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Abstract: Distributed Power Generation and Energy Storage Systems (DPG-ESSs) are crucial to
securing a local energy source. Both entities could enhance the operation of Smart Grids (SGs) by
reducing Power Loss (PL), maintaining the voltage profile, and increasing Renewable Energy (RE) as
a clean alternative to fossil fuel. However, determining the optimum size and location of different
methodologies of DPG-ESS in the SG is essential to obtaining the most benefits and avoiding any
negative impacts such as Quality of Power (QoP) and voltage fluctuation issues. This paper’s goal
is to conduct comprehensive empirical studies and evaluate the best size and location for DPG-ESS
in order to find out what problems it causes for SG modernization. Therefore, this paper presents
explicit knowledge of decentralized power generation in SG based on integrating the DPG-ESS in
terms of size and location with the help of Metaheuristic Optimization Algorithms (MOAs). This
research also reviews rationalized cost-benefit considerations such as reliability, sensitivity, and
security studies for Distribution Network (DN) planning. In order to determine results, various
proposed works with algorithms and objectives are discussed. Other soft computing methods are
also defined, and a comparison is drawn between many approaches adopted in DN planning.

Keywords: Distributed Power Generation; Energy Storage System; renewable energy; Smart Grid;
soft computing

1. Introduction

Modern power systems have been transitioning from conventional centralized models
into more decentralized grids that take advantage of Renewable Energy (RE) sources and
Energy Storage Systems (ESSs) [1]. The intrinsic and variable nature of the RE sources
influences the power network’s unwavering quality because of the abundant age of energy
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at some other point [2]. When researching planning [3] and Distributed Power Generation
(DPG) operational segments, there are many critical challenges to consider. The existence of
DPG demands the definition of multiple variables, including the optimization technology
to be used, the capacity of units, the optimal placement, and the network connection. Power
Loss (PL), voltage profile, stability, and reliability are accurately studied about DPG. As
DPG penetration increases, system developers benefit from an optimization method to
demonstrate the optimal solution for a given DN.

Today, ESS is critical for increasing power network stability and security [4]. For
example, many ESSs are used in electric loops [5], such as the Pumped Type Hydro Energy
Storage System (PTHSS), Compressed Air Energy Storage System (CAESS), Battery Energy
Storage System (BESS), Super-Capacitor Energy Storage System (SCESS), Superconducting
Magnetic Energy Storage System (SMESS), and Flywheel Energy Storage System (FESS).
Many technologies are combined to create a hybrid power system, as shown in Figure 1.
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proper use of insurance-securing devices. An adaptive security system addresses the is-
sues of transitioning to the DPG security system. The soft scaling method uses the me-
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Hybrid power and ESS are what the word “hybrid” refers to in the field of power
engineering. Photovoltaics, wind turbines, and other engine generators, such as diesel
generator sets, are a few examples of power generators that work in hybrid Power Systems
(PSs). RE technologies such as photovoltaics and wind turbines are used in hybrid PS.
Some benefits of a hybrid PS include the following: When the power grid fails, a hybrid
PS keeps the lights on. The “size constraints” placed on solar PV by local power networks
are avoided with a hybrid PS. Day and night, power is if by a mixed PS. Using a hybrid
PV allows to maximize the electricity rate. The hybrid ESS of the flywheel and battery
is used as the best-known and most experienced ESS. FESS stores dynamic energy in a
rapidly rotating circle linked with an electric machine’s shaft and recovers the energy
stored in the network whenever required. ESS is used in electrical utilities’ generation,
transmission, and DN. The DN also benefits from some ESS real-time applications [6].
Using these devices in DNs supports peak reduction, energy conversion or load balancing,
RE mitigation, efficiency stabilization, transition time changing behavior, congestion, SG
extension delay, short-long voltage reduction, and load control on storage. However, DPG
has created problems with the security plans of the electricity system and the improper
use of insurance-securing devices. An adaptive security system addresses the issues of
transitioning to the DPG security system. The soft scaling method uses the metaheuristic
methodology to identify the optimal sizing and allocation of DPG-ESS [7].

As a result, some methods have been developed for determining the optimum location
and measurement of multiple targets [8]. By incorporating the DPG, some Quality of
Power (QoP) issues need to be resolved, along with determining the DPG sources’ optimal
placement and size [9]. As the power received from these resources is not pure and solely
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depends upon different weather conditions, the energy obtained also fluctuates and has
harmonics that need to be resolved before incorporating DPG sources. In the case of
optimal sizing and placement, the algorithms become more complex as the size of the
network increases and more distribution points are presented. That’s why the main aim
of this work is to highlight these issues, and hence, these have been discussed in this
paper. Furthermore, this survey analyses the Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) [10], and other relevant techniques for DPG and ESS placement and
sizing in DN. The performance of the Hybrid Optimization Algorithm (HOA) [11] for the
optimal allocation of DPG sources is showcased in this survey.

Moreover, by considering the HOAs, more sophisticated results are produced, even for
a complex dynamic DN with abundant network constraints and parameters. Aside from
optimal allocation, optimization techniques are used in network planning by determining
predicted load and Fault Analysis (FA). It improves system stability by designing an efficient
and dependable PS based on an optimization technique analysis. During FA, the system
parameters obtain distorted to some extent. Hence, the optimization algorithm reorganizes
itself and finds a near-optimal solution in the meantime, so, the network is stable even in the
case of FA. This article investigates the DN planning conditions for optimal installation and
MOA techniques for DPG-ESS. SG is an electrical system that is managed and controlled
remotely or automatically. It is an electricity supply network that monitors and responds
to local variations in usage through digital communications. Implementing SG presents
challenges due to outdated technology, transmission and distribution PL, poor QoP, using
RE sources, and security flaws. Energy productivity, dispersed generation, mass-scale
renewables, clean power, demand response for dealing with air pollution, used to calculate
environmental footprints, support for increasingly smart apparatuses, and infrastructure
for new power plants are all SG impacts [12].

Existing work has been performed on DPGs, ESS, optimal sizing and distribution, and
Metaheuristic Optimization (MOA), but review studies had not been written on DPG-ESS
optimal sizing and location with the MOA technique. This proposed work with objectives
is studied, and a conclusion is drawn about using algorithms. “Number of literature on
PL > investment cost > PL = operational cost > annual net profit > others,” it is concluded.
Differentiating between optimal location and DPG placement is associated with high and
impractical costs. The study is led to find out what was good about the algorithms and
how to fix what was terrible. All possible improvements were based on optimizing the size
and location of DPG-ESS.

The article is organized as follows. Section 2 exhibits DN planning with DPG-ESS.
Section 3 introduces and analyses all aspects of DN planning considerations. Section 4
explores the many research studies made on DN planning, along with the findings of the
research investigations. Section 5 brings the review analysis to a close.

2. Distribution Network Planning with DPG and ESS

Multiple units and a connected network are required for centralized Power Generation
(PG) systems to produce enough energy. Power is transmitted through these systems and
provided to residential, commercial, and industrial consumers. Decentralized DPG topol-
ogy is used to link these generators to the DN. Decentralized energy distribution stations
are positioned closer to users and supply electricity to local areas without using large-scale
energy facilities. Decentralized energy grids, as opposed to large-scale conventional utility
plants, can transfer, store, and harvest electricity or heat in smaller units closer to customers.
A decentralized system will be refreshed in a few decades because the power generation of
fossil resources is demanding because of high capital costs, infrastructure costs, volatile
losses, the depletion of non-renewable sources, and ecosystem impacts. Thus, DNs with
high RE generator penetration has become more popular. Depending on the country and
utility provider, they have different interpretations. Due to its low impact on the SG, DPG
is referred to as “approved for bus connections,” “DN linked at a distribution voltage
level,” or “from a few kW to 50 MW,” among other identities. US power stations have
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recommended a new DPG advanced technologies and application benchmark. Thus, DPG
could be identified by connection point, power, and technology type, as shown in Figure 2.
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The location of electricity generation and project scale are the primary distinctions
between centralized and dispersed generation. Although the two types coexist in the same
system, centralized DPG differs significantly. In the centralized method, more extensive
facilities concentrate energy production and supply it to consumers who may be kilome-
ters away. In the case of DPG, smaller units produce power close to or at the point of
consumption. It uses various RE sources, including solar, wind, hydro, and biogas. The
voltage, phase angle, and frequency of DPG sources in SGs must match. Instability within
an organization caused by input mismatches can harm profit and loss. The SG powers its
connected area in the microgrid even if the primary power supply from PG inputs falls due
to a fault or redundant circumstance. The capacity of SG PS is limited, and may not be able
to support peak consumer load.

In this case, the optimal location and size of the DPG are critical for supplying unin-
terrupted power to end users. Energy can move both ways in the microgrid, in any case.
Both protective relays are turned on when the effectiveness operator continues distribution
lines. To maximize its effectiveness, SG uses a broad range of resources. The SG’s reliability
and stability depend on the DPG’s placement. Location identification is more challenging
and unpredictable in mesh and connected networks because of the lack of model factors.
Electrical energy is stored as heat, electrochemical, electromagnetic, mechanical, and elec-
trochemical energy. The following are some of the implications of an ESS in practical
applications: (1) It is suitable for high-power and high-energy applications; (2) It is possible
to integrate it into existing power plants; (3) Its installation is simple. With continued accep-
tance and availability, the cost of batteries falls. Capital cost, power and energy efficiency,
rotational speed, performance, low latency, self-release downsides, and workflow lifetime
are some of the ESS features required in various situations. This section briefly discusses
some ESSs used for combined wind control. Artificial Intelligence (AI)-based ESS for REs is
detected at all stages.
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2.1. Distribution Network Expansion Planning with DPG Sources

A highly infiltrated RE combined with a low-cost ESS could reduce the unpredictabil-
ity and flexibility issues that plague electrical networks. In SGs, ESS is required to balance
the discrepancy between RE generators, improve them, and save excess energy from re-
newable hot spots for subsequent use in non-generation or low energy consumption. Many
systems have recently been made to explore the possibility of designing an ESS with REs.
Photovoltaics (PV) is one of the quickest sustainable RE sources to build up comprehen-
sively, with the ultimate objective being to make nature free from carbon outflows and
make it more feasible. It is conceivable, considering the safety measures that managerial
frameworks around the globe have taken. One-day PV advancement is demonstrating
more productivity and pragmatism at a moderate expense. However, insignificant working
expenses, zero discharge, and consistently declining DPG costs make it an accurate pattern
for expansion plans in DPG capacity. The solar PV generation schematic structure is shown
in Figure 3.
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The effects of PV energy on the different candidate units were discussed [13]. In
general, the mode of operation of a PV system can be in a grid, off-grid, or hybrid manner.
The PS network distributes power from the PV system in “on-grid mode.” In “off-grid”
mode, the PV system only powers the house, not the PS. In the hybrid PS function, the PV
powers homes and the power distributor during off-peak hours. PV energy is DC. Thus,
inverter topologies must convert DC to AC for end users. Centralized [14], string, and
multi-string inverters have significantly increased wind turbine limits and costs. Energy
costs dropped by 15% [15].

In order to plan new generation units that meet technical and economic constraints,
Generation Expansion Planning (GEP) is the best option. GEP is challenging due to the
generation unit’s size, duration, and nonlinearity. Due to a lack of knowledge, businesses
are forced to deal with this issue in a hazardous atmosphere because the competition
among generational companies to maximize their profits forces them to conceal their tactics.
Different nonlinear solutions have been presented to address this complex problem in an
unclear context. The techniques include game theory, a two-level game model, a multi-
agent system, a genetic algorithm, and particle swarm optimization. The GEP issue looks
at the game plan of ideal choice vectors over an arranged skyline that decreases speculation
and operational costs under fitting obstacles. The general issue with integrating DPG into
existing networks is that DN is a passive network that transfers power unidirectionally
from the centrally generated high voltage (HV) level to loads at the medium voltage (MV)
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and low voltage (LV) levels. Unit-wise issues have been connected with control theory
decisions. It is confined to the measure of adventure and operational expenses. The
resulting Consolidated-Unit-Commitment and Capacity Expansion (C-UC-CE) model is a
high-dimensional Mixed Integer Linear Programming (MILP). By then, the model of age
advancement is nitty-gritty [16,17].

The control of dynamical systems in designed equipment and processes is the subject
of control theory. A model or algorithm must manage the system inputs to ensure con-
trol stability, minimize delay, achieve proportional gain, and maintain stable error. It is
conducted so that performance is optimized.

2.1.1. Generation Expansion Model

Except for data transfer restrictions, the bus-bar framework model considers future
choices, such as the desired units to produce annually, the estimation in a given period,
and the entire team. This decision-making is accepted by central facilitators [18]. In order
to obtain additional objectives, it might be helpful to illustrate optional methodologies and
real-world designs. The operational costs of warm generators are less.

The investment cost in year ‘x’ (Clnvx) is represented in Equation (1),

Clnvx =
NG

∑
g=1

x

∑
l=1

Cinv
l,g IGl,g (1)

where NG denotes the generator entities,
IGl,g is an additional unit of a generator, and Cinv

l,g is the generator cost of generator ‘g’
in year ‘x’ [USD/MW].

In the above instance, the annual operating cost is connected to Equation (2).

COx =
T

∑
t=1

(
NG

∑
g=1

Cvar
x Px,t,g +

NG

∑
g=1

Cs
gSx,t,g + CUD.LSx,t

)
(2)

where COx is the operating cost,
CUD is the unit span cost [USD/MWh],
Cvar

x is the variable cost of generator ‘g’ in year ‘x,’
Px,t,g is the PS provided by ‘g’ at hour ‘t’ in year ‘x’ [MW],
Cs

g is the investment cost of generator ‘g’ [USD] and LSx,t is the load shedding at hour
‘t’ in year ‘x’ [MW] [19].

2.1.2. Demand Constraints

During the planning hour and the crucial PG program, the development of all DPG
entities is combined into many systems. As a result, interest rates are determined based
solely on the output of these DPG plants, disregarding the producers of the special regimes
depicted in Equation (3),

D(X) = ∑
i∈Npump

P(X, i)− ∑
pump∈pump

P(X, pump) + Psrp(X), For : X = (t, tri, h) (3)

whereas D(X) denotes the interest projection rate in the specific hours (h) to prepare for
time (t) and trimester tri (MWh). The term SRP refers to a single regime producer. All
power plants, excluding siphoning plants, follow the “Npump” method, and all pumping
power plants are arranged according to the pump technique.

Considering the above investigation work by the decision-makers, the ongoing por-
tions are typical in the model appraisal. Furthermore, in the GEP, two types of plants have
been considered to introduce the structures, such as Solar Plants with Storage Capacity
(SPWS) and the other that does not have storage capacity (i.e.,) Solar Plants with Non-
Storage Capacity (SPWNS). The Forged Outage Rate (FOR) has been perceived as 76%
for and 6% for SPWS. Each plant is divided into high-emission and low-emission plants,
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and the primary sources are High Emission Plants (HEP)-Coal, Oil, Low Emission Plants
(LEP)-Solar, and Nuclear plants. The GEP shows appraisals made at four levels out of solic-
itations. The two definite cases are envisioned with the inclusion of sunlight-based plants,
either as an exchange for oil plants or as an elective hypothesis in the second level [20].
The third level determines whether or not sunlight-based plants must limit their cut-off.
Similarly, in the fourth level, affectability review on the system’s GEP for various blends
of cut-off spotlights on daylight-based entryways (5–10%/10–20% of the total), treatment
and discipline costs for discharges from HEP and FOR acknowledged SPWNS and SPWS,
for six and 14-year masterminding horizons. A schematic outline of the case appraisals is
depicted in Figure 4.
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2.2. Distribution Network Expansion Planning with ESS

Distribution Expansion Planning (DEP) aims to reduce the computation weight of
the issue. Nevertheless, this could jeopardize DEP’s game plans’ accuracy, particularly in
tremendous scope control systems, where power may stream over significant distances. The
term “responsibility” refers to the act of determining whether or not a person is responsible
for their actions. It has consistently achieved a higher number of line speculations. However,
it has compressed the effects of setbacks on ideal transmission advancement [21].

2.2.1. System Modeling

The limitations placed on ESS have been damaged, which now contribute significantly
to voltage stability and power flow balancing [22]. Five primary factors need to be consid-
ered while deploying Storage Devices (SDs): total capacity in terms of power and energy,
charge-discharge rate of efficiency (η), self-discharging rate, and State-Of-Charge (SOC).
The ESS constraints and parameters are modeled as follows.

The charging cycle is assumed in Equation (4)

Str(t) = (1− δ∆t)Str(t− 1) + Pc∆tη/Cr (4)

The process of discharging is given in Equation (5)

Str(t) = (1− δ∆t)Str(t− 1) + Pd∆t/Crη′ (5)
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where ∆tη and ∆t are the charging rates of SD and discharge rate, respectively. ‘Pd’ and
‘Pc’ are the discharging and charging capacity of SD in terms of power, and ‘η′ is its
exact efficiency.

Pt(t) = Pc(t)− Pd(t) (6)

where Pt(t) is the power exchange between SG and SD, as given in Equation (6).

2.2.2. Storage Objective Functions

Due to their variant nature, RE resources disturb the QoP by introducing harmonics
and transients into the power profile [23]. The appropriate use of ESSs can reduce these
effects; however, some limitations are imposed on them, such as high configuration costs.
So, the primary goals, such as minimizing PL [24] and other ESS operations, are maxi-
mized with a little investment cost. The overall objective can be represented as follows in
Equation (7)

OBJ = min
k

∑
i=1

[
ziCipst +

T

∑
t

Pti(t)∆tq(t) +
T

∑
t

ziPi(t)∆tq(t)

]
(7)

where OBJ is the objective. ‘n’ represents the entire number of buses in the PS, ‘pst’ is
the price per energy from ESS, and q(t) is the unit energy cost at the current time ‘t’. The
second term in the OBJ represents network losses, while Pti(t) represents the total volume
of power supply at node ‘i’ and is expressed as follows in Equation (8),

Pti(t) = R{Vi(t)(
k

∑
i=1

YikVik)} (8)

Vi(t) represents the complex voltage at bus ‘i’, while Yik and Vik are the admittance
and voltage levels between bus ‘i’ and ‘k’ respectively. Equations (9) and (10) express the
power constraints at the respective buses.

Pi = Vi∑
j∈i

Vj(Gijcosθij + Bijsin θij) (9)

Qi = Vi∑
jεi

Vj(Gijcosθij− Bijsin θij) (10)

where Pi and Qi are the total and reactive PL at bus i, θij is the phase difference profile
between nodes, and Gij and Bij represent the corresponding conductance and susceptance
of the power supply.

The negligence of the network issue of DEP is incorporated, disregarding the oper-
ational cost of moving impact. Thus, a lossless DEP achieves a system procedure with a
lower development cost and higher framework disasters. DN deprivation permits adjusted
development with limits on legal expenses [25]. The natural calamity points to different
generations and additional inflows throughout the system. If disasters are unnoticed,
congested lines may not appear to be embedded. Such sequences are excluded from the
arrangement of the imaginary development choices. It is receiving the activation of an
additional agreement. Network issues have a significant impact on generator dispatch
solicitation. It consequently moves the framework’s progress game plan [26].

The recently referenced effects have been checked in two relevant investigations in
the results territory. Generally, a DEP prompts a framework arrangement with lower
general system costs. Thus, a trade-off has been refined between fragments with high
prices. Some additional investments are completed to mitigate their negative consequences
when misfortunes are acknowledged. The ideal control systems are studied to reduce
disasters and improve energy output ranges.
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2.3. DN Planning under Deterministic and Probabilistic Loading Conditions

Given the deterministic and probabilistic nature of load conditions, planning is con-
ducted from two perspectives: the consumer and the market. Since demand response
programs significantly reduce operational costs, the higher DPG penetration and the ESS
landing are reinforced by an efficient solution. An incentive-based method has been pre-
sented to improve the operation factor. BESS is installed and fulfills the nominal frequency
ranges [27]. Another heuristic methodology for optimal DPG formation arrangement has
been developed [28]. It authorizes an acceptable level of reduction in PL. Resistance as-
sessment is included without the monotonous computation of Optimal Power Flow (OPF)
investigation. Its review is found to be direct. A dynamic system for DPG units’ ideal size
and suitable hubs. Its measure is versatile, irrespective of any conditions.

Moreover, it depicts that the perfect territory for a DPG unit is to check its ideal size.
Moreover, it improves voltage profiles [29] by reducing system obstacles. A reconfiguration
methodology has been presented and recommended. It aims to disperse powers depending
on the Power Supply Capacity Index (PSCI) to maintain security challenges because of
the ascent in EV quantity with a space-based overall Active Distribution Network (ADN).
Consequently, a widespread and natural design is formed to recover all-electric vehicle
(EV) loads. After careful consideration, the PSCI ensures standard operating procedures for
a terrible power stream with uneven development. Direct load control exists, but ESS has a
flawless load prediction model. Peak load shifting could provide consumers with the most
optimal energy schedule. There has been some fine-tuning observed. The performance of
the heat transformer for retention is improved by vitality [30].

This method of intelligence relies on neural displaying to obtain a multi-variable limit.
It improves the controlled and uncontrolled boundaries of the current system, as shown
in Figure 5. As was mentioned in Section 1 that ESS has many DN applications [31]. An
actual ESS application for DN is its planning [32]. Most operations, whether load balancing
or mediation, take the first application into account [33].
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Mediation maintains ESS when energy is low-cost. It balances the load during peak
demand when electricity rates rise [34]. Thus, the load is distributed at a low cost through-
out the service’s lifetime. As shown in Figure 6, the practice of relieving load or balancing is
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also known as vacuum filling or emission reduction. Energy to charge the ESS is provided
by upstream networks (HV/MV stations) of traditional DN and other ADN sources during
low-load times. Uncontrolled DPG is powered by renewable sources [35] and turned by
small pumping resources. The charging and discharging rate in correspondence to time
are demonstrated, while the real PS difference between DPG and load due to the charging
and discharging of ESS is presented in Table 1. The optimization algorithm has adopted
the YALMIP optimizer toolkit for ESS while validating the operational and investment
costs. The charging and discharging behavior of SD, as well as its loading effects, have
been thoroughly investigated.
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Table 1. Energy exchange between an SG, ESS, and load.

Time
(h)

Net Energy
Exchange (MWh)

ESS
Status

Generated
SG Power

(MW)

Load
(MW)

1 4 Charging 279 264
2 4 Charging 279 264
3 4 Charging 279 264
4 4 Charging 279 264
5 0 No action 330 360
6 0 No action 330 360
7 0 No action 330 360
8 0 No action 330 360
9 5 Discharging 362 361
10 5 Discharging 362 361
11 5 Discharging 362 361
12 5 Discharging 362 361
13 5 Charging 385 361
14 5 Charging 385 361
15 5 Charging 385 361
16 5 Charging 385 361
17 5 Discharging 350 348
18 5 Discharging 350 348
19 5 Discharging 350 348
20 5 Discharging 350 348
21 2 Charging 310 300
22 2 Charging 310 300
23 2 Charging 310 300
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3. Modernized Considerations for DN Planning

Many personnel have developed careful DPG planning in size, and sites are also
positioned in DN using soft computing methodologies. Although DPGs produce dynamic
and responsive force shifts across various DPG methods, their modest size improves PS
productivity. Hence, about 10% to 20% of PL is dropped down through circulation by
setting it in the fitting area. However, improper DPG installation leads to immaturity and
overheating issues and delays active energy delivery to the system. At the same time, the
insufficient size of DPGs fails to recognize their potential. Similarly, redundant redistribu-
tion could lead to substantial investment costs. Choices about the sorts, areas, and length of
DPG advancements are firmly related, prompting countless usable arrangements dispersed
over a significant non-meeting space because of the intricacy brought about by effective
organization and energy stream execution. In order to make issues sensible, the factors
referenced above have not generally been considered. The case’s adaptability and construc-
tion are determined by the specific application requirements, divided into mechanical and
monetarily located applications. Here, three studies are presented: reliability, sensitivity,
and security. Using these studies, distribution companies manage their networks according
to the demands of DPG owners by availing cost beneficiaries.

3.1. Reliability Studies with DPG-ESS

The BESS’s organizing model in the dynamic ADN has been invented [36]. A presump-
tion-based static count method has the advantage of improving BESS reliability. It is devel-
oped for the direct and canny computation of the improvement in system resolve quality
with BESS during the development phases. Decision factors consolidate arrangement
factors and operational system control factors. A two-stage heading procedure for the ideal
masterminding of DPG embedded with ESS has been introduced [37]. A perfect method
for a local area-wide measurement determines the ideal generation, changes, power supply
warming, cooling, and different administrations [38]. The configuration planning is pre-
sented and characterized at the local area level using the Energy Hub (EH). Accordingly,
the planned issue limits the volume of capital and operational costs with factors address-
ing energy converters’ determination or capacity systems and connections. The diagram
hypotheses are used to design a model as a problem related to the MILP. An intelligent
task of DPG units in PS networks is to improve the dependability of the design systems.
The speculation list considers both unwavering quality and monetary perspectives [39].
The computation for the ideal situating and dimensioning of ESS has been developed to
improve a spiral system’s uncompromising quality by use of an optimization algorithm
based on the Teacher-Based Learning Method [40]. The area and size of the ESS signifi-
cantly affect the unfaltering quality of the network. Regardless, the number of ESS sets
determines the system’s standard cost. Subsequently, the calculation is intended to limit
the issue’s target capacity, such as costs related to non-supplied energy, an additional cost,
for example, the venture and operational cost of ESSs, and PL in DN. The ideal placement
of PV panels and BESS has been developed in DN [41]. This issue is multi-target progress
in which a proper design is accomplished in two stages with the hereditary calculation
innovation’s assistance.

3.2. Sensitivity Studies with DPG-ESS

At a primary level, the basic territories and started restrictions of the DPG are settled
using the striking Loss Sensitivity Factor (LSF) algorithm. The ideal foundation cut-off
points of the DPG are then developed to support the preferences and consistent quality of
the endeavor system voltage and to limit line losses. Following that, the Multi-Objective
Ant Optimizer (MOAO) is used to secure the Pareto-ideal courses of action. Ant Lion
Optimization (ALO) for ideal placement and estimated DPG-based SG sources for differ-
ent DN systems have been introduced, including the most suitable transports for DPG
establishment presented using LSF. Creating an astute framework to encourage the use
of wind energy is an ideal task for ESS and DPGs [42]. The stated objective is to limit
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the annualized investment costs, the standard benefits, and the variable costs in the two
periods of energy planning. Ideal zones and assessment of hybrid systems smoothing out
computation have been developed [43]. The minimal PL, voltage steadiness of the system,
and sizes of PV and limit are the huge targets obtained through logical Crow Search Opti-
mization (CSO) estimation. An ideal ESS and DPG assignment to help blend wind energy
has been introduced [44]. The IEEE 15-bus test framework affirms the proposed model
because of the distinct feature and the disproportionate cost of the dual phases. ADNs with
Multi-Objective Particle Swarm Optimization (MOPSO) were created by employing the
method for soliciting tendency by similarity to an ideal organization system in the presence
of non-linear burdens [45].

3.3. Security Studies with DPG-ESS

The two-level arrangement, including short-term and long-term planning, has been
demonstrated [46]. Its target capacity is to limit the yearly operational cost of the network,
subject to organized security needs. The proposed issue is created using blended non-linear
programming and is addressed by an adjusted PSO calculation. In order to adapt to natural
conditions, the case incorporates the responsive force of diesel DPGs. The ideal location of
ESS in DN to limit voltage deviations, line burden, and PL has been determined [47]. An
IEEE-33 medium-voltage bus system inspects the proper organization of dispersed ESS.
The Artificial Bee Colony (ABC) method is deployed to tune the boundaries of the objective
capacity. It has been solved using a Python platform that computerizes reproduction
occasions in a power factory. Jointly improving the limits and areas of decentralized
creation units and the battery energy stockpiling system has been performed [48]. The
perplexing issue of two-fold improvement is tackled imaginatively in two successive
advances. An iterative method beguiled by optimizing ESS capacity and location presents
an upper and lower cut-off of the rough issue’s ideal cost [49]. A proposition for an ALO
algorithm for the perfect task and a valued DPG-based renewable for the radial DN has
been developed [50]. To begin with, the most reasonable buses for the DPG establishment
are recommended as user-defined factors. The proposed system controls the DPG positions
and sizes of the selected buses. An ideal limit for the DPGs introduced to disregard
blockage on the mass framework’s transmission lines has been determined [51]. The Flower
Pollination (FP) algorithm has been incorporated to achieve the best limits at solidarity
levels and 0.9 power factors. The ideal Active Power Filter (APF) evaluation has been
calculated. A current injection technique has been employed to find feasible buses for the
APF placement in the presence of non-linear loads and DPG. Wolf Optimizer (WO) has been
used to distinguish its ideal size [52]. A hybrid ESS has been used to study the assessment
of the localization limit price of the decentralized production units [53]. It would enhance
the reliability of the radial DN. It comprises an ideal method dependent on the hereditary
dragonfly calculation, which imputes every DPG unit depending on its commitment
to improving dependability. In this article, “usual undelivered energy” has been used
as a proportion of “unwavering quality.” This method has advantages for distribution
companies, enabling them to manage their networks more reliably by providing suitable
incentives to DPG owners. By offering proper incentives to the possessors of the DPG, this
method allows the Distribution Company (DISCO) to manage the network more reliably.
The area, determination, and ideal activity of ESS batteries and capacitor banks in DN
have been analyzed [54]. In order to solve the problem, a non-linear blended number
programming model is proposed. Through proper planning, the model aims to reduce PL
in their DN.

The following are the problems developed by DN in the security plans of electricity systems:
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• Defect Levels-The distribution networks in urban areas are made achievable with the
highest short-circuit level. It helps keeping the consumer voltage as close as feasible to
the nominal level while reducing one consumer’s impact on another. Due to economic
considerations, distribution transformers, circuit breakers, and cables must be rated
as close as feasible to their maximum load. The installation of embedded generation
could increase the short circuit level above what the plant can tolerate because there is
so little space between operation and rating.

• Variations in Voltage-Since radial circuit distribution involves supplying some dispersed
clients. It is essential from an economic standpoint that they taper with time. A long
rural connection with embedded generation at the end will likely raise the local voltage
above the permitted limits.

• Network Security: The planning requirements for embedded generation network se-
curity connections maintain the pre-connection level of supply security. It adversely
affects the size and type of the embedded generator. It is possible that the local
system runs in island mode and is powered by the embedded generator in fault sce-
narios, where the SG’s supply is disrupted. Security is improved in this instance via
embedded generation.

• Network Resilience: When a defect occurs, the system dynamics can obtain excited,
and it is feasible that an embedded generator’s properties are such that the resulting
oscillations could trip the local network. Before connecting, a stability investigation is
performed using known generator dynamics, and if instabilities originate, stabilizing
networks are created using control systems theory.

4. Result and Discussion

Furthermore, this work has searched for the multi-objective (MO) functions for cost
reduction in terms of PL in the SG network through optimal placement of DPG-ESS, and
the comparative analysis of different MO functions with the single-objective (SO) function
is shown in Figure 7a–c. MO1, MO2, MO3, MO4, MO5, MO6, and MO7 represent different
MO functions where a few SG network parameters, such as PL, voltage variation, and ESS
placement and charging, are optimized.

In Figure 7a, this work investigated different OBJs’ comparative cost reduction analysis.
It has been observed that SO and MO1 with one variable for cost optimization in the
objective function perform well in minimizing installation and operation loss. Similarly,
after drawing Figure 7b, this paper has observed that with minimum cost, good voltage
stability is achieved, while in Figure 7c, natural and reactive PL for different OBJs’ are
analyzed, and it is observed that SO and MO1 outclass all the remaining objective functions
in a state of PL minimization.

The survey revealed several different algorithms and DNs. Additionally, it looked
at the ESS capacity, DPG, ideal site, size, and constraints of the SG network. This study
discovered that while some methods were costly and ineffective, others had minimum PL
and voltage stability. DN ESS capacity makes use of numerous ideal spots and dimensions.
ESS capacity and DPG require improvement. Figure 8a compares the DPG frequency
optimization algorithms and ESS size and locations in DN. It compares four algorithms:
PSO, ALO, GA, and others. The following related papers deploy PSO, ALO, and GA, and
only one article comes under another algorithm.

From Table 2, it is observed that the objective type for many related articles belongs to
MO. An almost equal number of searches had been performed on the SO-MO algorithms.
Algorithms such as clustering and sensitivity, PSO, Graph Theory, ALO [55], Teacher-
Learner-Based Optimization, Column-and-Constraint Generation, CSO, ABC Optimization,
Iterative, FP, Hybrid Tangent-Gold FP [56], WO, and Genetic-Dragonfly algorithms are
used to achieve SO-MO.
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Table 2. Objective analysis of this review.

Proposed Work Algorithm Objectives OBJ Type

An Optimal Planning of
Battery ESS [36] clustering and sensitivity annual net profit of BESS MO

Optimal Placement and
Sizing of ESS [40]

teacher-learner-based
optimization Low-operational cost MO

BESS location [41] GA Low-cost MO

Optimal Distributed ESS [42] Column-and-Constraint
Generation (C&CG) Less investment and operation costs MO

ADNs [45] PSO minimizing operational and
investment costs MO

Two-level Planning for
Co-ordination of ESS [46] PSO minimize annual operation cost MO

Optimal Placement of
Distribution ESSs [47] ABC Optimization voltage deviations and PL are less MO

DPG-based RE Sources [50] ALO minimal PL and consequently
maximizing the net saving MO

Optimal Capacities of DPG Units [51] FP less PL to obtain the optimal
capacities of DPG units MO

Optimal DPG Planning with
Integration of ESS [55] ALO PL, investment benefit, voltage

stability factor MO

In Figure 8a,b, respective algorithms and objective functions are depicted carefully.
The different MO functions are examined. This result proved that investment costs for
many research works, annual net profit, and PL for additional research are involved. The
literature on PL is more significant than that on investment costs.

Furthermore, the number of publications discussing investment cost outnumbers
those discussing PL and operational cost. So, in short, the sequence of the number of
literature based on objectives is presented as “Number of literature of PL > Investment cost
> PL = Operational cost > Annual net profit > Others.”

Utilization of Soft Computing Methodologies for Strategic Planning in DN

One of the optimal problem-solving and decision-making methods is the heuristic
method. With the aid of metaheuristics, the system offers a speedy resolution. DPG
planning models use different mathematical attributes to improve the physical model’s
efficiency, complexity, and reliability. An AI technique known as PSO can be used to
approximatively solve numerical maximizing and minimization problems that are highly
challenging or unsolvable. The PSO process flow begins with the initial populations of
particles, as shown in Figure 9. The article offers a possible resolution to the problem. After
that, the algorithm selects a particle and determines its target function. A confirmation
has been received regarding the particle limits. The current particle is discarded, and the
next test will be if the requirements are unmet. This is repeated to determine the objective
functions of every particle. The algorithm and final solution are selected if the merging
situation is acceptable. The AI algorithm iterates as often as necessary until a successful
result is obtained [57].

There is a discussion of the objective, the bus system, and the loading conditions.
Combined Heat and Power (CHP) improvements that are the best mix of reusable and
non-sustainable have been researched using efficient energy predictions. Mini turbines
and internal combustion engines are included. The enhanced PSO algorithm under which
it operates dramatically improves the service organization’s commercial benefit over the
urban landscape in its capacity as CHP owner and administrator. A binary clamorous shark-
smell algorithm was simulated for multiyear frequency development with sufficient power



Energies 2023, 16, 2655 17 of 24

flow. Some analytical and nature-inspired techniques are listed for different objectives and
test systems, as detailed in Table 3 [57–72].
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Table 3. Comparison of methods for DN planning available in the literature.

Article

DPG ESS Objectives
IEEE Bus

Test System
Loading

ConditionsPlacement Sizing Placement Sizing
Minimization Enhancement

Cost Loss Voltage Profile Stability

[57] - - Yes - Yes - - - 15 Probabilistic

[58] - - Yes Yes - Yes - - 123 Deterministic

[59] - - Yes Yes Yes - - Yes 33 Probabilistic

[60] - - Yes Yes Yes - Yes - 8500 Probabilistic

[61] - - Yes Yes Yes Yes - - 15 Probabilistic

[62] Yes - - - - Yes Yes Yes 33 Deterministic

[63] Yes - - - - Yes Yes - 33, 69 Deterministic

[64] Yes - - - - Yes Yes - 38, 69 Deterministic

[65] Yes - - - - Yes Yes Yes 33 Deterministic

[66] Yes Yes - - - Yes - - 33, 69 Deterministic

[67] Yes Yes - - - Yes Yes - 12, 34, 69 Deterministic

[68] Yes Yes - - - Yes - - 69, 123 Deterministic

[69] Yes Yes - - - Yes - - 69, 119 Deterministic

[70] - - Yes Yes Yes Yes - - 33 Probabilistic

[71] - - Yes Yes Yes Yes Yes - 6, 70 Probabilistic

[72] - - Yes Yes Yes Yes Yes Yes 34 Probabilistic

A hybrid PSO algorithm is helpful in SG optimal planning composed of fuzzy enti-
ties [73]. Different Voltage Stability Indices (VSI) have also been rendered with crossover
indices [74]. Higher computing adequacy is projected for the outcomes using the IEEE-12
bus, IEEE-69 bus, and Practical TN-84 bus frameworks [75]. Finding better voltage stability
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to look at its zone globally at a high combination rate made it possible to look into a cycle
of optimal DPG placement and reconfigure the DN simultaneously [76]. Smoothing out
counts for addressing the plans in investigated and thought-incited issues, and a couple of
centers are proposed to increase calculation capacity [77]. An Adaptive Neuro-Fuzzy inte-
grated Salp-swarm Optimization technique obtained the minimal principal volume through
organizational operations in power flow by tracking load differences for DPG-ESS [78].

The stochastic zone is essential to the functioning of the multi-target dynamic model [79].
The load transformers, DPGs, and static var Compensators were created using the Uncer-
tain Random framework. Volatile and incoherent diffusion stacks represent the system
because the effects of many alleged components on it are not considered. Finding the
optimal Pareto region reduces emission rates and disasters [80].

A new method has been used for improved voltage levels under various circum-
stances [81]. As different objectives come in category-wise, the fuzzy multi-goal feature is
helpful. From an optimization point of view, constraints are listed in Table 4a by referring
to [82–86]. The overall comparative studies are shown in Table 4b by referring to [85–87].

Table 4. (a) Considerations of constraints for optimization modeling. (b) Comparative analysis for
DN planning.

( a)

Article
Power

Balance
Equations

Voltage
Limits

DPG
Operating

Limits

Radial
Nature

Line
Current
indices

Location
Indices

ESS
Capacity
Ranges

ESS Charge
Rate Limit

[82] Yes Yes Yes - - - - -

[83] Yes Yes Yes Yes Yes - - -

[84] Yes - - - - Yes - -

[85] Yes Yes - - Yes - Yes -

[86] Yes Yes Yes - - - - Yes

(b)

Methods Merits Demerits Major Applicability

Numerical [85]

Non-iterative in nature Inaccurate Deterministic Model

No convergence problem Hard to get a generalized solution Single-Objective (SO) Problem

Easy to use High-level simplification Small DN

Derivative-free Premature convergence MO

Few iterations A local trap of solution Dynamic Models

Hybrid
Soft Computing [86]

Accuracy in solutions No commercial solver at ease Medium DN

Efficient computation Slower convergence Deterministic model

Effective for complex problems Non-robust in Nature Large DN

MO-Soft
Computing [87]

Faster convergence Massive training data MO

High accuracy in the solution Finding global optima needs
subsequent computation Dynamic models

Greater robustness No commercial solver at ease Medium DN

5. Conclusions and Future Work

For optimum integration of Distributed Power Generation (DPG) and Energy Storage
Systems (ESS), the planning measures for Smart Grid (SG) modernization is determined
by the consumer and market views. A detailed analysis of the performance and results of
existing algorithms paved the technique for the design of efficient hybrid Metaheuristic
Optimization Algorithms (MOA). At this point, shared ownership is essential to optimally
formulate an extension of the multiple allocating and sizing paradigms for DPG and ESS.
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The MO algorithms are then considered in an early planning stage, valid for deterministic
and probabilistic loading conditions. It also shows how to investigate the many challenges
related to DN using improvement methods. Regardless of the indisputable production
qualities of RE plants, it is necessary to promote further electric civilizations’ needs with
each RE plant’s final expansion. Over time, various philosophies have been developed for
storing energy generated from DPG. More financial professionals are enthusiastic about
these unusual energy sources’ potential to bring technological innovations. When planning
the expansion of production with decentralized grid power plants in cooperation with ESS,
special restrictions and reliability criteria are taken into account to simultaneously reduce
planning costs and environmental pollution. This paper has examined the relationship
between ESS uncertainties and DPG variations during the essential planning phases of
reviewing the exhaustive analysis.

In future studies, SG’s comprehensive planning would help optimize electric vehicle
charging and discharging.
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Nomenclature

AC Alternating Current
ADN Active Distribution Network
ALO Ant-Lion Optimization
AI Artificial Intelligence
APF Active Power Filter
BESS Battery Energy Storage System
CAESS Compressed Air Energy Storage System
CHP Combined Heat and Power
C-UC-CE Consolidated-Unit-Commitment and Capacity Expansion
CSO Crow Search Optimization
DC Direct Current
DEP Distribution Expansion Planning
DPG-ESS Distributed Power Generation and Energy Storage Systems
DISCO Distribution Company
DN Distribution Network
EH Energy Hub
ESS Energy Storage Systems
EV Electric Vehicle
FA Fault Analysis
FESS Flywheel Energy Storage System
FOR Forged Outage Rate
FP Flower Pollination
GA Genetic Algorithm
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GEP Generation Expansion Planning
HEP High emission Plants
HOA Hybrid Optimization Algorithm
HV High Voltage
LEP Low emission Plants
LSF Loss Sensitivity Factor
LV Low Voltage
MILP Mixed Integer Linear Programming
MO Multi-Objective
MOA Metaheuristic Optimization
MOPSO Multi-Objective Particle Swarm Optimization
OBJ Objective
OPF Optimal Power Flow
PG Power Generation
PS Power Supply
PSCI Power Supply Capacity Index
PSO Particle Swarm Optimization
PTHSS Pumped Type Hydro Energy Storage System
PV Photovoltaic unit
RE Renewable Energy
SCESS Super-Capacitor Energy Storage System
SD Storage Devices
SG Smart Grids
SMESS Superconducting Magnetic Energy Storage System
SO Single Objective
SOC State-Of-Charge
SPWNS Solar Plants with Non-Storage
SPWS Solar Plants with Storage
VSI Voltage Stability Indices
WO Wolf Optimizer
Notations
Bij susceptance of power lines
Cs

g the start-up cost of generator type ‘g’ [USD]
Cinv

l,g speculation cost annuity of generator type ‘g’ in year ‘x’ [USD/MW]
CUD unit span cost [USD/MWh]
Cvar

x the variable expense of generator type ‘g’ in year ‘x’
COx operational expense
D(X) project interest in the specified number of hours (h) to prepare for (t) years/time

and trimester tri (MWh)
Gij conductance of power lines.
IGl,g extra unit installed in year ‘y’ of generator type
LSx,t load shedding at hour ‘t’ in year ‘x’ [MW]
n total number of the bus
NG quantity of generator
Npump the course of action of all power plants except for siphoning plants
OBJ objective
pst price per energy from ESS
Pti(t) the total amount of power injection at node ‘i’
Px,t,g power provided by generator type ‘g’ at hour ‘t’ in year ‘x’ [MW]
Psrp (X) output yield of all unique system
pump arrangement of all pumping power plants.
Pc charging power of SD
Pd discharging power of SD
P real power
Q reactive power



Energies 2023, 16, 2655 21 of 24

q(t) unit electricity cost at the current time ‘t’
Str(t) charge state rate of SD
srp unique regime producer
Vi(t) the complex voltage at bus i,
Vik voltage level between bus ‘i’ and ‘k’
Yik admittance between bus ‘i’ and ‘k’
θij phase difference profile between nodes,
η efficiency of SD
δ corresponding discharge rate
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