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Abstract: This paper proposes an optimal ensemble method for one-day-ahead hourly wind power
forecasting. The ensemble forecasting method is the most common method of meteorological fore-
casting. Several different forecasting models are combined to increase forecasting accuracy. The
proposed optimal ensemble method has three stages. The first stage uses the k-means method to
classify wind power generation data into five distinct categories. In the second stage, five single
prediction models, including a K-nearest neighbors (KNN) model, a recurrent neural network (RNN)
model, a long short-term memory (LSTM) model, a support vector regression (SVR) model, and a
random forest regression (RFR) model, are used to determine five categories of wind power data
to generate a preliminary forecast. The final stage uses an optimal ensemble forecasting method
for one-day-ahead hourly forecasting. This stage uses swarm-based intelligence (SBI) algorithms,
including the particle swarm optimization (PSO), the salp swarm algorithm (SSA) and the whale
optimization algorithm (WOA) to optimize the weight distribution for each single model. The final
predicted value is the weighted sum of the integral for each individual model. The proposed method
is applied to a 3.6 MW wind power generation system that is located in Changhua, Taiwan. The
results show that the proposed optimal ensemble model gives more accurate forecasts than the
single prediction models. When comparing to the other ensemble methods such as the least absolute
shrinkage and selection operator (LASSO) and ridge regression methods, the proposed SBI algorithm
also allows more accurate prediction.

Keywords: wind power forecasting; ensemble method; particle swarm optimization; salp swarm
algorithm; whale optimization algorithm

1. Introduction

Renewable energy will account for 20% of the total energy that is generated by 2025
in Taiwan. The target for wind turbine power capacity is 4.2 GW. The intermittent nature
of the delivery of renewable energy will have a significant impact on the power system.
A novel coordinated control approach is then used to offer high-quality voltages and
allow optimal power transfer for a grid [1]. For an offshore wind farm that connects to
the grids, the weak feeder and high harmonic characteristics have an impact on the safe
operation of the system. The key technologies of transient protection for offshore wind
farm transmission lines are reviewed in [2]. A study on the monitoring, operation, and
maintenance of offshore wind farms is proposed to reduce the operation and maintenance
costs and improve the stability of the power generation system [3].

Accurate wind power forecasting allows reliable power management and ensures an
appropriate backup capacity, which reduces the cost of penetration and operation of wind
power facilities. However, the variability and irregularity of wind means that forecasts are
uncertain, and this affects power system management decisions. The accuracy of wind
power forecasting must be increased to ensure a reliable supply of power to the grid.
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The time horizon of one-day-ahead hourly forecasting of wind power is used for
power management, demand response in day-ahead, load dispatch planning, and ancil-
lary services, such as the frequency regulation reserve, the fast response reserve and the
real-time spinning reserve [4]. Accurate one-day-ahead hourly wind power forecasting
allows a rational power supply reserve, which reduces operating costs. Many studies
propose methods for wind power forecasting. Indirect forecasting and direct forecasting
are the two major categories. Indirect forecasting predicts the future wind speed based
on historical wind speed and meteorological data, which includes the hidden Markov
model [5], variational recurrent autoencoder [6], machine learning regression [7], dynamic
integration method [8], spectrum analysis [9], hybrid machine learning model [10], stochas-
tic method [11] and variable support segment method [12]. A power curve or a machine
learning method that represents the nonlinear relationship between wind speed and corre-
sponding wind power is then used to establish a prediction model. In this study, an indirect
method is used for wind power forecasting [13].

Direct forecasting uses a physical method, a statistical method, a learning machine
method, a hybrid method or an ensemble method to establish a forecasting model based on
historical wind power and meteorological data. The methods for direct forecasting include
a gradient-boosting machine (GBM) algorithm [14], a Bayesian optimization-based machine
learning algorithm [15], an AI-based hybrid method [16], a nonparametric probabilistic
method [17], an online ensemble method [18], a variable mode decomposition method [19],
a multi-step method [20], a hybrid algorithm [21], an LSTM model [22], and an SVR with
rolling origin recalibration [23].

Each method may feature a large forecasting error due to the variability and irregu-
larity of the wind. To increase forecasting accuracy, an ensemble technique that combines
several machine learning methods is used. Ensemble forecasting methods (EFM) were
used for early meteorological forecasting and are currently used to increase the accuracy
of renewable energy forecasting. An EFM combines several different forecasting models
to reduce overestimation and preserve the diversity of models. The EFM uses either com-
petition or cooperation methods [24]. The competition method uses different data sets
or an individual model with the same data set but different parameters to train a model.
The prediction output from each model is averaged to give a final prediction. As shown
in [25], the weather variables, such as temperature, humidity, precipitation, and wind speed
are regarded as individual models that affect the solar power output. A least absolute
shrinkage and selection operator (LASSO) method is used to aggregate the output of each
weather model. The results show that the LASSO algorithm achieves considerably higher
accuracy than existing methods. A study [26] used a regression-based ensemble method for
short-term solar forecasting. A random forest regression (RFR) with different parameters is
used for a single forecasting method. Five RFR models are established and integrated using
a ridge regression, for which the hyperparameters are tuned using a Bayesian optimization
algorithm.

The cooperative method divides the prediction model into several sub-models. De-
pending on the characteristics of each sub-model, a prediction model is established, and
the final predicted values are calculated by aggregating the outputs of each sub-model. A
previous study [27] used a ridge regression method to aggregate the output of four machine
learning algorithms for solar and wind power forecasts. Another study [28] used a con-
strained least squares (CLS) regression method to combine the wind power predictions for
three single forecasting models. One study [29] used a chaos local search JAVA algorithm
to aggregate the output of four machine learning networks for wind speed forecasting.
Another study [30] used a weighted average method to combine the output of four single
models for wind speed forecasting. A stacking ensemble method uses an ensemble neural
network (ENN) [31] or a recurrent neural network (RNN) [32] to aggregate the output of
several single models for solar power forecasting. The ensemble method that is mentioned
avoids overfitting and gives better forecasting accuracy than a single model.
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This study uses a cooperative method to evaluate five different models for one-day-
ahead hourly wind power forecasting. The proposed method first uses the k-means method
to divide wind power data into different clusters. Five single prediction models, including
a K-nearest neighbors (KNN), an RNN, a LSTM, an SVR. and an RFR, are established
to generate a preliminary forecast. An optimization technique that uses swarm-based
intelligence (SBI) algorithms, such as the particle swarm optimization (PSO), the salp
swarm algorithm (SSA) and the whale optimization algorithm (WOA), is used to assign
a weight to each single model for every hour. The final predicted value is generated by
adding the weighted sum for each individual model. To address inaccuracy in wind speed
prediction from a forecasting platform, an RFR model is used to correct the forecasted
values. The main contributions of this paper are as follows:

• A k-means method is used to divide historical wind power data into five different
categories. Each category of data is used to establish individual forecasting models. A
total of 25 sub-models (five categories of data with five single models) are established
to increase forecasting accuracy by 12% to 31%.

• A cooperative method that combines the output of five single machine learning
algorithms prevents overestimation and give a more accurate forecast than single
prediction models.

• In contrast to existing cooperative methods, an SBI algorithm is used to optimize
the weight distribution of each single model for every hour. Assigning weights for
each hour is more complicated and time-consuming, but it can increase the prediction
accuracy.

• One-day-ahead hourly wind speed prediction from a forecasting platform features a
large error so an RFR model is used to correct the forecasted values. The proposed
correction model decreases wind power forecasting error by 2–3% MRE value.

The remainder of this paper is organized as follows. Section 2 describes the existing
ensemble methods. Section 3 details the proposed optimal ensemble method. Five single
models are also described in this section. Section 4 describes the test results for a 3.6 MW
wind power generation system. Conclusions are given in Section 5.

2. Ensemble Forecasting Methods

An EFM combines several forecasting models to increase forecasting accuracy and
is widely used for meteorological forecasting. Described below are the general ensemble
forecasting methods.

2.1. Weighted Average Method

The weighted average method generates prediction results by averaging the predicted
outputs for each model, as [23,30]:

Ŷ =
1
T

T

∑
i=1

ŷi (1)

where T is the number of prediction models and ŷi is the output from the ith prediction
model.

2.2. Weighted Sum Method

The weighted sum method generates prediction results by aggregating the outputs
from each sub-model with dissimilar weights [24], as:

Ŷ =
1
T

T

∑
i=1

wi ŷi, wi ≥ 0, and
T

∑
i=1

wi = 1 (2)
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2.3. LASSO Regression Method

The LASSO regression is a regularization method that prevents overfitting [25,26].
A LASSO regression performs feature selection to determine predictors that contribute
significantly to the model; models that contribute to a lesser extent are assigned lower
weights. The LASSO regression method is expressed as:

Ŷ =
T

∑
i=1

wi × ŷi (3)

The weights in (3) are calculated as:

min
w∈RT

∣∣∣∣Ŷw−Y
∣∣∣∣2

2 + α||w||22 (4)

The term
∣∣∣∣w∣∣|22 represents the square root of a norm and α ≥ 0 is a penalty parameter

that controls the amount of shrinkage. The greater the value of α, the greater is the amount
of shrinkage, so the coefficient is more robust to collinearity.

2.4. Ridge Regression Method

Like the LASSO regression method, a ridge regression uses the square of the weight,
instead of the square root of a norm [26,27], as:

min
w∈RT

∣∣∣∣Ŷw−Y
∣∣∣∣2

2 + αw2 (5)

2.5. Constrained Least Squares Regression Method

A constrained least squares regression minimizes the sum of the squared error by
training the estimated outputs from several single models as [28]:

Ŷ =
T

∑
i=1

wi × ŷi + α̂, and
T

∑
i=1

wi = 1 (6)

where α̂ is a penalty parameter for individual models that are biased.

2.6. Chaos Local Search JAVA (CLSJAVA) Algorithm

CLSJAVA uses JAVA and CLS to achieve the optimal weight distribution for each
single model [29]. JAVA is a swarm-based heuristic algorithm that iteratively updates
particle solutions towards the global best solution and away from the global worst solution
as:

pi(t) = xi(t) + rand1(t)(xbest(t)− |xi(t)|)− rand2(t)(xworst(t)− |xi(t)|) (7)

where xi(t) is the value of the ith particle at the tth iteration, xbest(t) is the best particle at
the tth iteration, xworst(t) is the worst particle at the tth iteration and rand1 and rand1 are
uniform random numbers.

The JAVA algorithm is well suited to a local search. To solve the problem, CLS is used
to enrich the searching behavior and accelerate the local convergence speed of the Jaya
algorithm as [29]:

γi(t) =
xi(t)− xmin
xmax − xmin

(8)

γi(t + 1) = δ× γi(t)(1− γi(t)) (9)

pi(t) = xmin + γi(t + 1)(xmax − γmin) (10)

where γi(t + 1) is the ith chaotic variable at the (t + 1)th iteration, δ = 4 and γi(0) 6= [0.25,
0.5, 0.75].
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2.7. Stacking Method

The stacking method is an ensemble learning technique that uses a meta-learner to com-
bine the prediction results for multiple models to establish a new prediction model [28,29].
Any machine learning algorithm, such as KNN, SVR, RNN, or LSTM, can be used as a
meta-learner. Unlike the stacking method, this study uses an SBI algorithm to optimize the
weight distribution for each model to generate accurate predictions.

3. The Proposed Method

In contrast to a traditional stacking method, the proposed method uses an SBI al-
gorithm to determine the weight distribution for each single model. Figure 1 shows the
structure for the proposed method. A preliminary forecast is generated by each single
model. The final forecast is produced by combining the weight output for each single model.
Described below are the k-means method, five single models, optimization algorithms such
as PSO, SSA, WOA, and the scheme for using SBI to optimize the weight for each single
model.
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3.1. The k-Means Method

The k-means method was developed by Lloyd in 1987 [33]. It is an unsupervised
clustering technique that is mainly used for cluster analysis and data classification. For a
set of observation data (x1, x2, . . . , xn), the k-means clustering method is used to divide
the n observation data points into k categories as:

argmin
k

∑
i=1

n

∑
j=1

wji
∣∣∣∣Xj − Ri

∣∣∣∣2 (11)

where Xj is the jth observation, wji is the weight of the ith cluster center, Ri is the ith cluster
center and ||•|| is the Euclidean distance. wji and Ri are individually expressed as:

Ri =
∑n

j=1 wjiXj

∑n
j=1 wji

(12)

wji =

{
1, i f

∣∣∣∣Xj − Ri
∣∣∣∣ ≤ ∣∣∣∣Xj − Rm

∣∣∣∣, ∀m 6= i
0, oherwise

(13)
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Equation (11) shows that for the minimum Euler distance, n observation data points
are divided into k categories. For this study, the wind power data is divided into five
categories in terms of the magnitude of the wind.

3.2. Five Single Models
3.2.1. KNN

K-nearest neighbors (KNN) is a supervised learning method that is one of the simplest
machine learning algorithms. KNN is used for classification and regression problems for
which data must be divided into various categories or to model the relationship between
input and output variables. Determining a best K value is difficult and complex because it
is determined by experiments. Details of the KNN are given in [34]. The KNN algorithm
works as follows:

• The predefined distance between the training and testing datasets is calculated. Man-
hattan distance is widely chosen as the distance measure.

• The K value with the minimum distance from the training datasets is used.
• The final wind power is predicted using a weighted average method.

3.2.2. RNN

Recurrent neural networks (RNN) were developed in 1986 [35] and are used in hand-
writing recognition systems. An RNN describes the dynamic behavior of a time series
and transmits the state through its own network, so it accepts a wider range of time series
inputs. Figure 2 shows the RNN architecture. The relationship between the input and
output is expressed as [36]:

ht = w ∗ ht−1 + u ∗ xt + b (14)

yt = g(v ∗ ht) (15)

where xt is the input, yt is the output, ht−1 is the output of the previous hidden layer and
w, u and v are the parameter vectors.
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Figure 2. The structure of an RNN.

An RNN is regarded as a neural network that is delivered in the time domain. Each
node in the plot is connected through a unidirectional connection to a node in the next
successive layer. Every node has a time-varying, real-valued stimulus, and each connection
has a real-valued weight that can be modified. Input nodes receive data from outside the
network, hidden nodes modify data during the training process from input to output, and
output nodes mainly produce network results. An RNN also uses historical prediction
information as part of the input. The gradient vanishes for historical data and longer
historical information does not affect the prediction results.

3.2.3. LSTM

Long short-term memory (LSTM) is a time recurrent neural network that was devel-
oped in 1986 [37]. An LSTM is used for processing and predicting important information
that features very long intervals and delays in the time series. An LSTM is better suited to
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longer time series than an RNN. Figure 3 shows the LSTM architecture. The relationship
between related nodes is expressed as:

ft = σ
(

W f xt + U f ht−1 + b f

)
(16)

it = σ(Wixt + Uiht−1 + bi) (17)

ot = σ(Woxt + Uoht−1 + bo) (18)

c̃t = tanh(Wcxt + Ucht−1 + bc) (19)

ct = ft × ct−1 + it × c̃t (20)

ht = ot × ϕ(ct) (21)

where xt is the input, ft is the forget gate, it is the input gate, ot is the output gate, c̃t is a
transfer function, ct is the cell state, W is an input weight vector, U is an output weight
vector for the previous stage, and b is a biased weighted vector.
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An LSTM is also an intelligent network unit that can memorize values for an indefinite
length of time. The gates in the block determine whether the input is sufficiently important
to be remembered and whether it can be output. If the generated value for the forget gate is
close to zero, the value that is remembered in the block is forgotten. Similarly, the generated
value of the output gate determines whether the output in the block memory can be output.

3.2.4. SVR

Support Vector Regression (SVR) was proposed by Corter and Vapnik in 1995 [38]. It
is used for data classification and regression analysis. An SVR is widely used for image
recognition, gene analysis, font recognition, fault diagnosis and load forecasting. Figure 4
shows an SVR hyperplane, which divides the data into high-dimensional spaces, as [39]:

Min f (u, ϕ) =
1
2

uTu + σ
n

∑
k=1

ϕk (22)

Subject to
{

Qk
(
uT H(xk) + h

)
≥ 1− ϕk

ϕk ≥ 0
(23)

where u is the unit normal vector for the hyperplane, h is the distance from the origin to
the hyperplane, n is the number of training data points, ϕk is a swing variable, ∑ ϕk is a
penalty function, σ is the weight of the penalty function, xk is an input data set, and H(xk)
is a nonlinear mapping function.
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SVR is expressed as a dual optimization problem, as:

Max Fdual(λ) = −
1
2

n

∑
k,l=1

QkQl H(xk)
T H(xl)λkλl +

n

∑
k=1

λk (24)

Subject to


n
∑

k=1
λkQk = 0

σ ≥ λk ≥ 0, k = 1, 2, . . . , n
(25)

The term H(xk)
T H(xl) in (24) is defined as a kernel function K(xk,xl) and must satisfy:∫

K(xk, xl)g(xk)g(xl)dxkdxl ≥ 0 (26)

where g(x) is an integrable function. This study uses a radial basis function as the kernel
function:

(xk, xl) = exp

(
−
∣∣∣∣xk − xl

∣∣∣∣2
ε2

)
(27)

where ε is a dilation parameter.

3.2.5. RFR

The random forest regression (RFR) model is composed of multiple regression trees.
Each decision tree is an independent prediction model that is uncorrelated with other trees.
The RFR can be used for discrete and continuous data and can also be used for unsupervised
clustering learning and outlier detection. Figure 5 shows a schematic diagram of an RFR
algorithm. The steps for an RFR algorithm are described as follows [40]:
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• n sub-training data sets, S1, S2, . . . , Sn, are randomly generated from historical data
sets.

• CARTs (classification and regression trees) are used to train each set of sub-training
data. Some features are extracted and clustered in this step.

• n decision tree models that are used for individual prediction are generated.
• The average of leaf nodes from the training data is treated as the prediction output

from each CART.
• The final prediction using an RFR is the average of all prediction outputs of each

CART.

Table 1 shows a brief comparison among the five single models.

Table 1. Comparison of the five single models.

Method Advantage Disadvantage

KNN Implementation is simple and is
robust to noisy training data.

Must determine the value of K
which may be complex.

RNN Can accept a wider range of time
series inputs.

There is a gradient vanishing
phenomenon for longer

historical data.

LSTM Performs better than RNN for
longer time series.

Predicts well only for a short
time horizon.

SVR Fits well for a highly nonlinear
domain

Modelling is significantly
affected by noise.

RFR
Can be used for discrete and

continuous data and can also be
used for outlier detection.

May converge to a local
optimal solution.

3.3. The Optimization Algorithms

Many optimization algorithms can be used to solve weight distribution optimization
problems. This study uses swarm-based intelligent methods, such as PSO, SSA and WOA,
to determine the weighting value for each single model.

3.3.1. PSO

The particle swarm optimization (PSO) was developed by Kennedy and Eberhart
in 1995 [41]. The PSO simulates the behavior of fishes swimming and birds flying as a
simplified social system. Each variable (or particle) modifies its position using the previous
best position and the best position for the swarm as:

vd
i (t + 1) = wvd

i (t) + r1 × rand1 ×
(

xi, best(t)− xd
i (t)

)
+ r2 × rand2 ×

(
sbest(t)− xd

i (t)
) (28)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (29)

where vd
i (t + 1) is the velocity of the ith particle at the (t + 1)th iteration, i = 1, 2, . . . , P, P is

the population size and d = 1, 2, . . . , D, D is the dimension of the variable, w is the weighting
value, vd

i (t) is the previous velocity, r1 and r2 are the parameters for self-cognition and the
swarm, respectively, rand1 and rand2 are random numbers with a uniform distribution,
xi,best(t) is the best position for the ith particle at the tth iteration, sbest(t) is the best position
for the swarm at the tth iteration, xd

i (t + 1) is the position of the ith particle at the (t + 1)th
iteration and xd

i (t) is the previous position.
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3.3.2. SSA

The salp swarm algorithm (SSA) was developed by Mirjalili et al. in 2017 [42]. It
simulates the group activities of a salp swarm chain. SSA performs exploration and
exploitation during the optimization process. During the foraging process, salps naturally
form a group chain structure, as shown in Figure 6, are either leader salp or follower
salps. The leader salp swims ahead and guides the whole group forward and updates
the swimming direction depending on the position of the food. The other salps are called
follower salps, and they update their positions depending on the position of the leader salp.
The leader salp updates its position as:

xj
1(t + 1) =

xj
best(t) + c1

((
xj

1, max − xj
1, min

)
× c2 + xj

1, min

)
, c3 ≤ 0.5

xj
best(t)− c1

((
xj

1, max − xj
1, min

)
× c2 + xj

1, min

)
, c3 > 0.5

(30)

where xj
1(t + 1) is the position of the leader salp for the ith particle at the (t + 1)th iteration,

xj
best is the best position for the jth particle, xj

1, min and xj
1, max are the lower and upper limits

for the jth variable, the parameters c2 and c3 are uniform random numbers and c1 maintains
a balance between exploration and exploitation and is expressed as:

c1 = 2exp

(
−
(

4t
tm

)2
)

(31)

where t is the current iteration and tm is the maximum number of iterations.
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When the position of the leader salp is updated, the positions of the follower salps are
updated as:

xj
i(t + 1) =

1
2

(
xj

i(t) + xj
i−1(t)

)
(32)

xj
i(t) =

1
2

at2 + v0t (33)

where i = 2, 3, . . . , Ns, Ns is the number of follower salps, v0 is the initial velocity and a is
the acceleration.

3.3.3. WOA

The whale optimization algorithm (WOA) was developed by Mirjalili and Lewis in
2016 [43]. It simulates the fishing strategy of the humpback whale and uses encircling prey,
bubble net attack, and search for prey strategies to fish, as described in the following:

• Encircling prey

Humpback whales encircle prey when they find the location of the prey as follows:

→
P(t + 1) =

→
Pbest(t)−

→
B ·
→
C (34)
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→
C =

∣∣∣∣→E ·→Pbest(t)−
→
P(t)

∣∣∣∣ (35)

where
→
P(t) is the current position vector,

→
Pbest(t) is the previous best position vector,

→
B
(
= 2

→
b ·→r −

→
b
)

,
→
C and

→
E
(
= 2·→r

)
are coefficient vectors,

→
r is a uniform random vector,

→
b gradually decreases from 2 to 0, so

→
B is between 0 and 1, and ”·” represents an inner

product operation.

• Bubble net attack

Surrounding the prey is the most common attack strategy by humpback whales. It
also hunts prey using the bubble net attack as:

→
P(t + 1) =


→
Pbest(t)−

→
B ·
→
C , i f p < 0.5∣∣∣∣→Pbest(t)−
→
P(t)

∣∣∣∣·eel · cos(2πl) +
→
Pbest(t), i f p ≥ 0.5

(36)

where
∣∣∣∣→Pbest(t)−

→
P(t)

∣∣∣∣ is the distance between the humpback whales and the prey, e is a

constant that defines the shape of the logarithmic spiral and l and p are random numbers
between 0 and 1.

• Search for prey

To increase exploration, humpback whales use |B| > 1 to avoid falling into local
optima as:

→
P(t + 1) =

→
P rand −

→
B ·
→
C (37)

→
C =

∣∣∣∣→E ·→P rand −
→
P(t)

∣∣∣∣ (38)

where
→
P rand is randomly selected from the swarm.

3.4. The Scheme for Optimizing Weight Distribution

In contrast to a traditional stacking method, the proposed method uses an optimization
algorithm to determine the weight distribution for each single model. A preliminary
forecast is generated from every single model. The final forecast is produced by combining
the weight output of each single model. The steps for using an optimization algorithm to
determine the weight for each single model are described in the following:

Step 1: The initial position of each particle is randomly generated as:

xi,j(0) = xi,min + rand× (xi,max − xi,min), i = 1, 2, . . . , S, j = 1, 2, . . . , P (39)

where xi,j(0) is the initial position of the ith variable of the jth feasible solution, xi,max and
xi,min are the maximum and minimum positions, respectively, rand∈[0,1] is the value of the
uniform distribution function, S is the number of variables, and P is the number of feasible
solutions for the group. The position of the jth feasible solution is expressed as:

xj = [w1,h, w2,h, . . . , w5,h], h = 1, 2, . . . , 24, j = 1, 2, . . . , P (40)

5

∑
i=1

wi,h = 1, wi,h ≥ 0 (41)

where wi,h is the weight of the ith prediction model at the hth hour. This study generates a
feasible solution for the first hour (i.e., xj = [w1,1, w2,1, . . . , w5,1], j = 1, 2, . . . , P). After
optimization, the weight distribution for each single model for the remaining hours is
optimized successively.
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Step 2: The fitness value for each initial feasible solution is calculated, and the position
of the best initial feasible solution is recorded. The fitness value for the jth feasible solution
at the hth hour is expressed as:

Fj,h =
5

∑
i=1

(
Ŷi,h × wi,h − Yi,h

)2
, h = 1, 2, . . . , 24, j = 1, 2, . . . , P (42)

where Ŷi,h =
[
Ŷ1, Ŷ2, . . . , ŶN

]
is the estimated value of the training data for the jth feasible

solution at the hth hour, and N is the number of training data points. Yi,h = [Y1, Y2, . . . , YN ]
is the actual value of the training data for the jth feasible solution at the hth hour.

Step 3: A position updating strategy is used in this step.

• PSO: use (28) and (29) to modify velocity and position;
• SSA: use (30) and (32) to update the positions of the leader salp and the follower salps,

respectively;
• WOA: use encircling prey, bubble net attack, and search for prey strategies to update

the position of the humpback whales as shown in (35) to (37).

Step 4: The fitness value for each updated position is calculated using (42). The
position with the best fitness value is selected as the next generation.

Step 5: If the maximum number of iterations is achieved, the method determines
whether the 24 h weighting optimization is complete. If it is, the optimal 24 h weighting
solution is output; if none of the above conditions are met, steps 3–5 are repeated.

4. Numerical Results
4.1. Data Pre-Processing

The proposed method was used for a 3.6 MW wind turbine power generation system
that is located in Changhua, Taiwan. Data was collected from December 2019 to Septem-
ber 2021, to give a total of 11,527 hourly data points when outliers or missing data are
eliminated. From the 11,527-hourly data points, 10,951 data points are used to construct
and validate five single models and the remaining 576 data points (for a total of 24 days,
distributed over each month) are used for testing. The data includes wind power, wind
speed, and wind direction. Figure 7 shows the schematic diagram of class selection for
future prediction points. If the future wind speed prediction at the first hour is h1, calculate
the Euclidean distance between h1 and each cluster center (a total of five cluster centers).
The class with the shortest Euclidean distance is chosen for h1. Five single models then use
the same class of prediction model that is constructed in the training stage to generate a
preliminary forecast.
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The wind speed data is measured at the hub height of 10 m. In order to ensure
that wind speed data for the wind turbine at a height of 67 m can be used, the following
conversion formula is used [44]:

v(z2)

v(z1)
=

(
z2

z1

)α

(43)

where z1 = 10 (m), z2 = 67 (m), α is the surface friction coefficient, which value is obtained
by experiment. The α value in the smooth area is low, and the α value in the rough blocking
area is high. Generally, α has a value between 0.1 and 0.4. For this study, α is 0.2. The
program was run on a Windows 11 PC using Python software.

Figure 8 shows the curves for wind power data before and after pre-processing. A
Pearson correlation coefficient is used to determine the effects of wind speed and wind
direction on wind power. The k-means method is used to classify historical wind power
data into several categories. Figure 9 shows an elbow curve for the collected wind power
data. The sum of square error (SSE = ∑n

i=1(yi − ŷi)
2) decreases as the number of clusters

increases. When the number of clusters is greater than 5, SSE decreases slowly. As shown
in Figure 10, the historical wind power data are then divided into five categories such
as breeze (class 1), moderate wind (class 2), cool wind (class 3), strong wind (class 4),
and powerful wind (class 5). To illustrate the impact of data classification on prediction
accuracy, five single models are also used to establish the individual prediction models
without classifying the data. Table 2 shows the prediction error of data before and after
classification. The data after classifying into five categories increase prediction accuracy by
12% to 31%.
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Table 2. Prediction error of data before and after classification.

Data Type KNN RNN LSTM SVR RFR

Before classification 2.7151 2.6857 2.6906 3.3102 2.7350
After classification (five categories) 2.2519 2.3386 2.3340 2.2763 2.2951

Error reduction 17.0601% 12.9240% 13.2535% 31.2338% 16.0841%

Table 3 shows the correlation coefficient values before and after pre-processing. After
data pre-processing, the correlation coefficient values between weather variables and wind
power are greater. As shown in this table, wind speed has a great effect on wind power.
There is a small mutual correlation between wind speed and wind direction. In this study,
the wind speed and wind direction are used as explanatory variables to establish each
single prediction model.

Table 3. Pearson correlation coefficient values between weather variables and wind power.

Before Pre-Processing After Pre-Processing

Variable Wind
Power

Wind
Speed

Wind
Direction

Wind
Power

Wind
Speed

Wind
Direction

Wind
power 1.00 0.90 −0.52 1.00 0.96 −0.51

Wind
speed 0.90 1.00 −0.45 0.96 1.00 −0.49

Wind
direction −0.52 −0.45 1.00 −0.51 −0.49 1.00

Table 4 shows the number of data points for every category that are used for training,
validation, and testing. Table 5 shows the parameter settings for every single model. To
determine the forecasting accuracy, the mean relative error (MRE) is used as:

MRE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
ycap

∣∣∣∣× 100% (44)

where yi is the ith actual value, ŷi is the ith estimated value, ycap is the capacity to generate
wind power, and N is the number of estimation points.



Energies 2023, 16, 2688 15 of 22

Table 4. The number of data points that are used for every category.

Category Training Data Validation Data Testing Data

Class 1 (breeze) 3838 427 129
Class 2 (moderate wind) 1792 200 161

Class 3 (cool wind) 1059 118 139
Class 4 (strong wind) 976 109 107

Class 5 (powerful wind) 2208 224 40
Total 9873 1078 576

Table 5. Parameter settings for every single model.

Method Parameter Class 1 Class 2 Class 3 Class 4 Class 5

KNN
No. of K 10 5 5 5 5
Distance Euclidean Euclidean Euclidean Euclidean Euclidean

RNN

No. of 1st layer neuron 12 12 12 12 12
Activation fun. of 1st layer Relu 1 Relu Relu Relu Relu

No. of 2nd layer neuron 6 6 6 6 None
Activation fun. 2 of 2nd layer Relu Relu Relu Relu None

Activation fun. of output Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

LSTM

No. of 1st layer neuron 12 12 12 12 12
Activation fun. of 1st layer Relu Relu Relu Relu Relu

No. of 2nd layer neuron 6 6 6 6 None
Activation fun. of 2nd layer Relu Relu Relu Relu None

Activation fun. of output Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

SVR
Kernel function RBF 3 RBF RBF RBF RBF

Dilation parameter (ε) 0.1 0.1 0.1 0.1 0.1
Weight of penalty (σ) 1 1 1 1 1

RFR
No. of tree 100 100 100 100 100

Loss function MSE MSE MSE MSE MSE
1: Rectified linear unit; 2: activation function; 3: radial basis function.

4.2. Forecasting Results

Five machine learning methods (KNN, RNN, LSTM, SVR and RFR) are used to estab-
lish individual prediction models for each grade of wind, in order to generate a preliminary
forecast. The inputs for each model are wind speed and wind direction, and the output
is wind power. Table 6 shows the validation results (MRE%) for every single prediction
model. Every single model produces good predictions using the validation data, which
demonstrates that those models do not overfit and can be used for preliminary prediction.
Table 7 shows the parameter settings for every optimization algorithm. These parameters
are tuned by experiment. Figures 11–13, respectively, show the optimization curves for PSO,
SSA and WOA methods. The mean squired error (MSE) is used to evaluate the convergence
characteristic as:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (45)

Table 6. Validation results (MRE%) for every single prediction model.

Model Class 1 Class 2 Class 3 Class 4 Class 5 Average

KNN 0.9012 2.1888 2.7964 2.6028 1.6672 2.0313
RNN 0.8925 2.1342 2.7431 2.6230 1.6232 2.0032
LSTM 0.8641 2.1831 2.6830 2.7327 1.6071 2.0140
SVR 0.9426 2.2965 2.7532 2.9795 1.8333 2.1610
RFR 0.9401 2.3134 3.1120 3.3632 1.6263 2.2710
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Table 7. Parameter settings for every optimization algorithm.

PSO SSA WOA

Parameter Value Parameter Value Parameter Value

Population size 40 Population size 40 Population size 40
Max. iteration 150 Max. iteration 150 Max. iteration 150

Weight (w) 0.8 Variable (c1) 2→ 0 Random (l, p, r) all in (0, 1)
self-cognition (r1) 0.5 Random (c2) (0, 1) Variable (b) 2→ 0

Swarm (r2) 0.5 Random (c3) (0, 1) Constant (e) 1
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Each plot contains 24 (hourly) optimization curves. In order to easily observe the
convergence characteristics, the curves for the 51st to 80th iterations are magnified. The
respective convergence average MSE values for PSO, SSA, and WOA are 8.89 × 10−8,
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1.10 × 10−10 and 1.53 × 10−6. The convergence time for 24 h for the PSO is 101.08 (s)
and the SSA and WOA, respectively, require 113.32 (s) and 134.08 (s) after 150 iterations.
Table 8 shows the respective weights for each individual model for the 24 h using the WOA
method. A weight of zero signifies a prediction model that has no effect on the output.
Similar weight matrices are generated using the PSO and SSA methods.

Table 8. The respective weights for each individual model using a WOA for 24 h.

Hour KNN RNN LSTM SVR RFR

1 0.2262 0.0627 0.2352 0.2182 0.2576
2 0.0898 0.3736 0.3102 0.0763 0.1502
3 0.4501 0.3193 0.1829 0.0477 0.0000
4 0.0691 0.0242 0.1575 0.4971 0.2521
5 0.0445 0.6718 0.1202 0.0701 0.0934
6 0.1224 0.0753 0.2089 0.3023 0.2911
7 0.1389 0.1487 0.4855 0.0893 0.1376
8 0.0000 0.0002 0.6560 0.3438 0.0000
9 0.0404 0.4588 0.0858 0.0314 0.3835
10 0.5613 0.4387 0.0000 0.0000 0.0000
11 0.0000 0.2994 0.3873 0.0000 0.3133
12 0.0777 0.0257 0.6407 0.0496 0.2063
13 0.6795 0.0000 0.0000 0.2312 0.0893
14 0.1720 0.1391 0.2133 0.3892 0.0864
15 0.0880 0.0721 0.2099 0.0186 0.6114
16 0.0000 0.2586 0.6494 0.0202 0.0718
17 0.1299 0.1748 0.0034 0.3020 0.3900
18 0.1215 0.1951 0.2336 0.2133 0.2364
19 0.0293 0.0499 0.3308 0.2019 0.3881
20 0.6182 0.0020 0.3797 0.0000 0.0000
21 0.2606 0.5113 0.0000 0.2281 0.0000
22 0.5118 0.2357 0.0427 0.0959 0.1138
23 0.0040 0.2044 0.2736 0.2961 0.2219
24 0.0846 0.6015 0.1835 0.0008 0.1296

The Taiwanese Central Weather Bureau (TCWB) only provides 3-h-ahead wind speed
predictions, so the data is not suitable for one-day-ahead hourly wind power forecasting.
Solcast is a forecasting platform that offers meteorological predictions including temper-
ature, wind speed, wind direction, and humidity at different resolutions, as long as the
latitude and longitude locations are provided [45]. However, the wind speed prediction
that is provided by Solcast features a 16.31% forecasting error, compared to the actual
measured wind speed. A correction model to increase prediction accuracy for wind speed
is then constructed. The RFR model that gives better results than the other single models
for the Solcast forecasting data is used to correct the Solcast predictions. During training,
the inputs are the Solcast predictions for wind speed and wind direction and the output
is the actual measured wind speed. After training, the forecasting error for wind speed is
reduced from 16.31% to 4.56%. The RFR model for wind speed correction is then used for
one-day-ahead hourly wind speed prediction based on the Solcast forecasting data.

Figure 14 shows the curves for the forecasting results for four different testing days
using the PSO, SSA and WOA methods. Table 9 shows the forecasting results for single
and ensemble models using the corrected wind speed data. For the 24 test datasets, the
respective average MRE value for KNN, RNN, LSTM, SVR, the ensemble-based PSO, SSA,
and WOA is 5.8091%, 5.7423%, 5.7622%, 5.7726%, 5.8937%, 5.7403%, 5.7359% and 5.7413%.
The optimized ensemble methods give a more accurate forecast than the single models.
Table 10 shows the number of maximum and minimum MRE values for single and ensemble
models. In terms of the number of maximum MRE, RFR gives a less accurate forecast
than the other single and ensemble models. The RNN model and the ensemble models
do not produce the worst prediction for all of the test datasets. In terms of the number
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of minimum MRE values, KNN gives an accurate forecast for seven test datasets; RNN,
RFR, and ensemble WOA produce an accurate forecast for three test datasets. Table 11
shows the forecasting results for average MRE using actual data, Solcast forecasting data,
Solcast forecasting data with 10% random error, and the forecasting data after correction.
If the actual measured wind speed and wind direction are used, the optimized ensemble
models give a more accurate forecast than the single models, except for the KNN model. If
predicted wind speed and wind direction data that are provided by the Solcast are used,
SVR gives a more accurate result than all other models. The optimized ensemble models
also allow accurate forecasts.
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Table 9. Forecasting errors for single and ensemble models using proposed corrected data.

Date\Model
Single Model Ensemble Model

KNN RNN LSTM SVR RFR PSO SSA WOA

13 January 2020 5.7471 6.1680 6.1432 6.2540 6.1402 6.1905 6.1642 6.0919
21 January 2020 6.6185 6.1772 6.1612 6.4455 6.2487 6.1779 6.2325 6.2194
21 February 2020 4.5511 4.7681 4.8243 4.7534 4.8212 4.7488 4.7000 4.7045
27 February 2020 6.7134 6.5302 6.5243 6.1571 6.5253 6.2822 6.1507 6.3935
15 March 2020 7.7719 7.59 23 7.4994 7.6335 7.9271 7.4691 7.5110 7.5170
24 March 2020 6.3340 5.9949 5.8390 5.9757 5.7736 5.8768 5.9384 5.8841
8 April 2020 6.6817 6.4063 6.3512 6.2187 6.0752 6.3104 6.3134 6.3361
27 April 2020 5.5673 5.4448 5.5617 5.5234 5.6947 5.4364 5.2975 5.2275
12 May 2020 6.3354 5.9980 6.0030 5.9687 5.9309 5.8892 5.9453 5.9269
23 May 2020 6.7737 6.5872 6.7452 6.8120 7.0053 6.7576 6.6027 6.6950
6 June 2020 6.0505 6.1892 6.2511 6.3421 6.6123 6.3614 6.3140 6.3036
9 June 2020 3.4923 3.3150 3.4267 3.3293 3.4050 3.4161 3.4172 3.4716
9 July 2020 5.2505 6.0029 6.0191 6.4007 6.3822 6.2873 6.2053 6.2191
16 July 2020 4.9644 5.7943 5.7140 6.2564 6.6771 6.1760 6.2155 6.1706
13 August 2020 2.8326 2.8658 2.9068 2.7724 2.8732 2.8256 2.8017 2.8533
26 August 2020 5.6586 5.4043 5.4455 5.2020 5.6817 5.3389 5.2997 5.5734
21 September 2020 5.3698 5.9006 5.9325 5.5107 5.7705 5.7244 5.8823 5.8188
25 September 2020 7.5417 7.2010 7.1295 7.2682 6.6625 7.0298 7.0801 7.0778
9 October 2020 6.5067 5.5500 5.7223 5.7209 6.6122 5.5757 5.7450 5.6051
26 October 2020 6.0354 5.6619 5.7231 5.7282 5.6856 5.7075 5.6588 5.5234
14 November 2020 5.7571 5.5642 5.6268 5.6021 5.4525 5.4052 5.5844 5.5113
25 November 2020 5.6828 5.8060 5.7580 5.7667 5.9269 5.7826 5.7632 5.8795
23 December 2020 5.6999 5.5851 5.6177 5.6146 5.8831 5.6308 5.5530 5.6166
29 December 2020 5.4818 5.2597 5.3664 5.2853 5.6575 5.3659 5.2861 5.1703

Average 5.8091 5.7423 5.7622 5.7726 5.8927 5.7403 5.7359 5.7413
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Table 10. Number of maximum and minimum MREs for single and ensemble models.

Single Model Ensemble Model

Model KNN RNN LSTM SVR RFR PSO SSA WOA

No. of Maximum MRE 9 0 1 2 12 0 0 0
No. of Minimum MRE 7 3 2 2 3 2 2 3

Table 11. Forecasting results for average MRE using actual data, Solcast prediction data and corrected
data.

Testing Data
(Wind Speed and Wind

Direction)

Single Model Ensemble Model

KNN RNN LSTM SVR RFR PSO SSA WOA

Actual measured data 2.2519 2.3386 2.3340 2.2763 2.2951 2.2812 2.2779 2.2304
Solcast prediction data 8.8783 8.4612 8.7452 6.4671 6.9529 7.5546 7.7721 7.5512

Solcast prediction data using 10%
random error 7.6128 7.9735 8.0849 6.5136 7.1837 7.3545 7.2809 7.3137

Prediction data using proposed
correction model 5.8091 5.7423 5.7622 5.7726 5.8927 5.7403 5.7359 5.7413

To simulate the inaccuracy for weather forecasts, a random error with normal distribu-
tion is added to the Solcast forecasting data [46]. During the experiment, the random errors
for 10%, 20%, 30%, and 40% are used for the test. A random error of 10% that allows a
more accurate forecast is used to correct the Solcast forecasting data. As shown in Table 11,
the forecasting results give a slightly better result than the results using Solcast prediction
data. If the proposed wind speed correction model is used, the wind power forecasting
errors reduce about 2~3% MRE value for each single and ensemble model. This case is
mainly used to represent an optimized ensemble method that can be better than a single
prediction method. Table 12 compares the SBI methods with other ensemble methods
using LASSO [25] and ridge regression [27], which use a Bayesian optimization algorithm
to determine the weight distribution for each single model. This case is mainly used to
highlight the SBI methods such as PSO, SSA, and WOA, which give more accurate forecasts
than LASSO and ridge regression methods.

Table 12. Comparison between the proposed SBI and the other ensemble methods using LASSO and
ridge regressions.

Testing Data
(Wind Speed and Wind Direction) Ensemble Model

Prediction data using proposed correction model
LASSO [25] Ridge [27] PSO SSA WOA

5.7509 5.7572 5.7403 5.7359 5.7413

4.3. Discussion

An SBI method that is used to optimize the weights distribution for each single model
gives a more accurate wind power forecast than the single and ensemble prediction models.
The forecasting results allow the following observations:

• Five single models, including KNN, RNN, LSTM, SVR, and RFR are used to produce
a preliminary forecast. More machine learning models can be used as a single model
to avoid overestimation and to increase the forecasting accuracy.

• As shown in Tables 9 and 10, the optimized ensemble models do not give the best
forecast on every test dataset, but no maximum MRE value is produced using the
ensemble models.

• There is a high correlation between wind speed and wind power data. The accuracy
of the wind speed prediction significantly affects the wind power forecast. Compared
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to the Solcast prediction results, a decrease of about 2~3% MRE value is obtained by
using the proposed wind speed correction model.

• This study uses an RFR model to decrease the wind speed prediction error from 16.31%
to 4.56%. A more accurate prediction method can be used to increase the forecasting
accuracy of wind speed, such as those of previous studies in [5–12].

• A Bayesian optimization algorithm is used to determine the weight distribution for
each single model by the LASSO and ridge regression methods. The proposed method
uses SBI algorithms to optimize the weight distribution and allows a more accurate
prediction.

5. Conclusions

An optimized ensemble model for one-day-ahead hourly wind power forecasting is
proposed to increase the forecasting accuracy for single prediction models. The proposed
method first divides historical wind power data into five different categories. Five single
models, including KNN, RNN, LSTM, SVR, and RFR, are used to establish individual
prediction models for each category of data, in order to produce a preliminary forecast.
The final prediction is generated using a swarm-based intelligent tool to determine the
weight distribution for each single model. The wind speed prediction that is provided
by a forecasting platform features a 16.31% forecasting error. An RFR model is used to
reduce the wind speed prediction error from 16.31% to 4.56%. Testing with a 3.6 MW
wind power generation system shows that the optimized ensemble method gives a more
accurate forecast than the single models. The ensemble models do not produce the worst
prediction for all test datasets. Using the proposed wind speed correction model, the
wind power forecasting error is reduced by 2~3% MRE value for each single and ensemble
model. The proposed method also allows more accurate forecasting than the LASSO and
ridge regression methods. Future studies will dynamically update the weight value for
each single prediction model using new wind power data, in order to increase forecasting
accuracy.
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4. Piotrowski, P.; Rutyna, I.; Baczyński, D.; Kopyt, M. Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and

Statistical Analysis of Errors. Energies 2023, 15, 9657. [CrossRef]
5. Li, M.; Yang, M.; Yu, Y.; Lee, W.J. A Wind Speed Correction Method Based on Modified Hidden Markov Model for Enhancing

Wind Power Forecast. IEEE Trans. Ind. Appl. 2022, 58, 656–666. [CrossRef]
6. Zheng, Z.; Wang, L.; Yang, L.; Zhang, Z. Generative Probabilistic Wind Speed Forecasting: A Variational Recurrent Autoencoder

Based Method. IEEE Trans. Power Syst. 2022, 37, 1386–1398. [CrossRef]
7. Mogos, A.S.; Salauddin, M.; Liang, X.; Chung, C.Y. An Effective Very Short-Term Wind Speed Prediction Approach Using

Multiple Regression Models. IEEE Can. J. Electr. Comput. Eng. 2022, 45, 242–253. [CrossRef]
8. Sun, S.; Qiao, H.; Wei, Y.; Wang, S. A New Dynamic Integrated Approach for Wind Speed Forecasting. Appl. Energy 2017, 197,

151–162. [CrossRef]

http://doi.org/10.1504/IJBIC.2022.127533
http://doi.org/10.3389/fenrg.2022.923168
http://doi.org/10.3390/s22082822
http://doi.org/10.3390/en15249657
http://doi.org/10.1109/TIA.2021.3127145
http://doi.org/10.1109/TPWRS.2021.3105101
http://doi.org/10.1109/ICJECE.2022.3152524
http://doi.org/10.1016/j.apenergy.2017.04.008


Energies 2023, 16, 2688 21 of 22

9. Akcay, H.; Filik, T. Short-Term Wind Speed Forecasting by Spectral Analysis from Long-Term Observations with Missing Values.
Appl. Energy 2017, 191, 653–662. [CrossRef]

10. Liu, G.; Wang, C.; Qin, H.; Fu, J.; Shen, Q. A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting.
Energies 2022, 15, 6942. [CrossRef]

11. Domínguez-Navarro, J.A.; Lopez-Garcia, T.B.; Valdivia-Bautista, S.M. Applying Wavelet Filters in Wind Forecasting Methods.
Energies 2021, 14, 3181. [CrossRef]

12. Zhang, K.; Li, X.; Su, J. Variable Support Segment-Based Short-Term Wind Speed Forecasting. Energies 2022, 15, 4067. [CrossRef]
13. Bilendo, F.; Meyer, A.; Badihi, H.; Lu, N.; Cambron, P.; Jiang, B. Applications and Modeling Techniques of Wind Turbine Power

Curve for Wind Farms—A Review. Energies 2023, 16, 180. [CrossRef]
14. Park, S.; Jung, S.; Lee, J.; Hur, J. A Short-Term Forecasting of Wind Power Outputs Based on Gradient Boosting Regression Tree

Algorithms. Energies 2023, 16, 1132. [CrossRef]
15. Alkesaiberi, A.; Harrou, F.; Sun, S. Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study.

Energies 2022, 15, 2327. [CrossRef]
16. Hossain Lipu, M.S.; Sazal Miah, M.; Hannan, M.A.; Hussain, A.; Sarker, M.R.; Ayob, A.; Md Saad, M.H.; Mahmud, M.S. Artificial

Intelligence Based Hybrid Forecasting Approaches for Wind Power Generation: Progress, Challenges and Prospects. IEEE Access
2021, 9, 102460–102489. [CrossRef]

17. Yu, Y.; Yang, M.; Han, X.; Zhang, Y.; Ye, P. A Regional Wind Power Probabilistic Forecast Method Based on Deep Quantile
Regression. IEEE Trans. Ind. Appl. 2021, 57, 4420–4427. [CrossRef]

18. Krannichfeldt, L.V.; Wang, Y.; Zufferey, T.; Hug, G. Online Ensemble Approach for Probabilistic Wind Power Forecasting. IEEE
Trans. Sustain. Energy 2022, 13, 1221–1233. [CrossRef]

19. Sun, Z.; Zhao, M. Short-Term Wind Power Forecasting Based on VMD Decomposition, ConvLSTM Networks and Error Analysis.
IEEE Access 2020, 8, 134422–134434. [CrossRef]

20. Zhao, J.; Guo, Y.; Xiao, X.; Wang, J.; Chi, D.; Guo, Z. Multi-Step Wind Speed and Wind Power Forecasting Based on a WRF
Simulation and an Optimized Association Method. Appl. Energy 2017, 197, 183–202. [CrossRef]

21. Xiong, Z.; Chen, Y.; Ban, G.; Zhuo, Y.; Huang, K. A Hybrid Algorithm for Short-Term Wind Power Prediction. Energies 2022, 15,
7314. [CrossRef]

22. Hanifi, S.; Lotfian, S.; Zare-Behtash, H.; Cammarano, A. Offshore Wind Power Forecasting—A New Hyperparameter Optimisation
Algorithm for Deep Learning Models. Energies 2022, 15, 6919. [CrossRef]

23. Ryu, J.Y.; Lee, B.; Park, S.; Hwang, S.; Park, H.; Lee, C.; Kwon, D. Evaluation of Weather Information for Short-Term Wind Power
Forecasting with Various Types of Models. Energies 2022, 15, 9403. [CrossRef]

24. Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble Methods for Wind and Solar Power Forecasting-State-of-the-Art Review. Renew.
Sustain. Energy Rev. 2015, 50, 82–91. [CrossRef]

25. Tang, N.; Mao, S.; Wang, Y.; Nelms, R.M. Solar Power Generation Forecasting with a Lasso-based Approach. IEEE Internet Things
J. 2018, 5, 1090–1099. [CrossRef]

26. Lateko, H.; Yang, H.T.; Huang, C.M. Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method. Energies
2022, 15, 4171. [CrossRef]

27. Carneiro, T.C.; Rocha, P.A.C.; Carvalho, P.C.M.; Fernández-Ramírez, L.M. Ridge Regression Ensemble of Machine Learning
Models Applied to Solar and Wind Forecasting in Brazil and Spain. Appl. Energy 2022, 314, 118936. [CrossRef]

28. Kim, Y.; Hur, J. An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches. Energies
2020, 13, 1071. [CrossRef]

29. Tang, Z.; Zhao, G.; Wang, G.; Ouyang, T. Hybrid Ensemble Framework for Short-Term Wind Speed Forecasting. IEEE Access 2020,
8, 45271–45291. [CrossRef]
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