline blends
on a passenger vehicle equipped with gasoline direct injection (GDI) turbocharged en-
gine. They observed that because of the tremendous technological improvement of ICE,
more comprehensive research on the application of methanol in modern gasoline engines
is required.

Moreover, to the best of the author’s knowledge, the behavior in transient conditions
inside the different phases of the worldwide harmonized light vehicles test cycle (WLTC),
especially for the blends with methanol, was not deeply investigated. Therefore, in the
perspective of a larger application of alcohol blends, a deepen awareness on their impact
on engine performance and pollutants is essential.

This work is framed in this context analyzing the effect of both methanol and ethanol
blends on the engine performance and exhaust emissions of a high-performance tur-
bocharged GDI engine. Experiments were carried out over the WLTC. Gaseous emissions
were measured at raw exhaust while particles were characterized in terms of number and
size at diluted exhaust.

2. Materials and Methods
2.1. Experimental Apparatus
2.1.1. Test Engine

Experiments were carried out on a turbocharged 1.8 L GDI engine, whose main
technical characteristics are listed in Table 1. It was equipped with a three-way catalyst
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(TWC). The engine was installed on an asynchronous dynamometer allowing to operate
the engine in transient conditions.

Table 1. Engine specifications.

Engine Spark Ignition

Number of Cylinders 4
Bore [mm] 83
Stroke [mm] 80.5
Displacement [cm3] 1742
Compression Ratio 9.5:1
Max. Power [kW] 177 @ 6000 rpm
Max. Torque [Nm] 350 @ 2200
Fuel Injector Wall guided
Intake Turbo charged

The engine was instrumented with k-type thermocouples to monitor the oil and
coolant temperatures and the temperature of the intake air and exhaust gas.

Fuel consumption was gravimetrically measured by an AVL 733S fuel meter at an
acquisition frequency of 10 Hz and with an accuracy of 0.12%.

A Bosch LSU 4.9 lambda sensor was used to measure the air–fuel ratio and feed back
to the electronic control unit (ECU) as a closed-loop.

An ETAS ES590 connected to the ECU through a K-line cable allowed the monitoring
and modification of the engine parameters by means of INCA software.

The ECU PC controller was connected with the engine monitoring PC through an
ASAM interface and by means of an ASAP3 protocol. All analogical and digital signals
from the sensors and from the ECU were acquired at 10 Hz frequency through proper
software developed with LabView.

A schematic of the experimental apparatus is shown in Figure 1.
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Figure 1. Schematic of the experimental apparatus.

2.1.2. Emission Measurement Instruments

Sampling probes were installed in the exhaust pipe downstream of the TWC and
connected to the emission measurement instruments, as shown in Figure 1.

Gaseous emissions were measured through Horiba MEXA 7100 DEGR analyzers
(Table 2). Carbon dioxide (CO2) and carbon monoxide (CO) were measured by non-
dispersive infrared (NDIR) analyzers. Total hydrocarbons (THC) and nitrogen oxides
(NOx) were detected through a flame ionization detector (FID) and the chemiluminescence
method, respectively. At the start of each test campaign, the analyzers were calibrated and
checked routinely during the measurements.
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Table 2. Horiba MEXA 7100 DEGR specifications.

Pollutant Measurement Technique Range Repeatability

CO Non-Dispersive Infrared min. 0–5000 ppm;
max 0–12% vol <0.5% FS

CO2 Non-Dispersive Infrared 0–20% vol <0.5% FS

THC Flame Ionization Detector min. 0–500 ppmC;
max 0–50,000 ppmC <0.5% FS

NO/NOx Chemiluminescence min 0–500 ppm
max 0–10,000 ppm <0.5% FS

The characterization of particle emissions in terms of number and size was carried
out by the Engine Exhaust Particle Spectrometer (EEPS) 3090 from TSI (Table 3). The
particle spectrometer allows particles in the size range 5.6–560 nm to be measured with
high accuracy at 10 Hz frequency. The measurement principle is based on the electrical
mobility diameter technique.

Table 3. EEPS specifications.

Particle Size Spectrometer EEPS

Particle Size Range 5.6 to 560 nm
Particle Size Resolution 16 channels per decade (32 total)
Electrometer Channels 22
Charger Mode of Operation Unipolar diffusion charger
Inlet Cyclone 50% Cutpoint 1 µm
Time Resolution 10 size distributions/sec
Inlet Aerosol Temperature 10 to 52 ◦C

The exhaust gas sample sent to EEPS was taken by a 1.5 m long line heated at 150 ◦C
to avoid water condensation. Before entering the EEPS, the sample was diluted through
a Dekati single diluter characterized by a dilution ratio of 1:9 using dilution air at 150 ◦C.
This system allows the elimination of unwanted condensation and nucleation effects, thus
making the particle size distribution (PSD) measurement stable and repeatable.

2.2. Methodology
2.2.1. WLTC Reproduction

The engine was operated on the engine test bench (ETB) according to the WLTC.
For this purpose, a specific procedure was developed, as schematically shown in

Figure 2. The WLTC was reproduced on the roller test bench (RTB) by using a vehicle
equipped with the same engine with the aim of collecting the engine speed and the request
load. These data were used to reproduce the WLTC on the ETB by setting the pedal position
with a feedback on the request load to reach the same values read on the RTB. During the
WLTC realized at the ETB with gasoline, assumed as a reference fuel, the brake torque
was recorded and then used to reproduce the WLTC at the ETB with the reference fuel by
adjusting the pedal position with a closed loop control on the actual brake.

This procedure allowed to reproduce the WLTC at the ETB with the same engine speed
and power output regardless of the fuel used.

This WLTC procedure being performed on the engine rather than on the vehicle
certainly differs from that prescribed by emission regulation. However, this method allows
to reproduce the WLTC in conditions very close to those of a WLTC performed on the RTB
and with a high degree of reproducibility.

At the beginning of each test, the oil and coolant temperatures were at 23 ◦C. One test
per day was performed and each fuel was tested three times.
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2.2.2. Tested Fuels

Tests were carried out with three different ethanol/methanol blends. Table 4 shows
the main physical-chemical properties of the pure fuels used to prepare the blends. Ethanol
and methanol have attractive properties as fuels for SI engines, including a higher ON
and oxygen content and a lower carbon-to-hydrogen ratio than gasoline fuel. On the other
hand, both alcohols have a lower low heating value (LHV) with respect to gasoline [9].

Table 4. Fuel properties.

Properties Gasoline Ethanol Methanol

Chemical formula C4–C12 C2H5OH CH3OH

C [% mass] 85.9 52.2 38.0

H [% mass] 13.4 13.1 12.1

O [% mass] 0.6 34.7 50.0

Density at 15 ◦C [kg/l] 0.746 0.790 0.796

Boiling point [◦C] 27–225 78 64

LHV [MJ/l] 42.94 26.7 20.1

AFRst 14.5 9 6.4

ON 95.0 108.6 108.6

Commercial gasoline available at fuel pump was used as the reference fuel. The
alcohol blends were obtained by splash blending ethanol and/or methanol with gasoline at
different volume proportions. A blend of 10% v/v of ethanol with 90% v/v of gasoline, E10,
was chosen as the representative blend for distribution in the European market, satisfying
the requirements specified by the European standard EN 228 for unleaded petrol [20].
A blend prepared with 25% v/v of ethanol and 75% v/v of gasoline, E25, was chosen
because of the interest shown by the European Commission towards this ethanol blend
percentage [21]. A blend consisting of 80% v/v gasoline, 15% v/v methanol and 5% v/v
ethanol, E5M15, was also tested. The volume percentages of E5M15 were chosen to have a
methanol blend with a similar LHV to E25, i.e., 38 MJ/kg.

3. Results

Figure 3 shows the temporal evolution of the instantaneous fuel consumption, engine
torque and speed over the WLTC for gasoline and E10. The engine torque follows the
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same patterns for the tested fuels. As described in the previous section, the procedure to
realize the WLTC at the engine test bench was developed so that the torque output was
fixed, regardless of the fuel used. On the other hand, to reach the same torque output, the
instantaneous fuel consumption changed depending on the fuel properties. However, it is
possible to identify similar characteristics during the cycle among the fuels. A high fuel
consumption, in fact, is observed in the first minutes of the cycle, where fuel enrichment is
required to face the low temperature of the cold start. A peak of 0.015 g/km was measured
for gasoline, while higher value, up to 0.03 g/km, was detected for E10. Due to the higher
HOV of the ethanol blend, a larger amount of fuel was in fact injected to overcome the cold
engine start. A large fuel consumption was also measured in the extra-high phase of the
cycle where more fuel is required to realize the strong accelerations. Similar values, up to
0.016 g/km, were measured for both fuels. In this case, thanks to the higher temperature
reached in the combustion chamber, the effect of ethanol blend properties is less evident.
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To obtain a better analysis of the impact of the fuel, the consumption variation for the
alcohol blends with respect to gasoline fuel was calculated at each phase of the cycle and
is shown in Figure 4. It can be observed that there are no significant differences between
the consumption of gasoline and E10 (all are within 2%). E25, and even more so E5M15,
show a higher fuel consumption than gasoline fuel because of the lower LHV. A peculiar
behavior is observed in the low phase where the fuel consumption of E5M15 is higher
than that of gasoline fuel but slightly lower than that of E25. A possible reason is that the
ECU performs a correction when the methanol blend is used to avoid a strong reduction in
temperature caused by the higher HOV of methanol, especially in the first minutes of the
cycle when the temperature is already low.

Gaseous emissions were measured for all the tested fuels throughout the WLTC. Their
temporal evolution and the contribution calculated for each phase of the cycle are depicted
in Figures 5–8.

Figure 5 reports the CO2 emissions. It is known from literature [22] that CO2 emissions
depend on the fuel consumption and the combustion efficiency. As shown in Figure 4, the
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amount of fuel undergoes a slight reduction from low to medium phase and a following
increase in the high and extra-high phases. The same trend of CO2 emissions is observed
for all the fuels. Regarding the fuel effect, the CO2 emissions increase with the ethanol
content in the blend. The oxygen content in the alcohol fuel, in fact, guarantees a “premixed
oxygen effect” [23], thus allowing a more complete combustion. A strong reduction is
observed for the ternary blend, although it is characterized by higher fuel consumption.
This result can be ascribed to the lower C-content of E5M15. Moreover, an important role is
played by the stronger charge cooling effect of the methanol blend that leads to a worst
fuel evaporation and combustion efficiency compared to gasoline and ethanol blends.
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Figure 7. THC emissions measured at each phase of the cycle for gasoline, E10, E25 and E5M15.

Figures 6–8 depict CO, THC and NOx emissions, respectively, for all the conditions
investigated. Higher emission values are detected in the low phase. During the cold
start, the temperature required to activate the chemical reactions in the TWC is not yet
achieved and it does not work efficiently [24]. This result is more evident for the CO
and HC emissions, since the low in-cylinder temperature, typical of this phase, worsens
the combustion efficiency, thus enhancing the CO and THC formation. In the rest of the
cycle, instead, after the light-off temperature is reached, the TWC allows for an efficient
conversion of the pollutants, as evidenced by the low emission concentration. Concerning
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the fuel effect, CO and THC exhibit a similar trend, since both are a product of incomplete
combustion. Their common behavior is a reduction of both CO and THC for the ethanol
blends compared to gasoline, owing to the leaning effect due to the oxygen that improves
the combustion efficiency. This trend is also supported by the higher CO2 emissions for
E25 (Figure 5). For E5M15, THC and CO emissions measured over the entire cycle are
lower than E25. However, different behaviors are observed among the various phases of
the cycle. Lower CO and THC emissions are measured for the ternary blend in the first
part of the cycle due to the lower amount of fuel injected (Figure 4). On the other hand,
in the extra-high phase, CO and THC are higher compared to E25. The higher HOV of
methanol leads to a stronger cooling effect. Although the higher temperature is typical of
the last phase of the cycle, a larger quenching effect can occur with respect to E25, causing
an increase in THC emissions. At the same time, the freezing of CO to CO2 conversion
reactions can occur.
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Figure 8 illustrates the NOx emissions detected for the tested fuels. It is well known
that the NOx formation reactions depend on the oxygen availability and the combustion
temperature. In this case, it is not possible to observe a common trend in the proportion
of NOx emitted among the different phases of the cycle. This is ascribable to the different
role of the cooling effect and the oxygen content for each of the fuels. Regarding the binary
blends, the total NOx emitted during the WLTC decreases for E10 and even more so for
E25 with respect to gasoline fuel because of the stronger cooling effect as a result of the
higher HOV. In the low phase, the lower NOx emissions compared to gasoline are due
to the higher HOV of ethanol that contributes to a further reduction in the temperature
in the first minutes of the cycle, since more heat is required to vaporize the fuel. On the
contrary, in the last phase of the cycle, characterized by a higher temperature, the larger
oxygen presence plays a dominant role, resulting in a higher NOx formation. For E5M15,
the charge cooling has a major effect during the entire cycle, thus resulting in lower NOx
values at each phase.

The effect of alcohol blends on the particle emissions was also analyzed. Figure 9
depicts the PSDs averaged over each phase of the cycle for gasoline, E10 [25], E25 and
E5M15, and the minimum concentration limits for each diameter (MIN). Particles have
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diameters ranging between 10 and 300 nm and the shape of the PSDs varies with the fuels
and the specific phase of the cycle.
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The low phase is characterized by the highest particle emissions for all the fuels. This
trend can be ascribed to the low temperature at the engine start that causes non-uniform
fuel vaporization and, hence, the presence of fuel rich zones where particle formation is
promoted. Regarding the PSD, it possible to observe that gasoline fuel exhibits a nucleation
mode at 25 nm and a higher accumulation mode at 67 nm. The concentration is reduced and
the particles move towards smaller diameters when adding ethanol to the blend. This result
can be explained considering the properties of ethanol/gasoline blends having a higher
hydrogen/carbon ratio and less hydrocarbon chains that are indicated as precursors of soot
formation [26]. Moreover, the presence of oxygen in the ethanol molecule diminishes the
concentration of intermediate species representative of soot precursors, and supports the
oxidation of any formed soot molecule [27].

In detail, E10 exhibits two distinguishable modes at 10 nm and 69 nm. On the other
hand, E25 has a pronounced peak typical of the nucleation mode at 10 nm and a slight
hump due to accumulation particles with a less pronounced peak at 53 nm. The effect of the
ethanol/methanol blend on the particle emissions with respect to gasoline fuel is similar
to the binary ethanol blends thanks to the low sooting tendency of methanol. However,
the particles are larger than those emitted by ethanol blends. The PSD for E5M15, in fact,
is characterized by a small nucleation mode at 10 nm and a dominant accumulation peak
at 53 nm higher than that of E10. When methanol is added, the mechanism of particle
formation is deteriorated compared to the ethanol blends. The higher HOV of methanol,
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in fact, slows the fuel vaporization, increasing the formation of fuel rich regions where
particles are formed.

Considering the medium and high phases, the particle emissions are reduced for
each fuel thanks to the increase in temperature that enhances the fuel evaporation, thus
promoting a more homogeneous charge formation. The PSD shape is similar for all tested
fuels, with a clearly distinguishable nucleation mode peaked at 10 nm and a less definite
accumulation mode with a peak around 50 nm. The effect of the fuel on the particle
emissions follows the same trend observed in the low phase. For the binary blends, the
particle concentration is lower than for gasoline, and it decreases with the ethanol content.
In contrast, for the ternary blend, it increases with respect to E10, but remains lower
compared to gasoline.

In the extra-high phase, the ethanol blends show the same behavior of the previous
phases. On the contrary, the ethanol/methanol blend shows a higher accumulation mode
than E10 with a maximum value comparable to gasoline even if the E5M15 distribution
is narrower than the base fuel. As also observed by Leach et al. [27], it is possible that the
reduced time for fuel evaporation at the high engine speed, characteristic of the last phase
of the cycle, alongside the local cooling due to the methanol evaporation lead to a poor
mixture formation, resulting in high particle emissions.

Figure 10 depicts the total particle number emitted throughout the cycle with particles
classed as those with a size larger than 23 nm, representative of accumulation particles,
and those smaller than 23 nm, whose measurement has been the subject of several research
studies because of their regulation from the next emission standard [28–31]. Gasoline fuel
emits a total of 1.3 ×107 #/cm3 particles, of which 78% are larger than 23 nm and the
remaining 22% are sub-23 nm particles. As ethanol is added to the base fuel, the particle
number decrease to 7.9 ×106 #/cm3 and 2.5 × 106 #/cm3 for E10 and E25, respectively.
Moreover, the fraction of particles with a diameter lower than 23 nm is more consider-
able than gasoline fuel, reaching 28% with E10 and up to 55% with E25. As mentioned
previously, ethanol has a lower propensity to form soot. Moreover, its presence affects
the soot aggregate structure that becomes smaller and simpler and thus more prone to
oxidization [32]. For E5M15, the total particle number remains lower than gasoline fuel,
5.8 × 106 #/cm3, even though it has a higher value with respect to E25 that is characterized
by the same energy content as the ternary blend. By analyzing the particle dimensional
range, it can be observed that the major contribution by the particles larger than 23 nm. As
described above, when methanol is added to the blend, the cooling effect of the charge due
to the higher HOV has a dominant role over the higher level of oxygen in the fuel, thus
leading to incomplete mixture evaporation and, hence, poor mixture preparation.
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To obtain a type of goodness index among the tested fuels, the emissions and fuel
consumption values over the WLTC were normalized and compared to the gasoline data,
as shown in Figure 11. It is clear that alcohol blends have a benefic effect on the gaseous
emissions compared to gasoline fuel. Both the binary ethanol blends and the ternary
ethanol/methanol blend, in fact, allow the reduction in CO, THC and NOx emissions, as
evidenced by the negative percentage values. On the contrary, alcohol blends, especially
E25 and E5M15, require larger fuel consumption, even if they consist of part of a renewable
source. Regarding the particle emissions, E25 produces more sub-23 nm particles. This is a
critical issue considering that the next European limits will regulate particles with a size
range down to 10 nm [33]. The ethanol/methanol blend, instead, emits a lower particle
number, both smaller and larger than 23 nm, with respect to gasoline fuel. Compared to
E25, instead, the ternary blend is characterized by less sub-23 nm particles but a slightly
higher number of larger size particles. It can be argued that an appropriate optimization
of engine parameters allows the ethanol/methanol blends to further benefit in terms of
pollutant emissions and consumption.
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4. Conclusions

This study analyzes the effect of ethanol/methanol blends on the performance and
emissions of a 1.8 L, turbocharged GDI engine. The experiments were conducted on an
engine test bench that allows the WLTC to be reproduced. Three different blends were
tested: a blend consisting of 10% v/v ethanol that is commonly found in fuel pumps, a
blend consisting of 25% v/v of ethanol and a blend made of 5% v/v ethanol with 15%
v/v methanol that is characterized by a similar energy content to the previous one. Both
gaseous and particle emissions were measured downstream of the TWC. It was found that
the influence of the alcohol blends on fuel consumption and emissions depends on the
competitive effect between the fuel properties and the engine operating condition in the
different phases of the cycle. The main conclusions can be summarized as follows:

- A large fuel consumption is measured for ethanol blends and an even larger fuel
consumption is measured following the addition of methanol to the fuel, except in the
first part of the cycle, where E5M15 shows a lower consumption than E25.

- CO2 emissions increase for E10 and E25, while they decrease for the ternary blend due
to the negative impact of methanol on combustion efficiency.

- CO, THC and NOx emissions show a linear decrease for E10, E25 and E5M15, even if
their weight changes depending on the specific phase of the cycle.

- For E10 and E25, a reduction in particle emissions is observed that exhibits a consistent
fraction of sub-23 nm particles. The addition of methanol leads to a particle number
increase with respect to E25, with the distribution shifted towards a larger diameter.
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The results of this study have highlighted that alcohol blends represent a valid solution
for SI engine fueling owing to the reduced emissions at the cost of a slight increase in the fuel
consumption. However, a proper adaptive control of engine parameters based on the dif-
ferent fuel properties can help to fully exploit the potentiality of ethanol/methanol blends.
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Abbreviations

AFRst Stoichiometric air/fuel ratio
CO Carbon monoxide
CO2 Carbon dioxide
ECU Electronic control unit
EEPS Engine exhaust particle spectrometer
ETB Engine test bench
E10 Blend of 10% v/v of ethanol with 90% v/v of gasoline
E25 Blend of 25% v/v of ethanol with 75% v/v of gasoline
E5M15 Blend of 5% v/v of ethanol and 15% v/v methanol with 75% v/v of gasoline
FID Flame ionization detector
GDI Gasoline direct injection
HOV Heat of vaporization
ICE Internal combustion engine
λ Excess air ratio
LHV Low heating value
NDIR Non-dispersive infrared
NOx Nitrogen oxides
ON Octane number
PSD Particle size distribution
RTB Roller test bench
SI Spark ignition
THC Total hydrocarbons
TWC Three-way catalyst
WLTC Worldwide harmonized light vehicles test cycle
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