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Abstract: In this paper, determination of optimized regenerative braking-torque function and ap-
plication in energy efficient driving strategies is presented. The study investigates a lightweight
electric vehicle developed for the Shell Eco-Marathon. The measurement-based simulation model
was implemented in the MATLAB/Simulink environment and used to establish the optimization.
The optimization of braking-torque function was performed to maximize the recuperated energy.
The determined braking-torque function was applied in a driving strategy optimization framework.
The extended driving strategy optimization model is suitable for energy consumption minimization
in a designated track. The driving strategy optimization was created for the TT Circuit Assen, where
the 2022 Shell Eco-Marathon competition was hosted. The extended optimization resulted in a 2.97%
improvement in energy consumption when compared to the result previously achieved, which shows
the feasibility of the proposed methodology and optimization model.
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1. Introduction

The transportation sector is a major source of global greenhouse gas (GHG) emis-
sions, contributing around 20% of the world’s total carbon dioxide (CO2) emissions [1].
Adoption of electric vehicles (EVs) can reduce CO2 emissions, if countries adapt low-
emission electricity mixes [2]. On the vehicle-manufacturer side, there is a tightening
of regulatory conditions for achieving environmental, social, and governance (ESG) per-
formance, with the former recommended monitoring and disclosure frameworks being
replaced by community legal obligations. Accounting for carbon emissions can recognize
the aggregate emissions of certain units of low-carbon products, which also encourages EV
production [3,4].

Efforts to improve vehicle energy efficiency are a key aspect of the transition from fossil
fuel-based transportation to electric mobility. The Shell Eco-Marathon (SEM) is a prestigious
annual international competition for student teams that provides a platform for innovative
solutions for fuel-efficient vehicles. The concept of the Mileage Challenge is to complete a
race within the specified time while using the minimum amount of electricity or fuel. The
vehicles must cover approximately 16 km in less than 40 min, and there are two different
vehicle categories distinguished by architecture (Prototype and Urban Concept) and three
subcategories based on energy source (internal combustion engine, electric battery, and
hydrogen fuel-cell vehicles). Prototype vehicles have very low aerodynamic drag and
mass to achieve ultimate energy efficiency, while urban-concept vehicles are more like
conventional vehicles, and they must stop at each lap to simulate urban transportation. The
Shell Eco-Marathon has been held in Europe since 1985 and has attracted over 200 teams
from prominent European technical universities. Additionally, it has provided a site for
several fuel economy world records [5].

Energy efficient driving (or eco-driving) can be accomplished by using optimal driving
strategies, which are determined by the appropriate velocity profile for a given track. The
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energy consumption can be decreased by modifying the vehicle operation; this technique is
also very important for SEM events. In the literature, different methods are described for
that process.

The velocity profile is obtained by solving an optimal control problem that aims
to minimize energy consumption [6]. General formulation of road vehicles and certain
improvements in real-time calculation of the optimal speed profiles were presented in
this article.

A model-based optimization was performed on an electric prototype vehicle by using
experimental results for its formulation, as described in Ref. [7]. The simulation model was
based on powertrain efficiency maps and coast-down test results, with cornering losses
neglected in the vehicle model, but incorporated into the velocity strategies through speed
limitations during cornering. The optimization was conducted on segments of the track
using a genetic algorithm (GA), thus resulting in a 30% improvement over a human driver’s
strategy considering the driving errors.

Several mathematical optimization methods were compared for similar application in
Ref. [8]; the results showed the effectiveness of evolutionary optimization methods, such as
particle swarm optimization (PSO) and the grey wolf optimizer (GWO). Moreover, the tra-
ditional gradient-based optimization strategies, such as sequential quadratic programming
(SQP), were shown to be inefficient.

A sensitivity analysis of the energy consumption for an SEM vehicle on three different
tracks was performed and described in Ref. [9]. The results showed that reducing the
vehicle’s mass results in the largest energy savings, with a 10% mass reduction leading to a
5.5% to 8% decrease in energy consumption depending on the track. The aggressiveness
of the track was also considered in the simulation, with cornering losses found to be a
significant factor contributing to a 5% to 12% power loss depending on the track.

A vehicle digital twin was validated and used to simulate energy management issues
of an ultra-efficient electric vehicle for the Shell Eco-Marathon competition [10]. For the
dynamic driving simulator, VI-CarRealTime (VI-CRT) and Simulink were used. The heavy
effect of road traffic on eco-driving strategies was shown, but the assistance systems could
provide energy savings up to 24% for the vehicle of concern.

Terrain data were added and used to create algorithms that support the route search
processes of an EV [11]. The results indicate that selecting the route chosen by the proposed
algorithm provides a more efficient operation. This also proves the extended effect of
considering the vehicle track and using it in simulation and optimization environments.

In today’s urban transportation, EVs have a respected role and regenerative braking
is an important factor for energy efficiency. The literature covers different aspects of
regenerative braking from emergency braking to energy storage.

Emergency braking control strategy was investigated by hardware-in-the-loop exper-
iments in Ref. [12]. The simulations were carried out by using the characteristics of the
NEDC driving cycle.

Systematic investigation related to electric braking systems (EBS) was carried out in
Ref. [13], where simulation results were presented for various braking conditions.

A detailed optimization model was used to determine the characteristics of power
flow in the process of electric braking, where a combined efficiency model of the front
axle (CVT–ISG) and rear axle (PMSM) was established. The double motor regenerative
braking system model was created in the MATLAB/Simulink platform for simulation
purposes. The simulation showed that the improved strategy was 1.18% higher than the
typical braking under NYCC conditions [14].

The main methods of applicable energy saving techniques were presented in detail in
Ref. [15], in which the importance of the braking control strategy in regenerative braking
and driving strategy optimization was emphasized.

Regenerative braking-torque distribution strategy was designed for a vehicle equipped
with four electric in-wheel motors using regenerative braking [16]. An MPC controller was
used to achieve better energy efficiency and braking performance. The AMESim platform



Energies 2023, 16, 2682 3 of 20

was coupled with Simulink for simulation purposes. The regeneration efficiency and
braking performance was improved due to the MPC controller compared to the rule-based
regenerative braking strategy.

Energy storage is a crucial consideration when the recovered energy by the regenera-
tive braking needs be stored. In Ref. [17], the role of supercapacitors was explored based
on the average charge current; the module’s overall capacitance had a far less effect on the
regenerative braking profile because the main source of loss was the motor. The efficiency
of the system was considered relatively high, peaking at around 68%, but was dependent
on the braking rate and initial supercapacitor’s SoC (state of charge).

Application of regenerative braking contributes to minimize the energy consumption
of EVs, where the braking process can be optimized to increase the recuperated energy. The
aim of this study is to merge the results of regenerative braking using an optimized torque
function and driving strategy optimization. The combination of these two fields is necessary
to achieve improvements in overall energy efficiency of the investigated lightweight vehicle.
This study also extends the proposed optimization framework for measurement-based
vehicle model presented in Ref. [18]. The sensitivity analysis and application limits of the
acquired of braking-torque function are also discussed.

2. Shell Eco-Marathon Vehicle Design

SZEnergy Team is a student vehicle-development team from Széchenyi István Univer-
sity located in Győr, Hungary. The team has been participating in the Shell Eco-Marathon
competition since 2005, starting off with the construction of electric cars powered by solar
cells, leading to multiple wins. In 2013, the team switched to developing battery electric
vehicles and the first vehicle, called SZElectricity, placed third in two consecutive years
(2015 and 2016). Their current racing vehicle, the SZEmission (Figure 1), was revealed in
2019 and earned a sixth-place finish in 2019. The Shell Eco-Marathon 2022 was hosted in
Assen after a pause of a few years due to COVID-19, and the team set a world record result
in terms of the track and regulations, winning the battery electric category for the first time
in the team’s history.
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Figure 1. SZEmission on the track at Assen SEM 2022.

The factors contributing to the success of the SZEmission are diverse. The technical
parameters of the vehicle are summarized Table 1. The vehicle chassis is made from carbon
fiber-reinforced polymer composite with paper honeycomb. This structure grants rigidity
with considerably low mass and keeps the drag coefficient of the shape around 0.1, which is
extremely low. The vehicle is driven by self-developed electric drives. Either a permanent
magnet synchronous machine (PMSM) or a brushless DC powertrain is an option to drive
the vehicle. This method enables the gear ratio to be adjusted, thus making the drive
characteristics tunable to meet specific requirements. Driving strategy optimization was
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performed by using the proposed methodology described in Ref. [18], which enables to
maximize the potential of the current vehicle setup. The optimization was performed with
the powertrain version of SZEVOL2, which is a BLDC drive in mass optimized housing.
A low-idle electric consumption motor controller is used for the drive. The drive was
measured in a laboratory test bench environment, where extended measurements were
made to define the efficiency (Figure 2) and power-loss map. The measurements include
the losses of controller, transmission, and the drive, creating a completely applicable model
of the powertrain, which can be directly applied in the vehicle model.

Table 1. Technical parameters of the SZEmission.

Parameter SZEmission

Vehicle frame carbon monocoque with paper honeycomb
Front Suspension double wishbone
Rear Suspension 4 link bridge
Drag Coefficient 0.1

Powertrain BLDC with belt drive
Applied Gear Ratio 3.6
Drive Max Torque 40 Nm
Drive Max Speed 302 rpm
Nominal Voltage 48 V

Overall mass 164.5 kg
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3. Optimization Framework for Regenerative Braking

The basis of the optimization is provided by a measurement-based vehicle model. It
is a grey-box modeling approach, where systematic measurements are used to describe
the mathematical background of vehicle operation. The model can be employed to han-
dle eco-driving problems of lightweight, energy-efficient vehicles. The suggested model
incorporates the track properties, including the effects of corners, and describes the full
powertrain, vehicle dynamics, and resistance. The basic structure of the optimization
model was first proposed in Ref. [19]; this model was suitable for preliminary powertrain
evaluation, gear selection, and initial driving strategy optimization. The acceleration and
free rolling are handled with high accuracy by the model, but the energy recovery of
regenerative braking was not considered. The braking phase was just solved by a constant
deceleration imitating the effect of hydraulic braking. Initial regenerative braking strategy
optimization was proposed in Ref. [20], where the results were compared to the best human
driver attempts, and energy verification was carried out. It was applicable to simulate
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vehicle operation without regenerative braking. In Assen, freewheel bearing arrangement
was applied in the vehicle, which did not allow the using of regenerative braking. A new
SEM regulation was published, where more frequent stops on the track were proposed
for the 2023 season. It renders the prior vehicle model ineffective and requires the use of
regenerative braking. Vehicle model extension is needed, which is suitable for driving strat-
egy optimization during the upcoming SEM competitions, where the role of regenerative
braking is increased. In this paper, the following developments are elaborated:

• Determination of optimal regenerative braking-torque function to achieve maximal
energy recovery;

• Parameter sensitivity analysis of optimized braking-torque function;
• Implementation of regenerative braking in the measurement-based vehicle model;
• Complete driving strategy optimization.

Firstly, adequate mathematical formulation of the physical system is described. The vehicle
accelerates due to the powertrain’s effective traction force, Ftrac, which is obtained as the ratio of
the generated torque Mdrive to the wheel radius Rwheel, as described in Equation (1).

Ftrac =
Mdrive
Rwheel

(1)

The vehicle longitudinal dynamics, ma(t), are determined according to Equation (2),
where the total traction force Ftrac generated by the powertrain accelerates the vehicle
against the cumulative resistance forces Fres and the force component of grade resistance
Fvert arising from the elevation of the track.

ma(t) = Ftrac(t)− [Fres(t) + Fvert(t)] (2)

The cumulative resistance force, Fres, signifies the aggregated force generated by air
resistance Fair, rolling resistance Frolling, cornering resistance Fcornering, and vehicle inertia
Finertia, as expressed by Equation (3). Fres can be determined from the combination of the
coast-down test and speed-controller cornering test as a three-dimensional force model,
which is fully applicable in the vehicle model.

Fres = Fair + Frolling + Fcornering + Finertia (3)

During the braking process, the drive could generate a braking force similar to traction
force, but acting in the opposite way, thereby slowing the vehicle according to Equation (4).

ma(t) =− FR_braking(t) − Fres(t) − Fvert(t) (4)

The braking force, FR_braking, is generated by the torque of the drivetrain when the operation
mode switches from motor to generator. Thus, FR_braking is obtained as the ratio of the generated
braking-torque Mbrake to the wheel radius Rwheel, as indicated by Equation (5).

FR_braking =
Mbrake
Rwheel

(5)

At the start of the braking, the vehicle is traveling with speed v from which the
vehicle’s kinetic energy, Ekinetic, is computed according to Equation (6):

Ekinetic =
1
2

m v2 (6)

Energy can be recovered during the process of regenerative braking from the actual
kinetic energy, while the available energy is reduced by the losses in braking (correlates with
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drive efficiency) and resistance and vertical forces. Thus, the energy recovered, Erecovered,
can be defined as indicated by Equation (7).

Erecovered = Ekinetic − Eresistance_loss (7)

Kinetic energy loss arises from the dissipative effect of acting resistance and grade
forces. Equation (8) calculates the kinetic energy loss, Eresistance_loss, as follows:

Eresistance_loss =
∫ T

0
[Fres(t)+Fvert(t)] v(t)dt (8)

In the optimization process, the universal braking-torque function is not affected by
the track so that the term Fvert(t) in the expression above reduces to

Fvert(t)= 0 (9)

Inserting this equation into Equation (8) yields the kinetic energy loss, Eresistance_loss, as

Eresistance_loss =
∫ T

0
Fres(t) v(t) dt (10)

This means that the vehicle is traveling on a flat track without adding any additional
vertical force component to the vehicle dynamics; the rolling resistance is still included in
Fres(t). The recovered energy can be described with the braking force using Equation (11),
the derivation of which is detailed in Ref. [20].

Erecovered =
∫ T

0
FR_braking(t) v(t)ηdrive(t) dt (11)

The optimization model was created in the MATLAB/Simulink environment based
on the schematic structure depicted in Figure 3. The main subassemblies are Powertrain
model, Resistance model, and Track model.
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The model was created to be suitable for further applications such as driving strategy
optimization; thus, the track model is also included. The model version described in
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Figure 3 operated with direct torque input, which is not applicable for driving strategy
optimization, but ideal for determination of optimal regenerative braking-torque function.
It is worth mentioning that in this work, the battery model is not handled as the SEM
regulation is measuring the recuperated energy and not actual the battery SoC.

The operation mode of the electric powertrain is dual as both motor and generator
operations are possible depending on the control method. The novelty of the model lies in
the structure of the powertrain subassembly as it can operate in both motor and generator
modes. The overview of powertrain subassembly is shown in Figure 4. The vehicle’s
desired torque reference decides the powertrain’s operation mode. The first step is the
torque evaluation based on the motor or generator functions. In this step, the desired
torque reference is checked and limited according to physical boundaries, and it forces the
model to represent the real operation of the vehicle. The efficiency is determined based on
the previously measured efficiency map of the drivetrain; in generator operation, a negative
torque value is applied to the mathematical model. The last part of the subassembly is
a block of logical operators, which matches the correct values based on the initial torque
reference and provides the output of the subassembly.
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4. Mathematical Formulation of the Optimization Problem

The aim of optimization is to define the optimal regenerative braking-torque function,
which allows for converting the maximum available value of kinetic energy to recovered
energy by the electric powertrain. Minimizing the negative value of recovered energy
Erecovered, as given by Equation (11), is mathematically equivalent to maximizing its posi-
tive value in physical applications. Thus, the objective function can be expressed as the
minimization problem given by Equation (12), which is computationally more convenient
to implement in optimization software.

Minimize : E =
∫ T

0
−FR_braking(t) v(t)ηdrive(t) dt (12)

The track model does not impose any optimization constraint as it is assumed to be flat,
and the vehicle path is straight. The optimized torque function describes discrete torque values
to corresponding vehicle speeds, which maximize the recovered energy during regenerative
braking. As part of the optimization process, 13 variables were defined (nvar = 13) representing
the braking-torque values to speed vector v. The speed vector v is given by Equation (13) and
each element of v, i.e., vi, is obtained as indicated by Equation (14)

v =(v0, v1 . . . vn−1) (13)

vi= i · 2.5 ; (i = 0, 1 . . . n− 1) (14)
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The braking-torque vector, Mbrake, also contains 13 elements as indicated by Equation (15),
where each of the elements, Mbrake i, can take values according to Equation (16) within the
bounds imposed by Equation (17).

Mbrake = (Mbrake 0, Mbrake 1, . . .Mbrake n−1) (15)

Mbrake i ∈ R−(i = 0,1 . . . n) (16)

Mbrake min ≤ M i ≤ 0 (17)

During the optimization process, the initial speed condition,vstart, was set to 30 km/h
(physical limit of the powertrain in flat track), and the vehicle properties in the model
were defined according to the vehicle parameters listed in Table 1. The optimization was
performed by using a classical genetic algorithm (GA) in a MATLAB environment. The
optimization model of regenerative braking was implemented in Simulink, and the GA
used the model in every iteration while the fitness function evaluated its outputs. To find
solutions, the GA employed nondeterministic processes such as selection, mutation, and
crossover to generate a population of feasible solutions. The GA solution was largely
influenced by the optimization settings and the initial population; thus, the result should
not be considered the global optimum. To overcome the risk of becoming stuck in local
minima, 10 attempts were made with different randomized initial populations. The size of
initial population (Npop) was 260 individuals in each attempt. The GA is well suited for
driving strategy-related tasks because it can effectively solve complex, nonlinear, and grey-
box problems. The GA has been applied to minimize energy in various similar applications
with great success [7,21,22]. Figure 5 shows the resulting optimized braking-torque function
displayed in the efficiency map of the powertrain in generator operation. In the figure, the
resulting torque values are indicated with black dots. It is clearly visible that the resulting
torque is maximized until it reaches the 220 rpm limit, where it starts trending horizontally
to the left. It is not recommended to use the low-speed high braking-torque region of the
powertrain because it could consume energy, depending on the motor control method. In
the case presented, the optimization avoids using that area.
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The detailed parameters of the optimization result are summarized in Table 2. In total,
10 optimization attempts were made, and the best-performing attempt was selected as
the solution. It is worth noting that the variance (s2) of the optimization results in energy
recovery was only 0.1777 J, which also confirms the usability of GA with the proposed
optimization framework.

Table 2. Regenerative braking-torque optimization results.

Parameter Optimization Results

Function variable (nvar) 13
Initial population (Npop) 260

Generation 71
Function count 17,810

Recovered energy −4121 J
Recovery overall efficiency 84%

Braking distance 64.75 m

The overall efficiency of braking was calculated as the ratio of the performed me-
chanical work to recovered energy during regenerative braking. The actual mechanical
work decreases the kinetic energy and the speed of the vehicle. It is remarkable that the
recovery overall efficiency shown in Table 2 denotes the efficiency of powertrain recovery
ability during the entire process. The efficiency of the powertrain is changing depending
on the vehicle operation, as expressed in Equation (12). The efficiency was calculated by
considering the total mechanical and electric work of the powertrain during the entire
braking process. The resulting optimized braking-torque function is demonstrated in the
power-loss map (Figure 6a) and in the contour plot (Figure 6b) with the operation limits; the
resulting torque values are indicated with red dots. It is worth noting that the horizontal
trending of points follows the shape of contour levels, best visible around 100 W. It can
be inferred that in this speed region, the torque changes to keep a constant lower amount
of loss.
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The observed trends in these results have prompted further investigation into the charac-
teristics of the braking-torque function and the sensitivity of changes in the vehicle parameters.
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5. Sensitivity Analysis of the Optimized Braking Torque

The goal in modeling with the proposed mathematical formulation was to determine
the braking-torque function, which maximizes the recovered energy during regenerative
braking. This function is track dependent as the time of braking and the position cannot be
specified exactly. The resulting function is applicable only to the vehicle being investigated
due to the vehicle parameters. If further developments are carried out on the vehicle, the
determination of this function needs to be repeated, but owing to the simulation model,
we can prepare for predicted changes. In this section, sensitivity analysis of the optimized
braking-torque is presented with systematic changes in the vehicle parameters. In the
mathematical vehicle model, the vehicle is defined by its subassemblies. The powertrain
remains unchanged during the analysis, and only the surrounding vehicle components
were changed virtually.

A fully different vehicle can be evaluated during optimization when these parameters
are modified, as long as the drivetrain remains untouched. First, the mass parameter was
changed in multiple cases. In every optimization case, three attempts were carried out with
a randomized initial population, where the best attempt was chosen as the solution. The
decrease in optimization attempts was reasonable due to the stability and low variance of
the solution produced by the GA, which was demonstrated in the previous optimization.
The optimization results of parameter variations in vehicle mass are shown in Figure 7. The
100% mass denotes the originally created torque function.
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Figure 7. Optimization results for the mass parameter change.

In the case for mass variation, optimization attempts in the resulting torque values
are identical to the reference optimization results. Detailed parameters are summarized
in Table 3. The recovered energy and braking distance are calculated until the vehicle
reaches the threshold limit of 3 km/h, where the hydraulic brake needs to be applied. The
powertrain operates with 84% efficiency in all cases considered. The GA needs at least
70 iterations to find a feasible solution. In case 5, the powertrain is clearly undersized,
which can be seen from the braking distance value, but it is worth pointing out that the
optimized torque function remains identical even with that significant change in mass.

The recovered energy as a function of time is displayed in Figure 8a, and as a function
of traveled distance in Figure 8b. Owing to the significant difference in recovered energy,
case 5 of mass variation is not displayed in Figure 8.
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Table 3. Optimization results for mass variation.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5

Overall vehicle mass 164.50 kg 156.28 kg 148.05 kg 172.73 kg 329.00 kg
Mass ratio 100% 95% 90% 105% 200%

Optimization variable (nvar) 13 13 13 13 13
Initial population (Npop) 260 260 260 260 260

Generation 71 85 98 93 100
Function count 17,810 21,941 25,256 23,981 25,766

Recovered energy −4121 J −3915 J −3709 J −4327 J −8242 J
Recovery overall efficiency 84% 84% 84% 84% 84%

Braking distance 64.75 m 61.81 m 58.59 m 68.09 m 129.60 m
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Figure 9 shows the optimization results for parameter variations in resistance force. 

Figure 8. Energy recovery in the case for varied mass optimization attempts: (a) energy–time display;
(b) energy–distance display.

The results are significantly different in the case for resistance force modification. All
optimization options remained the same as in the case for mass variation. In the first two
attempts, the resistance force was constantly decreased, thus emulating the behavior of a
more efficient vehicle. In case 5, the resistance force was eliminated to observe the trend
in the resulting torque function; this scenario is only feasible in a simulation environment.
Figure 9 shows the optimization results for parameter variations in resistance force.
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The changes in the braking-torque function and the trend are clearly visible in Figure 9.
Required braking force increases as the resistance force is set higher. In lower resistance
force scenarios, recovered energy increases, and the optimization finds lower torque values
with higher powertrain efficiency more beneficial than in reference case 1. The braking also
takes more distance as the resistance force decreases. The theoretical maximum efficiency of
the powertrain is 85.6% during the entire braking process according to case 5. Significantly
higher resistance force (case 6) does not affect the recovered energy as drastically as in the
case for mass changes. Table 4 summarizes the results of the test.

Table 4. Optimization results for resistance force variation.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Overall vehicle mass 164.50 kg 164.50 kg 164.50 kg 164.50 kg 164.50 kg 164.50 kg
Resistance ratio 100% 90% 80% 50% 0% 200%

Optimization variable (nvar) 13 13 13 13 13 13
Initial population (Npop) 260 260 260 260 260 260

Generation 71 87 100 82 92 85
Function count 17,810 22,451 25,766 21,176 23,726 21,941

Recovered energy −4121 J −4172 J −4227 J −4410 J −4803 J −3697 J
Recovery overall efficiency 84% 84.2% 84.4% 85% 85.6% 82.7%

Braking distance 64.75 m 67.42 m 69.22 m 78.21 m 112.78 m 52.12 m

Energy recovery is presented as a function of time (Figure 10a) and as a function of dis-
tance (Figure 10b) in various optimization attempts. The decreasing resistance force leaves
time to utilize more kinetic energy in the higher efficiency ranges of the powertrain. The
combined effects of these are the increasing time and distance during regenerative braking.
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The summarized recovered energy values are displayed in a bar chart to illustrate
the effect of changes in mass (Figure 11a) and resistance force (Figure 11b). The recovered
kinetic energy increases with vehicle mass, but if the drivetrain is undersized, like in
this case, braking takes a very long time even for an experimental race vehicle, such as
the SZEmission.
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6. Driving Strategy Optimization with Regenerative Braking

The derived braking-torque function can be directly used in complete driving strategy
optimization based on the vehicle model presented. Since the motor controller can send
any form of torque reference, only the modification of this reference is required. The
starting block of the vehicle model is a simple logical switch, which decides whether the
motor control command means tractive torque ( Mdrive) or braking torque ( Mbrake). In
the case for traction, the maximum available torque is applied, which is decided in the
powertrain model. During braking, the appropriate braking-torque value is provided
based on the optimized function. According to the sensitivity analysis, the energy-optimal
braking-torque function is not needed to be modified when the vehicle mass changes. The
extended vehicle model can include the energy recovery from braking, which means that
the total energy consumption of the vehicle can be calculated according to Equation (18).
The driving strategy is divided into two parts, based on whether drive or braking is active.
The detailed calculation of total energy is shown in Equation (19).

Etotal = Edrive − Ebrake (18)

Etotal =
∫ Tdrive

0
Ftrac(tdrive) v(tdrive) dtdrive −

∫ Tbrake

0
FR_braking(tbrake) v(tbrake) dtbrake (19)

A genetic algorithm was also used for the complete driving strategy optimization. The
goal of optimization to achieve the minimum energy consumption with the corresponding
objective function and optimization constraints defined in Equation (20). The time needs
to be handled separately and the optimization can also change the duration of each part.
The only remaining issue is the timing of braking and the starting speed of it, as the torque
function provides dedicated torque and speed values.

Minimize E subject to :


T = Tdrive + Tbrake

T ≤ Tmax

smax − 3 ≤
∫ T

0 v(t) dt ≤ smax
v(0) = 0 and v(T) ≤ 3

(20)

The number of optimization variables (nvar) is calculated from the track length ac-
cording to Equation (21) and it decomposes the track distance into elements, thus forming
the s distance vector, as shown in Equation (22). A vector interval of 10 m was chosen for
practical reasons.

nvar =
smax

10
+ 1 (21)
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si = i · 10 (i = 0,1 . . .n− 1) (22)

The optimization vector is described in Equation (23), which consists of the previously
determined s distance vector and the z vector, which is the optimization. The distance vector
remains constant during the optimization; only the corresponding z vector is searched.

optimization vector =
{

s = (s0, s1 . . . sn−1)
z = (z0, z1, . . .zn−1)

(23)

The optimization variable, z can take three values according to Equation (24). The
three possible driving states are braking, coasting, and acceleration.

zi =


−1, if Mi= Mbrake

0, if Mi = 0
1, if Mi = max(M drive)

(24)

This method is suitable to determine the timing of acceleration, coasting, and braking
on the given track without any preliminary investigation. The acceleration part can be
detailed further by determining exact torque values during acceleration, as it was done in
Ref. [18], but in this study the main emphasis is placed on the application of regenerative
braking as a novelty compared to the existing model.

Driving strategy optimization was carried out on TT Circuit Assen, which hosted the
2022 SEM. This is the most recent SEM track, where the investigated vehicle set the track
record and achieved first place in the category. Since supplementary charging when using
solar cells has been prohibited, the results can also be regarded as a world record for this
vehicle category. This achievement was supported by driving strategy optimization, but it
was carried out without the practical or simulated use of regenerative braking. The track
length in the optimization was 2312 m and one lap was assumed to be taken under 342 s.
Track data were collected from publicly available online maps and were further improved
by the physical experience of the track walk at SEM 2022. The elevation of the track is
visualized on the topographical map (Figure 12) image acquired from Ref. [23]. The color
bar at the side denotes the changes in elevation [m]. The topography of Assen was suitable
for record breaking as it has a very low slope in full range.
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Optimization attempts were performed according to Equations (20)–(24). The number
of optimization variables (nvar) was 232, while the initial population of GA was 580,
and at least 100 generations were created in each optimization case. Upper and lower
boundaries were set, as indicated in Equation (25), to force the optimization to accelerate at
the beginning and to stop at the end of the track. The timing of braking is fully determined
by the optimization boundary, which is made to avoid braking in the middle of the track;
as the individuals of GA are randomized, this can be an actual scenario.

boundaries =

{
zi = 1; i = 1 . . . 4
zi = −1 or 0; i = 226 . . . 232

(25)

The braking distance of regenerative braking with the optimized torque function
is 64.75 m for speeds from 30 to 3 km/h. The speed 3 km/h is also the threshold limit
in this optimization case, while the vehicle top speed is 30 km/h on a flat track. The
regenerative braking boundary could be limited to the last 70 m of the track, if we assume
deviation in the track elevation. The optimization could decide the starting speed and
timing of braking, it can be anywhere within the defined boundary. The velocity profile
of the optimization results is illustrated in Figure 13, where three minor differences can
be observed. After the start, the vehicle speed drops back in the red line until 145 m;
however, there is major acceleration at 285 m and the energy consumption is equaled at
300 m, according to Figure 14. It also proves that there can be several local minima found in
the driving strategy problems, at which the velocity could differ, but due to the resistance
changes the consumed energy is almost the same. Another difference is observed around
1170 m, where the red line overshoots, but the energy is equaled by reaching 1430 m on the
track. The last mentionable spot is around 1820 m, where the red overshoots again, but the
energy is on the same level prior to the last coast-down period. Regenerative braking starts
just 20 m before the finish line around the speed of 14 km/h. Both curves operate with
a long coast-down phase from 1960 to 2280 m before the braking phase comes. The full
range of regenerative braking is not used because it would mean more intense speed loss,
as the vehicle needs to cover more track distance. If the full range were used, there would
be more acceleration phase earlier, which summarized would mean more consumption.
The ratio of coast-down and regenerative braking is determined according to the track and
vehicle characteristics.
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Figure 14. Energy consumption of the optimized driving strategy for the track at Assen.

Energy consumption is shown in Figure 14 and, despite the variations mentioned
above, the energy consumption curve remains constant until the moment of regenerative
braking, when around 1 kJ of energy is recovered. The results suggest that the recovered
energy may be greater than 4 kJ across the entire braking range, but only a proportion of it
was utilized in the optimized solution.

7. Results and Discussion

The main goal was to set up the optimized braking torque function, which uses
determined torque values during regenerative braking to maximize recovered energy. An
improved optimization framework was created based on the current model to accomplish
the optimization. Regenerative braking calculations, braking torque optimization, and
overall driving strategy optimization may all be handled by the modified powertrain model.
The powertrain model was set up based on test bench measurements where the motor
and generator operation are managed separately. The mathematical formulation of the
optimization problem was performed and solved by using a genetic algorithm (GA) in
a MATLAB environment. Several optimization attempts were carried out and the best
was selected as the solution, since the GA does not provide a global solution. There was
a very low variation between the different attempts, which proves the robustness and
applicability of the GA for solving similar problems. The analyzed powertrain operates at
a very high efficiency because it was designed specifically for SEM application. However,
less efficient powertrains could benefit the most from the optimization presented. The
emergency braking is clearly an exception from the application territory of the optimization,
where the available maximal torque is needed.

A sensitivity analysis was performed after the optimized torque function was obtained
from the optimization to the specified settings of the vehicle model. The sensitivity analysis
examined the variations in the resistive force and mass parameters. The investigation
revealed that only recoverable energy and braking distance are affected by mass, but values
in the optimized braking-torque function remained the same. As the resistance force is
increased, more braking-torque becomes necessary. The recoverable energy increases in
lower resistance force scenarios, and the optimization determines that lower torque values
with higher powertrain efficiency are more advantageous than in the reference scenario.
The highest achieved overall efficiency of the powertrain was 85.6% in an ideal case where
there is not any resistive force acting on the vehicle; this can be considered as the theoretical
maximum efficiency of the powertrain. Based on the sensitivity analysis, the powertrain
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characteristics have more effect on the regenerative braking than the vehicle parameters
and the shape of the power-loss map affecting the horizontal changes in the shape of the
function. There is no need for modification of the optimized braking-torque function when
the vehicle mass is changed or there is less than 10% difference in the resistance force value.
The analyzed powertrain operates with a very high efficiency because it was designed
specifically for this SEM application. However, the described optimization could produce a
greater improvement in powertrains with less favorable drive characteristics.

The implementation of the optimized braking-torque function was achieved by further
modification of the vehicle model by adding a state machine block at the model input. It
was utilized to enable the model to respond to the motor controller’s tractive and braking
commands. Driving and braking times were separated, and the combined consumption
was used to determine the objective function and the optimization constraints. The track
optimization was carried out on TT Circuit Assen, where an optimized driving strategy
was compared to the race winning strategy for SEM 22. The velocity profile showed
some modest variations; however, this does not necessarily indicate different energy usage
because the optimized driving strategy has more local minima. The recovered energy of
the regenerative braking meant an actual difference in energy consumption, which resulted
in 2.97% improvement in overall consumption during one lap. It was interesting to observe
that the optimization did not fully utilize regenerative braking because the final stage of
vehicle operation was mixed with the coast-down strategy. It is important to note that this
comparison is only valid when the resistance force model of the vehicle remains the same
in both optimization cases. In practice, it means that the use of a clutch mechanism in the
vehicle has the same resistance in coast-down phases and still has regenerative braking.

8. Conclusions

This paper describes regenerative braking optimization of lightweight electric vehicles
in terms of vehicle model and objective function determination. The measurement-based
vehicle model was modified to render the braking-torque optimization possible. The
modification of the powertrain model was presented, which can be directly applied in
complete driving strategy applications. The schematic model arrangement was illustrated,
which makes the implementation in Simulink easily accessible. The braking-torque function
was optimized by using a genetic algorithm in a MATLAB environment. The fact that there
was minimal variation among the solutions demonstrates the robustness and practicality
of the GA for the presented optimization problem.

Braking-torque function sensitivity analysis was performed, where the effect of mass
and resistance force changes were evaluated. The results of the experiments showed that
only the braking distance and recoverable energy are impacted by mass, while the values
in the braking-torque function did not change. More braking-torque is required as the
resistance force increases and lower torque values with better powertrain efficiency are more
favorable than in the reference case. It can be concluded that the optimized regenerative
braking-torque is heavily dependent on the powertrain and moderately sensitive to the
resistance force changes. It was determined that the regenerative braking could achieve a
maximum theoretical efficiency of 85.6% in case of the investigated powertrain, when the
resistance forces are neglected.

It is important to mention that the battery model is not handled in the optimization
framework, because the SEM regulation measures the recovered energy and not the actual
battery SoC. The energy optimized braking-torque function means less load to the batteries
as well. The mass parameter and resistance force were handled independently in the
simulation model during the sensitivity analysis.

Implementation of the optimized braking-torque was demonstrated besides determin-
ing the corresponding optimization constraints and objective function. On the TT Circuit
Assen, a complete optimization of the driving strategy was accomplished; results were
compared with those from a prior optimization that did not consider regenerative braking.
Overall consumption during one lap was improved by 2.97%. It is worth pointing out
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that the optimization only made partial use of regenerative braking, as the coast-down
technique was also applied in the last stage of the vehicle’s operation to achieve an energy
minimum. This result demonstrates the thesis of regenerative braking optimization and
driving strategy optimization should not be managed separately when the minimization of
energy consumption is the goal.

The presented methodology is directly designed for a lightweight, experimental
vehicle. In the future, the main goals are to apply the achieved results in the control
of the studied vehicle and further enhance the suitability of the results in conventional
road transportation.
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Abbreviations
3D 3 dimensions
BLDC Brushless direct current
CO2 Carbon dioxide
COVID Coronavirus disease
CVT–ISG Continuously variable transmission–integrated starter generator
DC Direct current
EBS Electric braking systems
Eco Ecological
EES Energy storage systems
Ekinetic Kinetic energy
Erecovered Recovered energy
Eresistance_loss Kinetic energy loss
ESG Environmental, social, and governance
EV Electric vehicle
Fair Air resistance
Fcornering Cornering resistance
Finertia Vehicle inertia
FR_braking Braking force
Fres Resistance
Frolling Rolling resistance
Ftrac Traction force
Fvert Grade resistance (vertical force)
GA Genetic algorithm
GHG Global greenhouse gas
GWO Grey wolf optimizer
J Joule
Kg Kilogram
Km Kilometer
km/h Kilometer per hour
m Meter
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Mbrake Braking torque
Mdrive Generated torque / tractive torque
MPC Model predictive control
NEDC New European driving cycle
Nm Newton meter
Npop Initial population
nvar Function variable
NYCC New York City cycle
PMSM Permanent magnet synchronous machine
PSO Particle swarm optimization
Ref Reference
Rpm Revolutions per minute
Rwheel Wheel radius
s Second
SEM Shell Eco-Marathon
SoC State of charge
SQP Sequential quadratic programming
T Time
V Volt
v Speed
VI-CRT VI-CarRealTime
vstart Initial speed
W Watt
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