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Abstract: One method to reduce CO2 emissions from vehicle exhaust is the use of liquified petroleum
gas (LPG) fuel. The global use of this fuel is high in European countries such as Poland, Romania, and
Italy. There are a small number of computational models for the purpose of estimating the emissions
of LPG vehicles. This work is one of the first to present a methodology for developing microscale
CO2 emission models for LPG vehicles. The developed model is based on data from road tests using
the portable emission measurement system (PEMS) and on-board diagnostic (OBDII) interface. This
model was created from a previous exploratory data analysis while using gradient-boosting machine
learning methods. Vehicle velocity and engine RPM were chosen as the explanatory variables for
CO2 prediction. The validation of the model indicates its good precision, while its use is possible
for the analysis of continuous CO2 emissions and the creation of emission maps for environmental
analyses in urban areas. The validation coefficients for the selected gradient-boosting method of
modelling CO2 emissions for an LPG vehicle are the R2 test of 0.61 and the MSE test of 0.77.

Keywords: vehicle emission; CO2; LPG; emission modelling; portable emission measurement system;
artificial intelligence; machine learning

1. Introduction

Progressive climate change is forcing global authorities to continuously reduce anthro-
pogenic greenhouse gas (GHG) production [1,2]. Global warming and climate change in
relation to CO2 production, account for around 72% of global GHG production [3]. For the
countries of the European Union, all sectors have already reduced their GHG production,
except one [4,5]. This sector is transport, which accounts for 20% of global carbon dioxide
(CO2) emissions [6]. The same values of CO2 emissions apply to the European Union,
and politicians’ actions to reduce these emissions include, for example, shifting some road
transport to rail [7,8]. Another way of counteracting this phenomenon is through the
decision taken by the European Commission to introduce, among other things, a number of
regulations on CO2 emissions from vehicles [9]. These include Regulations No. 443/2009
and 333/2014, which set a target of reducing the CO2 emission factor to 95 g/km for
vehicles manufactured from 2020 onwards for the M1 segment [10,11]. To achieve the goal
of reducing GHG emissions from transport by at least 60% by 2050 compared to 1990, the
maximum CO2 emissions from vehicles for 2030 should be around 70 g/km [12,13]. Such
targets and the associated demands on vehicle manufacturers are a major challenge that
involves a number of design and technological changes to vehicles.

One way to reduce CO2 emissions is to use liquefied petroleum gas (LPG) to power
vehicles [14,15]. It consists of hydrocarbons, as well as mixtures such as propane, butane,
and isomers, liquefied under pressure and derived from oil or natural gas [16]. LPG
is an odourless, colourless, and flammable gas that is heavier than air. Under normal
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conditions, LPG is in a gaseous state, but it is stored in special tanks and cylinders under
pressure [17]. The most common vehicles running on LPG are bi-fuel vehicles, for which
the supplementary fuel is LPG [18]. Solutions of this type are not popular worldwide;
however, there are countries where the use of LPG fuel to power the vehicle is very
popular. Countries that have a large fleet of LPG vehicles include the following: Turkey
(4.7 million), Poland (3.1 million), Russia (3 million), Italy (2.4 million), India (2.4 million),
Ukraine (2.3 million), and South Korea (2.1 million) [19,20]. The number of these vehicles
in the countries mentioned is constantly increasing [21]. For example, in Poland, there
are currently approximately 1550 companies that provide LPG installation services for
vehicles [22]. However, there is also a group of vehicles produced by manufacturers
that have a factory-installed LPG system, usually as an alternative fuel to petrol. The
LPG fuel used in power vehicles has a high calorific value and reduced CO2 emissions
compared to petrol vehicles [23]. Because propane and butane have a chemical structure of
gasoline-forming hydrocarbons, they are lighter [24].

Consequently, there are two problems in modelling emissions from an LPG vehicle
within the scope of the topic being pursued. The first is the low popularity of this fuel
worldwide for the power of vehicles. This state of affairs results in a small database of data
available from emissions tests for this type of vehicle. The existence of prediction models
for this type of fuel is small compared to emission models for pure gasoline, diesel, and
hybrid vehicles. The second issue is that there is a need for accurate emissions from vehicles
running on LPG, especially in countries for which the use of this fuel is popular. The use
of emission models currently available has some limitations. An example of a model that
contains modelled emissions data for LPG bi-fuel vehicles is the COPERT software [25].
COPERT is an emissions model created by the European Environment Agency (EEA) and
is widely used, among others, by national or local authorities, research institutes, and
industry [26,27]. However, it is a model which allows for macroscale emission estimation,
so in fact it is possible to derive emission results from it for its sum or for the emission
factor parameter [28]. For the results obtained from emission models, the microscale is
also an important aspect. At the microscale, for example, it is possible to determine the
instantaneous emission of the vehicle on the selected part of the route [29]. Microscale
models can also be used to determine an emission map, which makes it possible to observe
locations where emissions from vehicles running on LPG, for example, increase. A keyword
search carried out in the Web of Science Core collection as well as in Google Scholar shows
virtually no existence of microscale emission models for this type of fuel supply. This article
is one of the first to present a methodology for creating an emissions model for LPG.

The purpose of this study was to develop a methodology for a procedure to create
a model of CO2 emissions from an LPG vehicle. The Python environment was used for the
analysis, with the variables used as a set of predictors to develop a CO2 emission model for
the LPG vehicle under analysis. Then, using artificial intelligence techniques, particularly
machine learning techniques, a CO2 emission model was developed to accurately estimate
emissions at the microscale.

The first part of the paper presents a description of the methodology for the study,
which was used to collect a sample of CO2 emissions data from road tests using a portable
emission measurement system (PEMS) and an interface for on-board diagnostics (OBD).
Then, exploratory data analysis (EDA) was presented on the collected data to select a set of
best predictors to create a CO2 emission model. The identification of explanatory variables
served as the basis for the development of a model of CO2 emissions from an LPG vehicle,
which forms the next part of the work. The model validation steps are then presented,
including the assessment of the coefficient of determination (R2) and the mean squared
error (MSE). The paper concludes with a discussion and conclusions section.

2. Materials and Methods

The general scheme of the work is shown in Figure 1. The work consisted of collecting
data from the LPG vehicle from the PEMS system and the OBDII interface. These data were
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aggregated on a computer connected to these systems. After aggregation, the data were
then subjected to EDA to select the best set of predictors to create a CO2 emission model
for the LPG vehicle. The model was made in a Python environment using the gradient
boosting method. Validation of the model was conducted by analysing the instantaneous
emissions, predicted vs. observed plots, and calculating the MSE and R2 ratios.
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Figure 1. Basic logic and scheme of the performed research.

The work involved driving through the road in different parts of the conurbation
in order to collect a large amount of data for different traffic conditions. The journeys
were carried out using the PEMS, which was installed in the test vehicle. The PEMS
test apparatus is a Horiba OBS-2200, which can measure the instantaneous emissions
of CO2, CO, THC, and NOx. It is equipped with a flame ionization detector (FID) to
measure THC, non-dispersive infrared spectrometer (NDIR) to measure CO and CO2, and
a chemiluminescence detector (CLD) for measuring NO and NO2 [30]. In order to avoid
condensation on the line sending the exhaust gas sample from the vehicle’s exhaust system
to the PEMS system, the PEMS controller heats it to 190 ◦C [31]. The PEMS is additionally
equipped with GPS data, temperature, and ambient humidity measurements. During the
road tests, the vehicle was powered exclusively with LPG fuel. The focus of this study was
on the analysis and modelling of CO2 emissions.

The vehicle under study was manufactured in 2014 (Euro 6), has a 1397 cc engine,
spark ignition type, and its main fuel is gasoline; while it is possible to run to the factory
LPG system, the maximum power is 55 kW for 5500 RPM, the maximum torque is 105 Nm
for 4250 RPM, it has manual transmission and 5 gears, the after-treatment system is TWC,
and the weight of the vehicle is 980 kg. A diagram of the vehicle under test, including the
location of the sensors and the OBDII interface, is shown in Figure 2.

The survey route is shown in Figure 3. The surveyed route totals 115 km, while its
structure contains driving sections characteristic of the urban, rural, and motorway parts.
This choice of route was conditioned by the collection of a large number of data for different
traffic conditions of the vehicle, taking into account different speed ranges; for example, for
the urban part, the distribution of speed data was between 0 and 60 km/h, while for the
other parts of the road, the driving speeds were higher than 60 km/h.
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Figure 3. Route tested of an LPG vehicle.

The data from the journeys were recorded on a computer, which read the input from
the PEMS system for the amount of exhaust gas flowing, CO2 concentration, exhaust
gas temperature, ambient temperature, and the vehicle location, which was then used to
determine the CO2 emissions recorded in g/s. Furthermore, an ELM327 interface was
connected to the vehicle to record OBDII data, while the parameters recorded were engine
rpm, throttle position, engine load, acceleration, turbo boost and vacuum gauge, altitude,
and velocity. Data for both PEMS and OBDII were recorded at a frequency of every 1 s.

3. Results
3.1. Exploratory PEMS and OBDII Data Analysis for the LPG-Fuelled Vehicle

For the road test data obtained from the PEMS and the OBDII interface, EDA was
carried out in the first stage of the work so a set of best predictive parameters could be
correlated to estimate CO2 emissions from an LPG vehicle. Exploratory data analysis is
a process which allows one to understand the data and discover certain patterns, correla-
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tions, and anomalies [32,33]. In the context of creating machine learning models as elements
of artificial intelligence techniques, EDA allows for in-depth analysis and identification of
potential problems that need to be performed prior to the model-building process. The
essence of performing EDA in the context of creating machine learning models has been
described in the work [34].

The EDA was performed using the Python environment in the dabl library. In machine
learning, we can divide the data into two main categories: targets and features. Features
are input data that are used as predictors, whereas target data are output data, most often
a single variable. In machine learning algorithms, continuous type variables are often
encountered [35,36]. For the case studied, the characteristic variables were all data collected
from the OBDII interface, while the target variable was the CO2 emissions measured with
the PEMS system. A graph showing these variables is shown in Figure 4.
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In Figure 4, the continuous feature vs. the target derived from the OBDII interface and
the PEMS can be observed, particularly: engine speed (Engine RPM), throttle position (%),
engine load (%), acceleration (m/s2), turbo boost and vacuum gauge (psi), altitude (m),
and velocity (km/h). From Figure 4, the following can be observed:
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- The positive correlation of the CO2 emissions parameter with engine RPM and vehicle speed;
- No correlation or small correlation of CO2 emissions with engine load, acceleration,

turbo boost, vacuum gauge, and altitude.

Based on the above observations, the best explanatory variables to model CO2 emis-
sions with recorded parameters would be the RPM of the engine and the vehicle speed. To
verify this, a Pearson’s correlation coefficient was additionally calculated to numerically
verify the above observations. In the context of the development of machine learning mod-
els, the Pearson’s correlation coefficient can be used to quantify the correlation between
the variables under study and the target variable. The results of the Pearson’s correlation
coefficient for the parameters studied are presented in Figure 5.
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From Figure 5, the following can be observed:

- The highest values of Pearson’s coefficient correlation with CO2 emissions are found
for the parameter’s velocity—0.68; engine RPM—0.72; and throttle position—0.63,

- The least correlated parameters with CO2 emissions are acceleration—0.19 and altitude—0.11.

The results of the Pearson’s correlation coefficient for the tested parameters of PEMS
and OBDII confirmed the earlier visual analyses for the continuous feature vs. the target
CO2 emission graphs. The variables chosen as explanatory variables were velocity and
engine RPM.

3.2. Creation of CO2 Emission Models for the Vehicle Fuelled with LPG

CO2 emissions from a vehicle that runs on LPG are lower than those of the same
vehicle that runs on, for example, gasoline [37]. This is despite the fact that the volumetric
consumption of an LPG engine is 15 to 20 percent higher than that of petrol engines [38,39].
The lack or small number of emission models for this type of power supply, mainly on
a microscale, creates the need for this type of computational model. One of the methods
currently used to model emissions is artificial intelligence techniques. Machine learning
is a subfield of artificial intelligence that uses statistical techniques and algorithms which
allow computer systems to improve the modelling performance [40,41]. Machine learning
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algorithms are most commonly implemented using programming languages such as R
and Python, while popular libraries used for this purpose include TensorFlow, Keras, and
Scikit-learn [42–44]. The process of creating a vehicle emissions model includes collecting
data during different driving states along the route under study. These data can also be
collected under laboratory conditions in a more controlled environment.

To create a CO2 emissions model for an LPG vehicle, parameters such as velocity
and engine RPM were used as explanatory variables. Often in the context of emission
models, parameters such as velocity, acceleration, and road gradient are chosen for their
creation [45]. However, as the EDA conducted earlier for the collected data shows, these
variables do not always have the best influence on the final result of the emission model.

The PEMS and OBDII data obtained from the road test were saved in.csv format and
uploaded to the Github data repository. Github is a platform to store and manage files and
code, among other things, in a centralised location which allows these data to be shared
and contribute to open-source projects [46]. The data were then downloaded to code on the
Google Colab cloud platform, which enables the creation and running of projects based on
Jupyter notebook-based projects [47]. Jupyter notebooks are a popular tool used in data
science and machine learning, allowing users to create and share interactive documents
that combine code, text, and visualisations.

The machine learning techniques chosen to create a model for CO2 emissions from
an LPG vehicle were linear regression, random forest, support vector machine, and gradient
boosting. The validation of the resulting models was carried out using MSE and R2. The
best results were obtained with the gradient boosting technique, so only the results for this
machine learning technique are presented in this section.

The creation of the model began by dividing the data set into two subsets: the model
training set, which accounted for 80% of all data obtained during the test, and the test set,
which accounted for 20%. Subsequent sets of models were then imported into the sklearn
library to create predictions. The main codes used to prepare the emission models are
presented in the Algorithm 1.

Algorithm 1. LPG vehicle emission model in Python; selected codes.

1. df = pd.read_csv (‘LPG data path) #indicating path for the data set
2. from sklearn.model_selection import train_test_split X_train, X_test, y_train,

y_test = train_test_split(X,y, test_size = 0.2, random_state = 100) # division of data for test
and train set

3. from sklearn.ensemble import GradientBoostingRegressor
gb = GradientBoostingRegressor(random_state = 0) gb.fit(X_train, y_train) # importing
gradientboosting model from sklearn

4. y_gb_train_pred = gb.predict (X_train) y_gb_test_pred=gb.predict(X_test) #applying the
model to make predictions

5. from sklearn.metrics import mean_squared_error, r2_score gb_train_mse =
mean_squared_error(y_train, y_gb_train_pred) gb_train_r2 = r2_score(y_train,
y_gb_train_pred) gb_test_mse = mean_squared_error(y_test, y_gb_test_pred)
gb_test_r2 = r2_score(y_test, y_gb_test_pred) # Evaluation of the model performance

The scikit-learn library was used to create a model of CO2 emissions from an LPG
vehicle. A graph showing the speed and engine RPM parameters for the test route is
presented in Figure 6.
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3.3. Validation of a CO2 Emission Model for an LPG Vehicle

Validation of a machine learning model is the process of evaluating the estimates of
the results from the model to the results for the data set under study [48]. For the case study,
the validation was carried out by comparing the model results with the on-road results for
instantaneous CO2 emissions with an LPG vehicle, for the total emissions results for the
route under study, and to evaluate the CO2 emission estimates for the aggregation of data
for different driving speeds. The validation of the machine learning model is an essential
step as it allows us to assess the accuracy of the obtained model and its estimation capability
for new data. The mean square error (MSE) and R2 were used for both the training and the
test data to quantitatively validate the results obtained.

The verification of the CO2 model for an LPG vehicle against the actual road emissions
is shown in Figure 7. The model results are presented for the gradient boost technique, as
this is the technique for which the best CO2 emission mapping results were obtained for
the LPG vehicle under test. Gradient boosting is a popular machine learning method for
supervised learning tasks, both for classification and regression. It is an ensemble method
that combines multiple weak models to create a strong predictive model. The gradient
boosting method is based on the addition of new models to the ensemble and each model
tries to correct the errors of the previous model.
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Figure 7. Instantaneous emission of CO2 using LPG vehicles for model and road data.

In Figure 7, we can see how the actual CO2 emissions of an LPG vehicle and the
modelled emissions compare. For certain areas, especially at the beginning of the test, where
there is a certain area for the so-called “cold start” phenomenon, we can observe a certain
underestimation of the vehicle’s CO2 emission results. A cold start of the vehicle may last for
up to several minutes until the engine reaches its expected optimum operating temperature,
which is around 80–90 ◦C [49]. During this time, the vehicle’s fuel consumption may be
higher than normal [50]. This phenomenon is due to the fact that when the vehicle’s engine
is cold, the fuel mixture is richer than normal, which can cause the fuel injected into the
combustion chamber to be in greater quantities than required [51]. This excess fuel allows
the engine to start smoothly, but the result is a higher fuel consumption, which also directly
translates into higher CO2 emissions. After a period of time, when the engine has reached
its optimum operating temperature, we can observe that the model makes more accurate
predictions. There are some areas of underestimation, but, overall, if we consider the
behaviour and the prediction of the model, it is both good. This is also confirmed by the
sum of emissions from the road test and the model. The sum of emissions for the above
test for the actual data was 3386 g CO2, while for the model data it was 3379 g.

Figure 8 shows the predicted vs. observed CO2 emission of the LPG vehicle. It serves
the purpose of comparing the results obtained from the machine learning model with the
actual results. The shape of this graph gives valuable information about the performance
of the obtained machine learning model. Data, especially in the area of emissions of up
to 3 g/s CO2, are located close to the line. Higher emission values of 3 to 6 g/s are also
relatively close to the centre of the line, defining a good fit.
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Figure 9 shows a graph of CO2 emissions from an LPG vehicle using model data and
actual data from a road test. The CO2 emission results in the graph are plotted against the
vehicle speed. The results were arranged relative to increasing speed in order to verify the
model estimates for different speed values. From this graph, we can observe that the model
better represents the CO2 emissions for driving speeds between 0 and 50 km/h, which may
be due to the fact that more data were collected for these driving conditions. Speeds are
characteristic of driving in the urban part of the route. For higher speeds, the graph of
modelled CO2 emissions creates points for the average emissions that are obtained for such
driving characteristics.
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For quantitative metrics, R2 and MSE were used to validate the CO2 emissions model
for an LPG vehicle. The coefficient of determination is a statistical measure that is commonly
used to validate machine learning models [52,53]. R2 is calculated as the ratio of the
explained variation in the target variable to the total variation in the target variable. The
second measure used was the mean squared error, which is also a common indicator that
is used to validate and evaluate the performance of regression models [54]. The MSE is
calculated by taking the average of the squared differences between the predicted and
actual values of the target variable across all data points in the training set [55]. The results
of the model validation indices are presented in Table 1. The results of the indices obtained
for both the training and test data sets show that the representation of the model data
relative to the actual data is satisfactory and that the resulting CO2 model can be used for
emission prediction on new data sets.

Table 1. Results of validation of a CO2 emission model using MSE and R2 for the gradient boosting
machine learning technique for an LPG vehicle.

Training MSE Training R2 Test MSE Test R2

0.55889 0.718292 0.778043 0.612655

4. Discussion

By analysing the results obtained from the CO2 emission model for an LPG vehicle,
some advantages and disadvantages can be observed:
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• An advantage of the model is the very good overall predictive ability of the instanta-
neous CO2 emissions from the LPG vehicle, especially for speeds up to 50 km/h,

• A disadvantage of the model obtained is some erroneous results of instantaneous CO2
emissions for the cold start period of the engine, where we can observe increased fuel
consumption, resulting in higher-than-normal CO2 emissions.

Therefore, it is necessary to create an additional CO2 emission model for the thermal
state emissions. This will undoubtedly become the subject of further development work on
emissions modelling for LPG vehicles. The creation of models for cold starts is the subject
of, inter alia, the work [56–58], in which the authors indicate recommendations for separate
emission modelling for this thermal state of the vehicle.

The resulting model also gives a very good estimate of the total CO2 emissions
for a given route with a very small margin of error. It is also important to note that
the modelling itself was performed on the basis of a prior analysis of a set of potential
explanatory variables from PEMS and OBDII.

Furthermore, when comparing the model results with other work, it can be seen
that this is one of the first models of instantaneous CO2 emissions on a microscale for
an LPG vehicle. Other examples of work that has investigated similar topics include the
work from [59]. This work describes the actual emissions of LPG-powered taxis. The
emissions measurements in this work relate to CO, HC, and NOx emissions. These results
were correlated with emission factors with instantaneous vehicle speeds and acceleration
profile parameters for local urban driving patterns. The aim of this work, however, was
to determine how replacing a fleet of diesel taxis with LPG taxis could reduce emissions.
Another article that addresses the emissions of LPG vehicles is [60]. However, this work is
limited only to a comparison of emission factors for a vehicle at idle speed. Another article
that addresses emissions from vehicles running on LPG, among other fuels, is [61]. Remote
sensing measurements collected over three different periods were used to study vehicle
gas emissions. The gaseous emission factors of petrol and LPG vehicles increase rapidly
within two years of being introduced to the fleet, suggesting that the engine and catalyst
performance degrade rapidly. Another example of the work that considers the emissions of
LPG vehicles in its research is [62]. This article compares hybrid electric, LPG, and petrol
vehicles with a Life Cycle Assessment (LCA) approach.

In terms of the methods used, there are also a small number of works that use the
OBDII interface and the PEMS system in modelling vehicle emissions. One example
that uses OBDII data to model vehicle fuel consumption is the work in [63]. This work
used variables from the OBD system, such as RPM and SVM, to prepare a model using
the support vector machine technique. However, using only the OBDII interface to load
the vehicle’s fuel consumption data may lead to a poor estimation of the vehicle’s actual
consumption, as often the vehicle controller does not provide such information as the actual
fuel consumption, while the programme itself, which loads the OBDII data, calculates this
fuel consumption computationally.

In the context of the use of artificial intelligence computing techniques, particularly
machine learning, their popularity is growing. There is a range of software and environ-
ments for creating such models. Frequently used in this context are the MATLAB [64] and
Python [65,66] programming environments. The resulting emission calculation models can
provide reliable and accurate results and can be used to support decision-making processes
at the level of, for example, road management in the context of environmental protection.

5. Conclusions

The literature review carried out showed that there is no micro-scale emissions model
for estimating CO2 for an LPG vehicle. Therefore, this paper presents the process of creating
a CO2 emissions model for an LPG vehicle. The model created was based on data from
the PEMS system and the OBDII interface. The best method for predicting CO2 for an LPG
vehicle proved to be the machine learning gradient boosting method. As a result of the
EDA conducted, two variables were selected as a set of predictors: speed and engine rpm.
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The obtained results of the model for the indicator for the R2 test—0.61 and the MSE test—
0.77 indicate a good representation of the model data for future predicates. The model
created, in particular, predicts CO2 emissions well for speeds characteristic of driving in
an urban area. The estimation of the total on-road CO2 emissions from the LPG vehicle is
also very accurate—for the data analysed it was 3386 g for the actual data, while for the
model data it was 3379 g.

The limitations of the work are that the road data set was carried out for only one LPG
vehicle, so this aspect should be considered at the same time for further work on the topic
under study. It is also important to take into account, when creating new models, the
emission data for the so-called “cold start” of the engine, as they are different from those
when the vehicle engine is warmed up. To solve this problem, it is important to exclude
data for the cold start phase and to create a separate CO2 emissions model. As a result of the
literature review, attention should also be paid to the change in the condition of the catalytic
converters of LPG vehicles, especially with the passage of years, so the development of
an emission model for LPG vehicles should take into account the continuous updating
of the emission data for the vehicles which are included in the model. The methodology
presented in this paper for modelling LPG vehicle emissions may be scalable to other cases
of vehicle emissions modelling.
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Nomenclature

CO Carbon monoxide
CO2 Carbon dioxide
EDA Exploratory data analysis
EEA European Environment Agency
GHG Greenhouse gas
LCA Life Cycle Assessment
LPG Liquefied petroleum gas
MSE Mean squared error
NOx Nitrogen oxides
OBD On-board diagnostic
PEMS Portable emission measurement system
R2 Coefficient of determination
SVM Support vector machine
THC Total hydrocarbon
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