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Abstract: From the perspective of propagation dynamics in complex networks, failure propagation
in cyber-physical power systems is analogous to the spread of diseases; subsequently, the cyber
nodes and power nodes are regarded as individuals in each of their groups. In this study, a two-layer
interdependent network model of the cyber-physical power system is proposed, where each subnet-
work adopts the Susceptible-Infected-Susceptible (SIS) epidemic-spreading model. On this basis, we
construct a failure cooperation propagation model of cyber-physical power systems. Furthermore,
we introduce the node protection mechanism to ensure the normal operation of key nodes. The
generated scale-free cyber network and IEEE118-bus power system are used for simulation to analyze
the influence of the coupling effect between them on the final failure scale.

Keywords: cyber-physical power system; interdependent network; epidemic model; cooperation
propagation; node protection

1. Introduction

With the vigorous development and construction of smart grids and energy Internet,
the power system and cyber network are deeply coupled and complementary, gradually
developing into a new model of a cyber-physical power system [1]. The power grid
provides a power supply for the nodes of the cyber network, while the real-time state
sensing and control of the power grid is highly dependent on the normal operation of the
nodes. On one hand, advanced information technology brings many conveniences to the
power system, effectively enhancing controllability and observability [2]. On the other
hand, because of the close interaction between the cyber network and the power network,
there are certain security risks to the power grid. The dynamic propagation of failures in
the two-layer coupled system is accelerated and becomes more extensive, and if a certain
security boundary is exceeded, cascading failures will occur, leading to large-scale power
outages [3]. Therefore, integrated modeling and vulnerability analysis of the cyber-physical
power system to explore the coupling mechanism between the cyber and physical layers
and analyzing the cascading failure propagation and dynamic evolution process are of
great significance to ensure the safety and stability of the power grid [4].

In 2010, Buldyrev proposed the interdependent network model [5] that included two
types of interdependent coupling, assortative coupling and random coupling, and found
by comparison that the critical threshold of seepage at cascade failure in a one-to-one
correspondent coupling network was lower than that of the random coupling network.
The role of the load was considered in [6] and it was observed that the interlayer coupling
in the interdependent network effectively enhanced the robustness of the network and was
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able to suppress the propagation of cascading failures, contrary to the results reported in
the literature [7]. In [8], sparse coupling was proposed and it was found that increasing
the coupling probability makes the interdependent network more robust to deliberate
attacks, but increasing it again after reaching a certain coupling strength has the opposite
effect. A non-uniform “one-to-many” and “partial coupling” cyber-physical power system
model was constructed using the asymmetrical balls-into-bins method [9], and the risk
propagation threshold was determined using percolation theory. In [10], the stability of this
interdependent network was examined by modeling spatially embedded systems, such as
power grids and cyber networks, as lattice networks. The literature [11] has been based on
the ListNet learning-to-rank method for ranking critical nodes and tested on networks, such
as the Western U.S. power grid, using the SIR (Susceptible-Infected-Recovered) contagion
model to evaluate the propagation capability of critical nodes. In [12], an infectious disease-
based model was used for power systems to perform predictive analysis of grid disturbance
propagation.

Based on the above studies, we further explored the effects of coupled cyber and
physical layers on power system vulnerability, especially on failure propagation. Dynamic
models of network propagation, which have been developed in the last decade, are impor-
tant tools for studying and mathematically describing actual propagation laws [13]. Failure
propagation in power systems shares similarities with disease propagation in a population,
as shown in Figure 1, resulting in large-scale propagation when the effective propagation
rate exceeds a certain positive threshold.
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Figure 1. Analogy between epidemic spread and failure propagation in power systems.

Many scholars first studied viral transmission from the perspective of biology, summa-
rizing the transmission law and modeling it mathematically. In fact, epidemic transmission
models have been applied in many fields, such as the spread of computer viruses and
the spread of rumors in society [14]. In this paper, when studying the failure propagation
mechanism of information-physical power systems, we learned from the epidemic propa-
gation model in complex networks and used it to explore cyber-physical power systems
in an interdisciplinary endeavor. The primary aim of the propagation model is to analyze
the failure propagation process of a two-layer coupled network to assess the impact of the
coupling relation of cyber-physical power systems on the vulnerability of power systems.

In this study, the propagation of failures in a cyber-physical power system is assumed
to be analogous to the propagation of a certain infectious disease in two populations,
where the cyber network is scale-free and belongs to a heterogeneous network, while the
power system exhibits small-world characteristics and belongs to a homogeneous network.
Based on the theory of interdependent networks, a two-layer cyber-physical power system
interdependent network model with a heterogeneous upper layer and a homogeneous
lower layer is established. Based on the SIS model, a two-layer co-propagation network
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model is constructed, while different node protection mechanisms are introduced to analyze
the influence of the coupling effect of the cyber layer and the physical layer on the failure
propagation threshold and the impact of the eventual scale of the failure in the cyber-
physical power system.

2. SIS Susceptible-Infected-Susceptible (SIS) Disease Propagation Model

The specific process of disease propagation is extremely complex; individuals may
acquire immunity or may be infected once and still be re-infected. Moreover, different types
of diseases spread in different ways, requiring different mathematical models to describe
their transmission patterns. The most typical epidemic transmission models include the
Susceptible-Infected (SI) model, SIS model, and Susceptible-Infected- Removed (SIR) model.
The basic states involved are as follows: (1) Susceptible (S), which is the state of health
in which infection can occur; (2) Infected (I), when the infected individual has infectious
properties; and (3) Removed/Recovered (R), which is divided into two states, one in which
the infected individual is cured and thus gains immunity, and the other in which the
infected individual dies [15]. Individuals in the removed state are neither reinfected nor
infectious and do not affect the dynamics of the system.

In this study, we mainly used the SIS disease propagation model shown in Figure 2.
The SIS model is generally used to describe diseases, such as influenza, where individ-
uals cannot gain immunity after being cured and can still be re-infected. In this case,
individuals in a susceptible state have a probability α of contracting the disease and thus
becoming newly infected, and the probability of an infected individual being cured is β.
The mechanism of infection can be described as follows [16].{

S(i) + I(j) α→ I(i) + I(j)

I(i)
β→ S(i)

(1)
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At moment t, the density of individuals in the susceptible state is s(t), the density of
individuals in the infected state is i(t) and the set of dynamic equations for the SIS model
is shown below. {

ds(t)
dt = −αi(t)s(t) + βi(t)
di(t)

dt = αi(t)s(t)− βi(t)
(2)

Therefore, let the effective transmission rate be λ = α/β.

3. Two-Layer Interdependent Network Model

The cyber-physical power system is a deeply coupled cyber network and physical
network with interdependencies as shown in Figure 3. Both the heterogeneity of the
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network and the homogeneity of the topology in this two-layer network have an important
impact on the failure propagation behavior [17].
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The topology of the physical network and cyber network is abstractly represented as
undirected graphs GP and GC, where GC denotes the cyber network and GP denotes the
physical network. Each single-layer network is G = (V, E), where V = {ni} is the set of
nodes in the network, and E =

{
eij
}

denotes the set of internally connected edges in each
layer of the network.

3.1. Cyber Layer Model

Information and communication networks are typical scale-free networks. The adja-
cency matrix is used to represent the connection between individual nodes of the cyber layer.

AC =
(
aij
)

N×N (3)

where aij = 1 denotes that the cyber nodes Ci and Cj are connected; otherwise, aij = 0.
It is constructed in the following way. Given the initial node m0, a new node is added

at each time step and m edges and, according to the preferred probability pi =
ki

∑j kj
, is

connected to the existing nodes. Here, ki denotes the degree [18] of existing node i, and
∑j k j is the sum of the degrees of all currently existing nodes.

3.2. Physical Layer Model

Physical grids are typically small-world networks, with power plants, substations,
etc., and are represented using nodes where N denotes the total number of power nodes,
while transmission lines are represented with connecting edges. The connections between
load nodes in the power system can be represented by the adjacency matrix as

AP =
(
aij
)

M×M (4)

where aij = 1 denotes that the power nodes Pi and Pj are connected; otherwise, aij = 0.

3.3. Two-Layer Network Model of the Cyber-Physical Power System

The two topologically distinct subnetworks are described as A =
(
aij
)

M×M and
B =

(
bij
)

N×N . Assume that the cyber layer has N nodes (C1, C2, · · · , CN) and the physical
layer has M power nodes (P1, P2, · · · , PM). The interdependence between the cyber com-
munication network GC and the physical power grid GP corresponds to the dashed line in
Figure 3. This is described by the adjacency matrix as AC−P = {(n, m)|n ⊂ VC, m ⊂ VP} ⊂
RN×M and referred to as the set of connection edges between two networks. RN×M indi-
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cates the matrix of possible connection edges between the cyber network and the power
system. The cyber-physical power system as a whole can be represented as

A =

[
AC AC−P

(AC−P)
T AP

]
=



a1,1 · · · a1,N a1,N+1 · · · a1,N+M
...

. . .
...

...
. . .

...
aN,1 · · · aN,N aN,N+1 · · · aN,N+M

aN+1,1 · · · aN+1,1 aN+1,N+1 · · · aN+1,N+M
...

. . .
...

...
. . .

...
aN+M,1 · · · aN+M,N aN+M,N+1 · · · aN+M,N+M


(5)

where if there is energy or information exchange between node n in the cyber network and
node m in the power grid, i.e., there is an edge connection, then AC−P(n, m) = 1; otherwise,
AC−P(n, m) = 0.

The dependency of assortative coupling is used in this section. Dependency of as-
sortative coupling means that the cyber nodes are connected with the power nodes that
have similar features. Here, the information nodes correspond to the power network nodes
sequentially based on their degree. Indeed, there are multiple types of couplings, for
example, one-to-one coupling, one-to-more coupling, more-to-more coupling, etc. In this
paper, we adopt one-to-one coupling to keep the model simple, so that each cyber node
connects one and only one power node.

First, all nodes in the two-layer network are arranged in descending order according
to their degrees. A node with a higher degree occupies a more critical position in the
topology. When an unexpected condition is encountered (for example, some cyber nodes
are attacked or a part of the power loads fails), the entire system can still maintain normal
operation as long as these critical nodes survive [19]. The degree of a node is denoted by d,
dC1 ≥ dC2 ≥ dC3 ≥ · · · ≥ dCM and dP1 ≥ dP2 ≥ dP3 ≥ · · · ≥ dPM (if two nodes have the
same degree value, they are further compared in terms of their betweenness centrality [18],
which is denoted in the same order, from largest to smallest). Subsequently, the nodes in the
cyber layer and the corresponding nodes in the physical layer are connected sequentially
to form the symmetrical dependent network model presented in this section.

4. Collaborative Failure Propagation in the Cyber-Physical Power System

There are cases in the network where a node fails and returns to normal operations
with a probability of β but does not gain immunity and may still be infected again [20].
Figure 4 shows a combination of the complex status of nodes during the operation of the
cyber-physical power system.
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S indicates that the node is in a normal operating (susceptible) state, I indicates that
the node is in a failure (infected) state, the probability of failure propagation (being infected)
is α, and the probability of resuming operation (being cured) is β.

In the cyber-physical two-layer network model, a discrete SIS model is used for both
subnetworks. The nodes in the network are in a normal operating state S or a failure
state I, with the failures propagated through adjacent nodes (neighbor relationship). Thus,
nodes in the normal operating state S will be infected by nodes in the failure state I in the
same network layer or corresponding failure state node I in another network layer through
inter-layer coupling [21]. Simultaneously, due to certain control measures or recovery
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mechanisms, the nodes in the failure state I return to the normal operation state S with a
certain probability β.

The dynamic process of propagation between nodes in a two-layer cyber-physical
power system is described as follows [21].

p1,i(t + 1) = (1− p1,i(t))(1− q1,i(t)) + (1− β1)p1,i(t) + γ1 p2,i(t)(1− p1,i(t)) (6)

p2,i(t + 1) = (1− p2,i(t))(1− q2,i(t)) + (1− β2)p2,i(t) + γ2 p1,i(t)(1− p2,i(t)) (7)

where iε{1, · · · , N}, and q1,i(t) and q2,i(t) denote the probability that a node i will not be
infected by neighboring failure nodes in the cyber and physical networks, respectively. On
the contrary, 1− q1,i(t) and 1− q2,i(t) denote the probability of node i being infected by
neighboring nodes in the cyber network and the physical network, respectively. Therefore,
(1− p1,i(t))and (1− p2,i(t)) denote the probability that node i is in normal operation,
the probability of being infected by neighboring nodes in the layer is (1− q1,i(t)) and
(1− q2,i(t)), while (1− β1)p1,i(t) and (1− β2)p2,i(t) denote the probability that node i
is infected with a failure at moment t and is not cured for resuming normal operations,
and γ1 p2,i(t)(1− p1,i(t)) and γ2 p1,i(t)(1− p2,i(t)) denote the probability of node i being
infected by a neighboring node in another layer of the network in a failure state.

The above aspects are defined as

q1,i(t) =
N

∏
j=1

(
1− α1aij p1,j(t)

)
(8)

q2,i(t) =
N

∏
j=1

(
1− α2bij p2,j(t)

)
(9)

From this, we can set different infection probabilities α and probability of cure β to
analyze the dynamic propagation process in the two-layer cyber-physical network.

5. Node Protection Mechanism

In the two-layer cyber-physical power system, certain nodes are critical, as they play a
major role in the spread and propagation of failures. Taking preventive measures in advance
can effectively enhance the robustness of the network and is more practical than staging
a recovery only after the entire network is down [22]. In cyber-physical power systems,
both the cyber and physical nodes are protected based on node protection mechanisms for
normal operating nodes in single-layer networks.

This subsection focuses on two different protection mechanisms: random recovery
(equal probability of protection) and priority recovery (different probability of protection,
which prioritizes the protection of nodes with high degree value or betweenness centrality).

5.1. Random Recovery

Random recovery is the simplest protection method. In this protection scheme, all
nodes are treated equally, namely each normal operating node in the network has the same
probability of being protected. Constantly counting the total number of normal operating
nodes at the current moment is required and subsequently recalculating the protection
probability. The probability is set as γ, s and can be adjusted as described below.

At moment t when failure in the network occurs, nt nodes include normal working
nodes that are treated indiscriminately and protected randomly. The probability of each
node being selected for protection 1/nt is presented in the following equation.

ei(t + 1) =
{

0 γ > 1/nt
1 γ ≤ 1/nt

(10)
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where γ is a randomly generated number in the range (0, 1). When γ ≥ 1/nt, a node has
a 1/nt probability of changing from the unprotected state 0 to the protected state 1 at the
t + 1 time step.

5.2. Priority Recovery

Priority recovery is a form of weighted probability protection based on node weights,
which mainly considers the differences between nodes in the topology, thereby treating
normal nodes differently. The more important the node is in the network, the greater the
scope of its impact after failure. To prevent the failure of critical nodes, priority should
be given to protecting the critical nodes among all nodes, which is a different-probability
protection mechanism that combines the results of node importance ranking. This is
described as follows.

All normally working nodes in the network are ranked according to importance
metrics (e.g., degree, betweenness, centrality metrics, PageRank, etc.; this study used
degree value as the metric), which are combined with the probability of being protected. At
moment t, if the node j is not protected, the state is ej(t) = 0. Its importance is denoted by
I(j), and the ranking result is obtained according to the importance metric 1 ≤ I(j) ≤ N,
such that the sum is ∑ej(t)=0 I(j).

Therefore, at moment t, the probability of a failure node being protected is given as

gt(i) =
I(i)

∑ej(t)=0 I(j)
(11)

where all normal working nodes at moment t are ranked according to the important result
from smallest to largest. I(j) = 1 indicates that the ranking is 1, where the importance
metric is the largest and the node is the most important. When I(j) = N time, the
importance index is the smallest and the node is the least important. Therefore, to protect
the most critical nodes in priority, they must be modified by taking the inverse sum, and
the probability of a node being protected is given by the following equation.

rt(i) =
1/gt(i)

∑ej(t)=0
1

gt(i) t

=
1

gt(i)∑ej(t)=0
1

gt(i)

(12)

After a failure is detected in the system, the normal node takes time to be protected,
which is assumed to occur over a time step, and the node is added to the protected state at
the next step ei(t + 1) = 1 with a probability of rt(i).

ei(t + 1) =
{

1 τ ≤ rt(i)
0 τ > rt(i)

(13)

where τ is a randomly generated number between (0, 1). If τ ≥ rt(i), then the normal
working node is added to the protected state at the next step ei(t + 1) = 1. If τ < rt(i),
then it remains in an unprotected state.

6. Simulation and Analysis

In this study, we used the IEEE 118 bus test system as the physical network. The IEEE
118 bus test case represents a portion of the American electric power system (in the mid-
western US). It contains 19 generators, 35 synchronous condensers, 177 lines, 9 transformers,
and 91 loads. In addition, the cyber network presents scale-free characteristics, in that most
nodes in the network are connected only to a few nodes, and a few nodes are connected to
a large number of nodes. Then we randomly generated a scale-free network with 118 nodes
to represent the cyber layer. Each layer had a different subnetwork structure. All nodes
in the two-layer network were arranged in descending order according to the size of the
degree, and the corresponding nodes in the subnetworks were then connected in sequence.
On this basis, with one-to-one coupling, a two-layer interdependent network model of
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236 nodes, namely the cyber-physical power system model, was constructed. When a node
was randomly infected, both subnetworks adopted the SIS disease propagation model, and
the cyber nodes and physical grid nodes were considered as individuals in population
1 and population 2, respectively, to analyze the failure propagation process in the two
groups. The flowchart is shown in Figure 5 below. The failure does not disappear in the
cyber-physical power system at dynamic equilibrium. The main comparison is between the
failure propagation rate and the recovery rate, and if both reach a certain ratio, the system
enters a new stable state. The specific figures are shown in the following simulation results
and analysis.
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The two networks were of equal size, NA = NB = 118, with the propagation parame-
ters set as follows: the initially infected nodes were randomly selected; the number was 5%
of the total number of nodes, and the step size was 0.025. For simplicity, we set the same
recovery rate for both heterogeneous subnetworks [23], β1 = β2 = 0.3, and the infection
rate between the subnetwork layers was set to be γ1 = γ2 = 0.05.

The four figures below (Figures 6–9) demonstrate the heterogeneous characteristics of
the cyber and power networks and the coupling process of the two-layer network, respectively.
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In Figure 9, the solid lines refer to the actual edges in the subnetwork, the dashed lines
are the inter-layer coupling edges, the red nodes indicate the cyber network, and the green
nodes indicate the power network.

For the same number of nodes randomly selected as the initial source of infection
(failures), the propagation pattern varied between different network topologies. Figure 10
shows the change of steady-state probability density of failure nodes with λ. The main
figure shows that for the cyber network, a scale-free network if the primary infection
probability is greater than 0, the primary infection will keep propagating and eventually
reach a stable state.
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Figure 11 shows the change of steady-state probability density of failure nodes with
λ. As power systems have certain small-world characteristics, failures do not last long
without long-range random propagation.
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Figure 11. Propagation process of failure in 118-node power grid based on the SIS model.

The synergistic propagation of failures in the overall cyber-physical power system
is shown in Figure 12 by the change in infected density (Count%) with time (T). Failures
spread rapidly and reached a maximum at t ≈ 50, then eventually converged to a more
stable state. The sum of failure nodes and normal operating nodes is the total number of
nodes, 2N, in the two-layer system.
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Figure 12. Propagation process of failure in cyber-physical power system based on the SIS model.

Furthermore, we explored and compared the final failure scale of the single-layer
network and double-layer network with the same probability of infection. The final failure
scale was approximately 77% for the individual power system and it was 83% for the
cyber-physical power system, as shown in Figure 13. It indicates that in the two-layer
interdependent network, that is, the cyber-physical power system, the coupling relationship
between two networks created conditions for failure propagation that will lead to a larger
final failure size under the same failure propagation probability.
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Figure 13. Comparison of final failure scales.

Failed nodes were randomly selected from the global scope and 10% of normal operat-
ing nodes were protected. The average failure scale of the cyber-physical power system
with different node protection mechanisms was analyzed.

The three curves in Figure 14 illustrate the number of failure nodes that converged
to a regular number after some time had elapsed. The overall final failure scale with no
protection taken for the cyber-physical power system was approximately 83%. With random
recovery, the final failure size was approximately 52%, and with priority recovery, the final
failure size was approximately 30%. The use of priority recovery was more effective than
random recovery, significantly reducing the overall failure scale of the system.
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7. Conclusions

In this study, we used the epidemic propagation model in complex networks to ex-
plore coupled cyber-physical power systems, mainly from the perspective of propagation
models, in analyzing the failure propagation process of two-layer interdependent networks.
Considering the deep coupling between layers in cyber-physical power systems, a het-
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erogeneous two-layer interdependent network model with a heterogeneous upper layer
and a homogeneous lower layer was constructed based on complex network theory. The
subnetworks adopted the SIS disease propagation model, which forms the basis of the
dynamic failure propagation model in the interdependent network. It was proved through
simulation that the coupling relationship between the cyber layer and the physical layer
promoted failure propagation. The failure scale of the cyber-physical power system was
higher than that of the single-layer power system under the same propagation rate. In
addition, different node protection strategies were introduced, and the results verified that
the use of priority recovery was more effective than random recovery, thereby significantly
reducing the overall failure size.
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