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Abstract: The nuclear industry is exploring applications of Artificial Intelligence (AI), including au-
tonomous control and management of reactors and components. A condition assessment framework
that utilizes AI and sensor data is an important part of such an autonomous control system. A nuclear
power plant has various structures, systems, and components (SSCs) such as piping-equipment that
carries coolant to the reactor. Piping systems can degrade over time because of flow-accelerated
corrosion and erosion. Any cracks and leakages can cause loss of coolant accident (LOCA). The
current industry standards for conducting maintenance of vital SSCs can be time and cost-intensive.
AI can play a greater role in the condition assessment and can be extended to recognize concrete
degradation (chloride-induced damage and alkali–silica reaction) before cracks develop. This paper
reviews developments in condition assessment and AI applications of structural and mechanical
systems. The applicability of existing techniques to nuclear systems is somewhat limited because its
response requires characterization of high and low-frequency vibration modes, whereas previous
studies focus on systems where a single vibration mode can define the degraded state. Data assimi-
lation and storage is another challenging aspect of autonomous control. Advances in AI and data
mining world can help to address these challenges.

Keywords: condition assessment; artificial intelligence; deep learning; damage detection; signal
processing; data management; nuclear piping; concrete; advanced reactors; digital twin

1. Introduction

The energy sector and its industries are undergoing digitization with the rise of Artifi-
cial Intelligence (AI) and Big Data. Around the world, various applications of AI can be
seen in image recognition, language processing, transportation, Global Positioning System
(GPS), aviation, energy sector, and healthcare. The benefits of using AI in the industrial
energy sector, such as oil, gas, coal, and nuclear power plants, span from operational cost
reduction and increase in production efficiency to safeguarding life and property. In a
power plant, asset management and predictive maintenance of critical infrastructure can
be conducted with deep learning (DL) algorithms [1,2]. Robotics is another essential com-
ponent of autonomous management of power plants that can aid operators in performing
high-precision tasks in harsh environments [3]. With a rising demand for electricity, the nu-
clear industry is now exploring AI solutions for various tasks such as efficient operation,
improvement in the reactor design and operation, optimization of complex actions, detec-
tion of anomalies, and development of digital twins [4]. Multiple past and ongoing studies
are exploring autonomy and the concept of digital twins in advanced nuclear reactors [5–9].
Sensor data acquired from nuclear power plants can be utilized in autonomous control
systems to demonstrate reliability as well as identify appropriate operator actions for the
management of emergency and accident conditions [10,11].
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The automation industry fuels the use of robots, computational systems, machine
learning, control systems, information technology, and data handling to increase the quality
of production without a significant increase in the costs of manufacturing [12]. It also
defines various levels of automation that can range from acting independently without any
human interference to providing strategic recommendations to the operator. Designing a
level of autonomy for nuclear reactors and power plants can depend on the operational
and system flexibility standards, safety requirements, and staffing protocols of the facility.
The United States Department of Energy (DOE) focuses on the design and development of
automation in the nuclear sector. DOE programs such as Modeling-Enhanced Innovations
Trailblazing Nuclear Energy Reinvigoration (MEITNER) [13] and Generating Electricity
Managed by Intelligent Nuclear Assets (GEMINA) [14] are a few of these recent initiatives.
Similar digitally-focused programs are also being explored by other countries around the
world such as France [15] and Korea [16,17].

The performance of an autonomous control and management system depends on the
reliability of its digital twin and the accuracy of condition assessments. A Digital Twin
(DT) serves as a virtual replica (digital model) of a real system that can be updated in real
time by using data from sensors, and it also integrates the system’s aging and performance
history. It consists of three major components: the physical space, the virtual space, and the
connected data that tie the physical and virtual space together. The concept of a DT was
first introduced in 2003, by Dr. Grieves [18], for product lifecycle management. Since
its inception, the DT concept has been applied successfully in various fields [19] such as
space and aircraft industry [20–23], automobile industry [24,25], production and product
design [26–28], health care [29], civil systems [30–34] and disaster management [35]. Addi-
tionally, many recent studies [36–42] explore digitization of the control and management
processes in the nuclear sector by designing digital twins. Another study [43,44] proposes a
conceptual framework for an integrated digital environment for fission and fusion nuclear
power plants. It emphasizes the importance of condition assessment and extraction of data
using non-destructive inspection techniques, such as health monitoring using real-time
sensor data.

The DT is often connected to its real-life counterpart with the acquisition of real-time
sensor data. The sensor data can be used to update the digital twin model such that the
DT model replicates the functions of its real-life counterpart as well as captures the aging
of its real-life counterpart. The replication of the functions and operations can be carried
out with high-fidelity simulations. The aging of any system can be captured and predicted
with a condition assessment framework. Thus, a condition assessment framework built
using AI technology forms a part of the entire digital twin model. The AI typically uses
sensor data acquired from the real-life system to predict anomalies, damage, aging and
degradation in the system. However, AI can also be used to obtain synthetic real-time data
in the case of sensor malfunctions, data manipulation, etc. Traditional ML techniques such
as supervised or unsupervised learning can be used to achieve either of these goals.

As per the International Atomic Energy Agency (IAEA) [45], a nuclear power plant
consists of various structures, systems, and components (SSCs), some of which are the
pressure vessel, reactor vessel, concrete containment building, steam generator, piping-
equipment systems, etc. The structural and functional integrity of a nuclear power plant
depends on the health or condition of its SSCs. Previous research [46–54] highlights the
importance of aging as well as post-hazard scenarios on the operational condition of
SSCs and its direct impact on the Probabilistic Risk Assessment (PRA) of a nuclear power
plant. Exposure to environmental factors such as extreme temperatures, natural hazards,
radioactive zones, corrosive elements, etc., can cause the degradation of vital SSCs [55].
Predictive maintenance and detection of progressive degradation must be conducted using
condition assessment frameworks to ensure safe operations. Some studies [56–61] develop
preliminary condition assessment frameworks to detect degradation due to flow-accelerated
corrosion and erosion in nuclear piping-equipment systems, whereas some others focus on
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modeling structural damage such as cracks in concrete structures or chemical damage in
concrete due to chloride attack or Alkali–Silica Reaction (ASR) [62–67].

The use of AI technologies such as deep learning (DL) with its Artificial Neural Net-
works (ANNs) and Convolutional Neural Networks (CNNs) can prove to be beneficial to
emerging condition assessment frameworks. Digitization of data collected from nuclear
power plants and appropriate feature extraction techniques can enable predictive mainte-
nance of SSCs. However, the use of AI algorithms for the condition assessment of nuclear
SSCs poses some challenges such as (i) data storage, handling, and management, (ii) cyber
security, (iii) availability of computational resources, and (iv) reliability of diagnosis. This
paper provides a summary of current and past projects for the condition assessment and
structural health monitoring of nuclear SSCs as well as other structural and mechanical
systems. This information is reviewed and discussed in Sections 2 and 3. The challenges of
employing AI solutions to the predictive maintenance of industrial facilities such as nuclear
power plants are described in Section 4. Section 5 provides important future directions in
this area of research.

2. Past Condition Assessment Studies

Condition Assessment or Structural Health Monitoring (SHM) is used in the lifecycle
management of SSCs, and to detect any damages during routine maintenance procedures.
Various Non-Destructive Testing (NDT) techniques can be employed such as the use of
ultrasonic waves, acoustic waves, chemicals, computer vision and imaging, sensors to
obtain time-series data, etc. In power plants, typically sensors are installed at various
locations to continuously measure sensor data. Data processing and feature extraction are
carried out to detect any anomalies and damages in the structures and systems. NDT using
continuously acquired sensor data from the plant can be conducted without halting any
plant operations, thus reducing any loss of revenue from plant outages.

Recently, there has been an increase in the use of AI for the condition assessment
frameworks [68–71]. The implementation of machine learning techniques is identified
as an efficient approach for accurate data interpretation, integration, and extraction from
the acquired sensor response. Data-driven machine learning approaches such as artificial
neural networks (ANNs), support vector machines (SVMs), convolutional neural networks
(CNNs), fuzzy logic, k-means clustering, and principal component analysis (PCA) have
been employed with promising results for damage detection in recent studies. The fol-
lowing subsections provide a summary of past SHM and condition assessment studies
that have been developed for various applications and different types of structural and
mechanical systems. These studies represent the state-of-the-art for AI-based condition
assessment in not only nuclear but also non-nuclear applications such as buildings, bridges,
utility pipelines, aircraft, wind turbines, etc. Previously built algorithms that have shown
good results for SHM in non-nuclear applications, such as machine learning, deep learning,
signal processing, feature extraction, etc., can be applied to the nuclear energy sector as
a baseline with future enhancements specific to the nuclear application. These studies
provide valuable input for nuclear industry applications.

2.1. Structural Systems

Condition assessment or SHM is required to enhance the safety and reliability of
structural systems, such as building frames, bridges, utility pipeline networks, etc., and to
reduce the associated maintenance life-cycle costs. The advantages of using machine
learning algorithms in such frameworks include feature learning, reduction of noise, data
manipulation, and parallel computing. Features extracted from the sensor response of the
structural system can be utilized to learn about the system’s degraded state. Typically,
extracted features include the modal attributes, Frequency Response Functions (FRFs),
Fast-Fourier Transform (FFT), Power Spectral Density (PSD), Short-time Fourier trans-
form (STFT), Wavelet transform (WT) and Hilbert–Huang transform (HHT). A condition
monitoring strategy for nuclear piping systems is developed by a few studies [72–74] to
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detect damage by recording changes in the system’s modal properties and acquired FFT
plots. Modal attributes such as mode shapes, natural frequencies, damping ratios, resonant
frequencies, etc., can be easier to obtain when compared to other feature extraction tech-
niques. However, they can be insensitive to minor damage in multiple damage locations
for large structures [75]. These features are also very sensitive to boundary conditions,
sensor locations, and noise due to environmental effects on structures [75–77].

Some studies [78–83] utilize the system’s FRFs to define damage indices as the learn-
ing parameter for ANNs. Using FRFs as a damage detection parameter requires prior
information on the input excitation load. In these studies, structural systems, such as
framed buildings, cantilever beams, bridge models, etc., are used to develop the health
monitoring framework. Instead of extracting features and defining damage indices, the en-
tire sensor response acquired from the structural system can also be used for condition
assessment using high-performance CNNs. Past research [84] explores the use of CNNs
to detect damage in an experimental stadium seating grandstand simulator by feeding
the entire acceleration-time-series response into the neural network framework. In a sim-
ilar study [85], one-dimensional CNN is employed for structural damage detection in
a four-story steel building using the complete acceleration-time-series sensor response,
and damage is introduced by loosening the bolts between various framing elements of
the structure.

The development of CNNs was first conducted in 1998 [86] for handwritten character
recognition using two-dimensional (2D) images. Since then, CNNs have been predomi-
nantly used for image classification and computer vision applications. In the field of SHM,
CNNs can be utilized to extract damage-sensitive parameters from the images of acquired
sensor data signals. Studies to identify structural anomalies in long-span bridges [87] and
damage in steel jacket-type wind turbine foundations [88] use CNNs along with images
of acceleration-time series signals as the input data. Other techniques such as ultrasonic
signals, electromagnetic impedance signatures, and guided wave imaging can also be used
to detect cracks or holes in structural plates using CNNs [89–91]. Pretrained CNNs such
as ResNet, Alexnet, etc., and transfer learning algorithms can be employed for SHM or
condition assessment in towers, concrete structures, and bridges [92–94].

In another approach, the time-series signals collected from sensors installed on the
structural systems can be transformed to obtain frequency plots (FFT, PSD) or time-
frequency plots (STFT, HHT, wavelet transform, and Teager–Huang transform). These
plots can be further processed to extract damage-sensitive features for training the machine
learning algorithms. Few past studies [95–97] explore the PSD of the sensor response
as a promising damage assessment feature for bridges and structural beams. Either the
entire PSD spectrum or the spectral moments obtained from the PSD spectrum can be
used as damage-detection features along with unsupervised machine learning K-means
clustering algorithm or the Kalman filtering technique. In a recent study [98], the PSD
from nuclear piping-equipment systems is processed to extract a vector containing damage-
sensitive information, and ANNs are used to conduct a post-hazard condition assessment
of the systems. Damage indices can also be defined from time-frequency domain features,
such as HHT [99–101] or STFT [102], to train supervised machine learning such as SVMs,
ANNs, and CNNs and conduct condition monitoring of buildings, bridges, and nuclear
piping systems.

2.2. Mechanical Systems

Mechanical equipment, turbines, and other power generation systems require regu-
lar inspections and maintenance for a seamless flow of operation and energy production.
The condition assessment of such mechanical systems helps in reducing maintenance costs
and preventing accidental failures. The health monitoring of mechanical systems such as
wind turbine blades has been carried out in the past with various NDT techniques such as ul-
trasonic waves, acoustic emissions, radiographic waves, electromagnetic waves, etc. [103–108].
In most studies, a damage index or indicator is utilized to train machine learning algorithms
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such as ANNs [109], SVMs [110,111], CNNs [112] and decision trees [113], and diagnose
the condition of the wind turbine. The most common causes of failure include mechanical
defects in the bolted or welded connections between the turbine blade and the rotating motor.
Fatigue build-up and cracks due to high winds can also be a leading factor for wind turbine
damage. In 2019, a study [30] reviews the monitoring systems used in the digital twin models,
by applying modern sensing techniques to a wind turbine. The measured sensor data are
used to identify structural changes and deterioration. In addition to these studies, there have
been efforts to develop digital twins for wind farms [33,34].

The wings of an aircraft can undergo excessive deformation or buckling due to dy-
namic loads or exhibit impact damage and fatigue crack propagation. Previous stud-
ies [114–117] carry out the condition assessment of aircraft wings using SHM and machine
learning approaches. In addition to the wings of an aircraft, past work has also been fo-
cused on developing digital twins for the space and aircraft industry. In 2012, the National
Aeronautics and Space Administration (NASA) re-defined the DT concept as “integrated
multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system that uses
the best available physical models, sensor updates, fleet history, etc., to mirror the life of its
corresponding flying twin” [20]. This study proposes a DT application for a future NASA
vehicle (employed in space and controlled remotely) that would enable a proactive approach
instead of the traditional reactive approach toward the assessment of vehicular structural
health. Another study [21] presents a conceptual DT model for predicting aircraft structural
life and assessing its structural integrity. Simulations are carried out using a structural
Finite Element Model (FEM) for the aircraft frame. After feeding the as-built structural
information along with the time–history response of the aircraft frame for a virtual flight,
the DT damage models can predict the progression of damage as well as the aircraft’s new
state. These DT models include SHM systems and Bayesian updating processes. Another
study [22] demonstrates the use of guided wave responses for the SHM of an aircraft
to predict damage. The 3D FEM aircraft model is created using Abaqus, and a Genetic
Optimization Algorithm is used to select sensor locations. A recent study [23] also presents
the application of Dynamic Bayesian Networks (DBN) for the SHM of an aircraft’s wing.
The FE models are created to include aircraft wing crack geometry and then compared
to as-built models to predict structural damage using DBN. This approach allows for un-
certainty incorporation into the digital twin models, in order to predict the probability
of future structural failure. One study [118] explores the use of physics-informed neural
networks (PINNs) to predict corrosion fatigue in aircraft wings. Cyclic loading as well as
saline corrosion are considered. The physics driven methodology is used to simulate crack
propagation due to fatigue and the neural network layers are used to detect damage due to
corrosion. Cracks in the material are predicted using the proposed technique.

A lot of studies have been conducted for the autonomous control and maintenance
of automobiles using machine learning and digital twin technology. Past research [24]
demonstrates a digital twin model for predictive maintenance of an automobile brake
system, by utilizing key technologies such as the Internet of Things (IoT) and Cyber-
Physical Systems (CPS) to generate and analyze sensor data. Machine Learning algorithms
such as filter and wrapper-based methods are used for the prediction process. Another
study [25] presents a digital twin concept on monitoring sensors for the performance
evaluation of propulsion drive systems in electric autonomous vehicles. In this study,
the authors suggest the use of algorithms such as Kalman filters, support vector machines,
neural network architectures, and deep learning techniques such as Convolutional Neural
Nets, for future digital twin development. Physics-guided machine learning has also been
proposed for detecting cyberattacks in electric vehicles by using physics-guided feature
extraction to train a machine learning classifier algorithm such as RNNs [119].

Data integration and its extraction is an important aspect of condition assessment
applications during product design and manufacturing. In 2016, the concept of Automa-
tionML technology is proposed for data exchange between various systems comprising
the digital twin data modeling process [26]. This included creating and defining a model
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(industrial valves), extracting key information, and developing an information system to
provide component information to the consumer. Another study [27] demonstrates a
simple condition assessment model of a bending test bench which includes the physical
test bench, its digital model, and a data connection system, whereas different research [28]
demonstrates the integration of sensor data and manufacturing data for the digital twin
of physical machines. A case study is presented for a three-axis vertical milling machine.
Sensor data are used to incorporate machine-specific features and predict surface rough-
ness. This study proposes the future use of Artificial Neural networks (ANN), Genetic
Algorithms (GA), and fuzzy logic as powerful tools to process a large amount of data that
includes interdependent parameters.

A summary of current SHM and condition assessment applications, along with the
employed ML algorithms and training features, is provided in Table 1. Some of the
limitations of extending existing studies to nuclear applications are mentioned as follows:

• Most of the past studies are related to non-nuclear applications and the proposed
frameworks are typically focused on detecting major damage such as cracks, notches,
or fissures in the system. A condition assessment framework for nuclear structural
and mechanical systems should be able to detect minor degradation as well as the
onset of degradation, such as fatigue accumulation in piping systems and chemical
reactions in concrete structures;

• Furthermore, the previous studies either employ large datasets collected directly from
the sensors or define specific damage-sensitive indices to train the machine learning
algorithms. In nuclear applications, the amount of time to take action against an
anomaly in the system is very important and any erroneous or late decisions can result
in nuclear accidents. Using large datasets, without any data preprocessing and feature
extraction, can necessitate the installation of expensive computational resources;

• It is also shown that using damage indices defined by previous studies for non-nuclear
applications can result in poor prediction accuracies because of the differences in the
acquired dynamic response [56].

Thus, condition assessment frameworks built specifically for the nuclear energy sector
need to be sensitive to minor degradation, define effective physics-based feature extraction
techniques, demonstrate a verification and validation procedure, and produce safe and
reliable results.

Table 1. SHM and condition assessment: State-of-the-art.

Applications ML Algorithms Training Features

Structural systems: steel and
concrete buildings, bridge
models, cantilever beams,
stadium seating grandstand,
wind turbine foundations,
structural plates, towers, nu-
clear piping

ANNs, CNNs,
SVMs, K-means
clustering, Kalman
filtering

FRFs, FFT, PSD, STFT, WT,
HHT, time-series data, im-
ages of sensor data, ultra-
sonic signals, electromag-
netic impedance signatures,
guided wave imaging

Mechanical systems: wind
turbine blades, aircraft wings,
automobiles, product design

ANNs, CNNs,
SVMs, DBN, GA,
Fuzzy logic, Deci-
sion trees, Kalman
filtering

Time-series data, guided
waves, sensor data on
machine-specific features,
images of equipment

3. Current Initiatives in the Nuclear Industry

The condition assessment and maintenance of aging structural and mechanical systems
in a nuclear power plant have been the focus of recent research. A continuously functioning
condition assessment framework with digital twin integration capabilities can provide
information on the structural health and the integrity of systems. The diagnosis from such
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a framework can act as an additional input to the operators towards making operational
decisions. These frameworks can also be applied during the design and construction of new
advanced nuclear reactors. Sensors and data acquisition systems can be in-built, and the
construction process of new reactors can benefit from digital twin technologies [3,42,120].

3.1. Recent Efforts towards Automation in the Nuclear Industry

A unique and key aspect of automation in nuclear power plant safety relates to the
critical role played by condition assessment of safety-related equipment. This is particularly
critical in the development of autonomous monitoring and control systems. The accident
at Three Mile Island nuclear plant illustrates this aspect quite explicitly. Any degradation
in the safety-related piping and equipment at a nuclear plant has the potential to result in a
loss of coolant which can eventually lead to a nuclear accident. Therefore, any autonomous
monitoring and control system at a nuclear plant must rely on a robust condition monitoring
system and alert the operators and stakeholders accordingly.

The future of nuclear energy and its operation with automated digital engineering
seems to be the current focus of several United States Department of Energy (US-DOE)
sponsored research projects. The US-DOE is investing in research targeting the automation
of nuclear power plants with programs such as MEITNER [13] and GEMINA [14]. In a re-
cent report [121], the Idaho National Lab attempts to build a digital twin of the Microreactor
Agile Non-Nuclear Experimental Testbed (MAGNET) [122] by using continuous real-time
capture of sensor data. The digital twin system consisting of machine learning algorithms
is able to predict the high temperatures in piping systems that carry residual heat from the
reactor core. The goal of the ongoing MEITNER program is to design cost-effective and safe
advanced nuclear reactors. The use of modern equipment, high-fidelity simulation tools,
and AI implementation is encouraged. With existing nuclear power plants undergoing
retirement and relatively high construction costs of recent nuclear construction, this project
has identified the need for safe, reliable nuclear reactors with low construction capital costs,
quicker construction timelines, and modular manufacturing. Maintenance programs with
condition assessment frameworks can utilize robotics for computer vision, visual sensing,
data processing, damage detection using ML algorithms, cyber security, etc.

Under the MEITNER program, the NAMAC project aims to build an autonomous
management and control system for advanced nuclear reactors [5,123]. Some studies [10,37]
under the NAMAC project explore the design of a digital twin system for all aspects of an
autonomous control system such as diagnosis, checking discrepancies, assessment of strategies,
and prognosis. The loss-of-flow scenario is considered in a simulation-enabled digital twin of
Experimental Breeder Reactor II. Machine learning algorithms, such as ANNs and Recurrent
Neural Networks (RNNs), are utilized to identify the anomaly in operations, design a decision-
making framework, and provide strategic recommendations to the operator for potential
actions. Machine learning consists of statistical algorithms that create relationships between
the input and output data. However, the lack of physics-based knowledge in a typical ML
algorithm can result in erroneous predictions. As a part of NAMAC, previous studies [124,125]
propose physics-guided machine learning as a solution to this problem. In these studies, a loss-
of-flow scenario is selected for testing the physics-guided machine learning. An additional
term representing the physical knowledge of the domain of application is added to the loss
function in the machine learning algorithm. Additionally, physics-guided feature extraction
from the collected time-series sensor data are also considered. The model is tested using RNNs
as well as physics-guided RNNs, and it is found that the physics-guided machine learning
framework is able to perform with higher accuracy and less uncertainty than a standalone
machine learning framework. Another study in the NAMAC project [38] analyzes the effect
of data coverage, such as real-time data outside the training database, on the performance of
ANNs and RNNs for NAMAC. A framework to capture the epistemic uncertainty of neural
networks (NNs) is proposed. Another study [126] develops a safety-significant factor using
RNNs to capture a loss-of-flow accident and predict the peak temperature of fuel assemblies
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in the reactor core with only one sensor. The robustness of the proposed approach is also
illustrated against sensor malfunctions and noisy signals.

Similar to the MEITNER program, program GEMINA targets building digital twin
technology for next-gen nuclear reactors along with sophisticated Operation and Mainte-
nance (O&M) programs. One of the outlined goals is to reduce O&M costs at nuclear power
plants by 10 times their current expenditure. Achieving a cost-effective solution with condi-
tion assessment technology can enable economic competitiveness for the nuclear energy
sector compared to the renewable energy industry. Under this goal, AI-based condition
assessment of nuclear systems and their predictive maintenance is being explored. One
of the sub-projects under the GEMINA program called maintenance of advanced reactor
sensors and components (MARS) [127] is focused on designing sensors, data acquisition,
and employing machine learning for fault detection in nuclear components and systems.
Another program [128] is investigating ways to reduce O&M costs using condition as-
sessment frameworks and predictive maintenance. A boiling water reactor is selected as
the application case study which is also being used to design high-fidelity digital twins
along with probabilistic machine learning algorithms [129]. A similar product focusing
on the development of digital twins for molten-salt advanced reactor systems is being
developed along with health monitoring capabilities and an intelligent controller system
for the operator [130].

Another program by the US-DOE called the Nuclear Energy University Program
(NEUP) aims to highlight the research conducted by the next generation of leaders in the
nuclear energy sector. Multiple projects featuring the use of AI-based technologies are being
conducted in the nuclear field. Online monitoring technology with diagnostic capability
is being developed as a part of a current study [131]. The use of Bayesian networks is
highlighted along with recommendations for an asset management platform. An ongoing
project [132] investigates an autonomous system for monitoring the components of a nu-
clear reactor. The use of sensor technologies and robotics is proposed for data acquisition
along with data-driven operational anomaly detection. Another project [133] is developing
an autonomous control system with remote operational capabilities for advanced microre-
actors by using deep learning algorithms. Real-time data will be collected from a research
reactor. One project [134] aims at developing physics-guided machine learning tools to ac-
celerate fuel development and its qualification. A similar project [135] on physics-informed
machine learning explores the processing and the acquired properties in metal additive
manufacturing. One project [136] predicts void swelling in nuclear structural systems such
as reactor steel by utilizing data-driven methodologies such as transfer learning, which
is a subset of machine learning. Material testing for microstructural defects in nuclear
construction is being studied in one project by using computer vision and machine learning
techniques [137]. In addition to the above, probabilistic risk assessment (PRA) can also
be enhanced by using machine learning models to reduce uncertainties in the existing
data. In this ongoing project [138], a fire hazard at a nuclear power plant is considered
and a framework is being developed to recognize parameters that highly affect the PRA of
the nuclear facility. Another project [139] aims at designing a robotic platform to collect
sensor data from the nuclear power plant, detect anomalies in the system, and perform
diagnosis. This would form a part of an online monitoring system with maintenance and
risk assessment capabilities.

3.2. Condition Assessment of Piping-Equipment Systems

The piping-equipment systems in nuclear power plants are part of critical safety
assessments and their integrity is essential for operating the plant as well as for managing
any emergency or accident conditions. These systems can be subject to harsh environments
due to high pressures and high temperatures. Typically, nuclear power plants conduct
NDT of piping systems during scheduled outages as part of the maintenance procedures.
Scanning the entire piping system is not feasible during an outage and is impractical.
A condition assessment framework that collects sensor data from the plant’s piping systems
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during normal operation can cut down the time required for maintenance by providing
information to the maintenance crew on very few potential degraded locations.

NDT technologies include chemical penetrants, ultrasonic waves, eddy currents,
magnetic waves, acoustic waves, radiography, etc. [140]. A recent study [141] explores
guided ultrasonic waves for inspection of nuclear reactor piping systems and integration
within a digital twin framework. Digital twins of the components are created using finite
element simulations and wave propagation. Another study [142] employs AI tools such as
CNN and Long-Short-Term-Memory (LSTM) to detect welding defects in vacuum vessel
manufacturing. One research study [143] combines magnetically-coupled resonant wireless
power transfer and eddy current testing along with machine learning PCA and ANN to
detect cracks in aluminum tubes. Thermal sensing can also be used for leak inspection of
nuclear waste disposal pipeline networks with fairly high accuracy [144]. Although the
aforementioned NDT techniques show commendable results, they can be expensive, time-
consuming, and difficult to employ. These methods often require manual setup of the
equipment and highly trained professionals to conduct the NDT [145].

A recent study [56] investigates the role of deep learning in the post-hazard condition
assessment of nuclear piping-equipment systems after an important external hazard such
as an earthquake. It highlighted the need for an automated, efficient, and cost-effective
framework to detect degraded locations in nuclear piping systems. Over time and constant
use, the piping-equipment systems in a nuclear facility are subjected to flow-accelerated
corrosion and erosion [146]. This leads to a thinning of pipe walls and an overall structural
stiffness reduction. Degradation due to a reduction in pipe wall thickness can cause cracks,
leaks, and nuclear accidents. Therefore, the research [56] focuses on detecting degradation
due to pipe wall thinning at structural discontinuities of the system. In this study, a feature
extraction method is proposed to generate a vector of degradation-sensitive quantities from
the PSD plots of the acquired sensor response. High-fidelity finite element simulations are
used to generate sensor data for two different nuclear piping-equipment systems, as shown
in Figure 1a,b, subjected to seismic loads.
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Figure 1. Nuclear piping-equipment systems [56]. (a) piping system 1; (b) piping system 2.

In addition to damaged locations, it also featured the detection of damage severity.
Since multiple locations can undergo various levels of damage, this study classified damage
as minor, moderate, and severe along with the incorporation of uncertainty corresponding
to each severity level. The research demonstrated the limitations of directly incorporating
the previously defined single damage indices in other structural applications such as build-
ings and bridges for the purpose of detecting degradation in nuclear piping-equipment
systems. Deep learning algorithms are used to design an ANN for the post-hazard con-
dition assessment framework, as shown in Figure 2. A sensor placement strategy is also
explored. A 99% prediction accuracy is achieved for detecting degraded locations as well
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as their level of severity for the multi-branched piping system from a two-loop light water
reactor, as shown in Figure 1b.
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Figure 2. Deep neural network.

In addition to a post-hazardous scenario, the structural and mechanical systems of a
nuclear power plant can be subject to various operational vibrations [147]. For example,
the piping systems connected to pumps can undergo pump-induced vibrations. Experienc-
ing continuous vibrations can cause additional stress on degraded locations, initiation of
cyclic fatigue and cracks, and an increase in the chance of pipe rupture. Currently, a study is
being conducted related to pump-induced vibrations in nuclear piping-equipment systems
and the use of deep learning algorithms to detect degraded locations that may accumulate
fatigue due to vibrations [59]. Furthermore, this condition assessment AI framework can
be extended to include stress calculations, design code requirements for avoiding cyclic
fatigue [148], and subsequent recommendations for the operator on pump operational
speeds. A similar study, based on finite element simulations to collect sensor data, is able
to achieve an error of only 2% [149] for detecting defects in welds of nuclear piping using
deep fuzzy neural networks and finite element simulations to gather data on welding
residual stresses.

Although the aforementioned studies achieve significant success in detecting damage
using simulated sensor data, the validation of the condition assessment framework and its
machine learning algorithms needs to be conducted. Uncertainty due to noise, multiple
degraded locations, non-uniform degradation severity, etc., are some of the factors that
can affect real-time sensor data collected from an actual nuclear power plant. However,
acquiring sensor data from nuclear power plants can require additional security and
regulatory clearances. Therefore, there is a need for studies focusing on the experimental
validation of existing AI-based condition assessment frameworks for nuclear applications.
Past experimental research [57] to detect flow-accelerated corrosion in nuclear piping
systems utilizes laboratory designs to construct pipe networks similar to the secondary
loop of a nuclear power plant. The damage is introduced by thinning the pipe walls using
chemicals over a period of 10 days. Acquired sensor data are transformed using HHT
and the performance of machine learning algorithms such as SVM, CNN, and LSTM is
compared. Only LSTM is able to predict non-uniform damage in the piping system with
96% accuracy.

3.3. Condition Assessment in Concrete Structures

In any nuclear plant, a substantial part of the structure is made up of concrete. The func-
tionality of these concrete structural systems extends from serving as the building’s load-
bearing capacity to radiation containment and leak tightness [150]. In addition to with-
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standing external hazards (such as earthquakes, floods, tornadoes, impacts, etc.), concrete
used in power plants must retain its strength throughout the operating lifetime of the
plant. Aging in concrete due to chemical reactions such as chloride-induced degradation
or Alkali-Silica Reaction (ASR) can lead to degraded systems with less than desirable
resiliency. Critical infrastructures such as nuclear power plants are currently over about
four to five decades old and require condition assessment techniques to detect aging-related
degradation in concrete.

One study [151] highlights the need for classifying defects in nuclear concrete struc-
tures using NDT techniques. Various ML algorithms such as SVMs, Decision Trees, Logistic
Regression, k-Nearest Neighbor (kNN), and Naive Bayes are compared. In addition to that,
the study also proposes an integration strategy to combine the output results from various
ML techniques by using statistical operations such as sums, averages, and square-root-of-
sums-of-squares. The integration strategy aims to establish redundancies in the predicted
outputs from various ML algorithms. It is observed that higher performance and reliability
are achieved by an integration of classification prediction. Concrete used for shielding any
radiation at nuclear power plants can also experience strength reduction over decades of
use. A study [152] explores the use of the Least-Squares SVM machine learning algorithm
to calculate the current strength of radiation shielding concrete. The results show a Root
Mean Square Error (RSME) of less than 3% in predicting the overall concrete strength.

A recent study [63] aims to simulate chloride-induced damage in concrete and its
detection using deep learning algorithms. Most of the advanced small modular reactor
designs [153,154] assume an underground concrete containment that houses the nuclear
reactor for the nuclear power plant. A soil rich in chlorides can interact with adjacent
concrete structures to eventually corrode the underlying reinforcement bars and increase
the internal stresses developed in the concrete. This can lead to localized and major cracking
of concrete structural systems. Chloride degradation at early stages can be detected through
the use of a systematic structural health monitoring (SHM) approach. This research [63]
develops an integrated SHM framework for propagating various uncertainties through
a multi-step chloride simulation and detecting non-uniform chloride degradation using
a physics-trained AI algorithm. The uncertainties in chloride concentration and concrete
properties are propagated in the simulations of chloride diffusion, reinforcement corrosion,
and corrosion-induced concrete damage. Then, a novel methodology is developed by
conducting a simulation-based NDT using finite element (FE) models that can represent
the non-uniform degradation in a cylindrical ring concrete structure (Figure 3).

Steel Liner

Reinforcement

Concrete

60 inch

14 inch

72 inch

3 inch

0.75 inch diameter

(a) (b)

Figure 3. FEM of concrete ring structure [63]. (a) concrete ring structure; (b) degradation in model.

A physics-based feature extraction method is developed to identify degraded-sensitive
features. Lastly, an ANN model is created by learning from a data repository of degraded-
sensitive features to predict the severity of degradation at multiple degraded zones.
Degradation-sensitive features are extracted to train an ANN, as shown in Figure 4, to detect
chloride-induced degradation locations and their severity with 97% accuracy.
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Figure 4. Improved artificial neural network model [63].

Similar to chloride-induced degradation, ASR can impact the structural resiliency
of nuclear concrete systems. Over time, the alkali in concrete can react with the silica
present in the aggregate to produce a gel. In the presence of moisture, this gel expands
inside the concrete and leads to cracking. Such degradation of concrete structures at
nuclear power plants can result in a significant reduction in their resiliency. Therefore, it
is essential to monitor the effects of ASR in concrete well before any cracks are allowed
to develop. The development of an efficient condition assessment framework depends
on the quality of simulation models that can accurately represent the degradation in a
structure. An ongoing study [62] is being conducted to simulate the ASR-induced damage
in concrete structures, such that the total strain progression and the anisotropic expansion
of concrete can be precisely visualized. Future steps would require collecting data from the
simulated models and designing a machine-learning framework to detect ASR-induced
damage with confidence.

Another study [66] evaluates ASR in concrete and its detection using deep learning
algorithms. However, this study is not focused on nuclear applications of concrete struc-
tures. NDT is carried out using acoustic emission signals and their continuous wavelet
transform (CWT) for feature extraction. Two deep learning algorithms (CNN and autoen-
coders) are compared for their prediction capabilities. It is found that the CNN is able to
detect degradation with 85% accuracy, whereas the autoencoder generated results with
80% accuracy.

4. Challenges in Using AI Algorithms

While nuclear energy generates emission-free electricity, competing with renewable
energy sources requires the nuclear energy sector to demonstrate reliability, sustainability,
and profitability. As existing nuclear reactors request license renewals and newer advanced
reactor designs enter the market, it is essential to develop systems with safe operational
and predictive capabilities at low costs. Construction optimization, predictive maintenance,
fault detection, and advanced control systems are some of the recently seen applications
of AI in the nuclear sector. Sensor data captured from nuclear reactors and their systems
along with physics-based machine-learning techniques can pave the way for digital twin
technology. A sustainable future with nuclear energy can be achieved with AI-powered
solutions. However, the use of AI for developing cutting-edge digital twins and condition
assessment frameworks can be subjected to challenges such as data acquisition and man-
agement, requiring computational resources and incurring costs, cyber-attacks, security,
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etc. [155]. More research is required to ensure accountability for using data-driven machine
learning algorithms and their interpretability for a robust design.

Data quality: The performance of most AI algorithms depends on the amount and
quality of available training data. Current sensor data and previous data on operational
anomalies from nuclear power generation facilities are not publicly available. To access
such data, security clearance and prior approvals from regulatory agencies are required.
Even before obtaining clearance, it is essential to demonstrate a working digital twin
model with condition assessment capabilities. This necessitates the use of simulated as
well as experimental data which may or may not represent the characteristics of real-time
sensor data.

Data availability: The accuracy of an AI-based framework can vary significantly
depending on the data available for its training and testing. Limited data can be augmented
to create a larger database for training the machine learning framework, but the process
for quality assurance of data augmentation techniques (such as generative adversarial
networks and neural style-transfer) needs to be investigated [156–158].

Data handling: For condition assessment frameworks, the sensitivity of features
selected to train artificial networks can impact the ability to detect faults and anomalies in
the system. In the case of detecting damage in nuclear piping-equipment systems, a large
amount of sensor data can be collected on a daily basis, making data processing and storage
a challenging task. Data mining can assist in the appropriate feature extraction, pattern
recognition, classification, and labeling for such large sets of data [159]. Sensor data are
typically collected in the form of a time-series signal. Time Series Data Mining (TSDM)
consisting of data preprocessing, fault detection, classification, and prediction can be a
beneficial tool for the condition assessment frameworks [160].

Computational costs: AI algorithms, specifically in the field of deep learning, require
considerable computational power in terms of the number of cores, Graphical Processing
Units (GPUs), Tensor Processing Units (TPUs), etc., to perform a condition assessment of sys-
tems within stringent time periods. In recent years, High-Performance Computing (HPC)
systems, cloud computing, and parallel processing have emerged as possible solutions to
the computational complexity of AI applications. However, installation and maintenance of
such tools can be expensive. Future research on designing machine learning algorithms for
condition assessment of systems needs to focus on reducing the computational complexity
of the algorithm by preprocessing the data, investigating data distribution techniques,
carrying out sensitivity analysis, and calculating the total energy consumption [161–163].

Data security: The AI technology used to provide reliable and cost-effective programs
for the nuclear energy sector can also be used by hackers or terrorists to breach confidential
nuclear plant data. Malware can be updated continuously using AI to avoid detection
by online security platforms. Data manipulation is one of the main targets of cyber at-
tacks, where false positives can trigger erroneous actions and consequences at a nuclear
power plant. Software bugs can also hamper the performance of AI in digital twins and
their condition assessment frameworks. Currently, the United States Nuclear Regulatory
Commission (USNRC) is seeking AI-based applications for preventing cyber attacks at
nuclear power plants [164]. Some past studies outline the use of big data [165] and Bayesian
networks [166,167] for cyber security measures in the nuclear energy sector, but more re-
search can be conducted specifically towards preventing data manipulation in condition
assessment frameworks. One study [168] explores the use of ANNs to detect false signals as
a result of cyberattacks and alert the operators. A three-loop reactor plant simulation model
is created to acquire sensor signals. The proposed ANN is able to detect anomalies in the
data and predict original sensor data with less than 1.5% error. Data manipulation during
a cyberattack can also be achieved by injecting augmented or noisy data into the stream
of sensor signals. One study [169] considers the detection of augmented data for data
manipulation as a part of accident prediction for a pressurized water reactor. The use of
WaveNet machine learning architecture demonstrates robustness against any data acquired
from a malfunctioning sensor such as random noise. A similar study [170] investigates
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data augmentation to include random noise in the acquired signals from a simulator test
bed. The accuracy to detect a loss of coolant accident and a steam generator tube rupture
is compared using three different machine learning algorithms such as support vector
machines, decision trees, and multilayer perceptron. A recent study [171] focuses on re-
covering lost sensor data using convolutional neural networks. Strain monitoring sensor
data are collected from a beam simulator and experimental frame structure. However,
the proposed methodology requires availability of previously acquired sensor data for
recovery of lost signals. Another study [172] explores the use of generative adversarial nets
and autoencoders for data anomaly detection. Unsupervised machine learning algorithms
and computer vision techniques are considered for learning from the images of time-series
sensor data. A full-scale bridge is used to collect sensor data and conduct validation of the
proposed framework.

Interpretability and physics-guided machine learning: Machine learning is now
utilized in many high-stake decision applications such as health care systems, autonomous
vehicles, industrial applications, etc. There is a need to avoid using machine learning
as a black box for outputting answers. Most of the previous and ongoing research lacks
the interpretability of machine learning models. An interpretable model or Explainable
Artificial Intelligence (XAI) refers to an AI algorithm that can be interpreted by humans for
robustness and causality [173–175]. The main purpose of interpretable machine learning
is to make the output prediction understandable to a human, for example, an operator in
the case of nuclear applications. By utilizing interpretable ML, erroneous decisions based
on false predictions from AI networks can be avoided. Physics-based machine learning
techniques for condition assessment can provide a better insight into this issue [176].
Physics-guided machine learning approaches, such as physics-informed neural networks
(PINNs), can result in efficient learning, reduction of computational costs, more reliable
predictions, and greater interpretability of the results [177]. In PINNs, another term is
added to the loss function of the neural networks which represents the knowledge of
physical laws from a system. This term can also function as a regularizer for the neural
networks [178]. In one study [179], a random forest regressor is used for feature extraction
using fusion physics, and a physics-guided neural network is designed to predict the
optimal parameters for plasmas used in nuclear fusion. Some studies [180,181] investigate
the power of PINNs to solve nuclear reactor equations. Optimization of nuclear fuel
assemblies is also carried out by employing physics-informed reinforcement learning [182].
In this study, the physics-informed reinforcement learning algorithm outperforms the
traditional stochastic optimization algorithms by increasing computational efficiency. Much
of the focus in physics-informed neural networks for nuclear applications has focused on
detecting emergency or accident conditions. Research is needed to advance and apply the
condition assessment to structural and mechanical systems in a nuclear power plant, such
that degradation can be detected at an early stage in order to avoid the initiation of an
emergency or accident condition.

5. Recommendations for Future Research

Significant work is being conducted toward automating processes for the nuclear
energy sector worldwide, as mentioned in the previous sections. Some of the machine
learning algorithms used for nuclear applications include artificial neural networks, support
vector machines, clustering algorithms, dimensionality reduction algorithms, data mining,
Bayesian methods, and image digitization. However, more areas need to be explored before
AI technology is validated for its application to existing as well as new nuclear power
plants. Some of the recommendations for future research are:

1. The initial success of AI-based condition assessment frameworks needs to be vali-
dated against laboratory experiments or real-time data from nuclear power plants.
Sensor data should be collected from mechanical systems such as piping attached to
equipment, as well as structural concrete systems being tested for chemical reactions
and cracks. Compared to simulated sensor data, experimental/on-site sensor data are
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expected to include some variations that can affect the performance of AI algorithms.
Real-time data can be noisy due to surrounding vibrations, environmental effects,
or sensor malfunctions. Typically, structures and systems undergo non-uniform degra-
dation. However, high-fidelity modeling of non-uniform degradation in finite element
software is challenging. Uncertainty in various parameters, such as degradation sever-
ity and a number of simultaneously degraded locations, can also impact the quality
of signals acquired from as-built systems;

2. The effects of data scarcity on the predictive capabilities of a machine-learning frame-
work need to be studied. Techniques such as data augmentation and damage-sensitive
feature extraction can be explored as possible solutions;

3. Data handling, from its acquisition, storage, and processing, is one of the biggest
challenges in autonomous industrial applications. Continuous streams of acquired
data from nuclear power plants have to be appropriately stored and handled. The use
of cloud-based storage services, data mining technology, and effective data prepro-
cessing needs to be demonstrated;

4. The overall objective of using automation in the nuclear energy sector is to reduce
construction, operations, and maintenance costs. However, AI implementation in itself
can incur high computational costs. The total energy usage of various AI algorithms
and their computational costs for installation and employment need to be calculated.
A comparison study would enable the nuclear industry to make informed decisions
on the performance of AI-based frameworks versus the incurred expenditure;

5. For public and government safety, it is essential to conduct research on cyber-safe
automation platforms. Designs that demonstrate resiliency against malware and
unauthorized access data by hackers need to be developed;

6. Since the performance of condition assessment frameworks at a nuclear facility is vital
to its safety, an interpretable machine learning algorithm can enhance the reliability of
such condition assessment frameworks. Some simpler machine learning algorithms
such as linear regression, decision trees, random forest, etc., are favorable for in-
terpretability when compared to deep learning such as neural networks. However,
the accuracy of complex algorithms such as ANNs, CNNs, and RNNs can outperform
other interpretable models. The balance between the explainability and accuracy
of various AI algorithms should be examined for future applications in the nuclear
industry, including the use of physics-guided machine learning;

7. The use of computer vision for new nuclear construction needs to be investigated
during the construction phase to create “as-built” digital twins which would enable
significant advances in condition assessment. It can also enhance worker safety, asset
management, and reduce maintenance costs.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
ASR Alkali–Silica Reaction
CNN Convolutional Neural Network
CPS Cyber-Physical Systems
CWT Continuous Wavelet Transform
DBN Dynamic Bayesian Networks
DL Deep Learning
DT Digital Twin
FEM Finite Element Model
FFT Fast-Fourier Transform
FRF Frequency Response Functions
XAI Explainable Artificial Intelligence
GA Genetic Algorithms
GE General Electric
GEMINA Generating Electricity Managed by Intelligent Nuclear Assets
GPS Global Positioning System
GPU Graphical Processing Units
HHT Hilbert–Huang Transform
HPC High-Performance Computing
IAEA International Atomic Energy Agency
IoT Internet of Things
kNN k-Nearest Neighbor
LOCA Loss of Coolant Action
LSTM Long-Short-Term-Memory
MAGNET Microreactor Agile Non-Nuclear Experimental Testbed
MARS Maintenance of Advanced Reactor Sensors and Components
MDPI Multidisciplinary Digital Publishing Institute
MEITNER Modeling-Enhanced Innovations Trailblazing Nuclear Energy Reinvigoration
ML Machine Learning
NAMAC Development of a Nearly Autonomous Management and Control System
NASA National Aeronautics and Space Administration
NDT Non-Destructive Testing
NEUP Nuclear Energy University Program
NN Neural Networks
O&M Operation and Maintenance
PCA Principal Component Analysis
PINN Physics-Informed Neural NetworkS
PRA Probabilistic Risk Assessment
PSD Power Spectral Density
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SHM Structural Health Monitoring
SSCs Structures, Systems, and Components
STFT Short-Time Fourier Transform
SVM Support Vector Machines
TPU Tensor Processing Units
TSDM Time Series Data Mining
US-DOE United States Department of Energy
US-NRC United States-Nuclear Regulatory Commission
WT Wavelet Transform
2D Two-Dimensional
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