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Abstract: A unique rotary kite turbine designed with tensile rotary power transmission (TRPT) is
introduced in this work. Power extraction, power transmission and the ground station are modelled
in a modular framework. The TRPT system is the key component of power transmission, for which
three models with different levels of complexity are proposed. The first representation is based on
the stationary state of the system, in which the external and internal torques of a TRPT section are in
equilibrium, referred to as the steady-state TRPT model. The second representation is a simplified
spring-disc model for dynamic TRPT, and the third one is a multi-spring model with higher degrees
of freedom and more flexibility in describing TRPT dynamics. To assess the torque loss on TRPT, a
simple tether drag model is written for the steady-state TRPT, followed by an improved tether drag
model for the dynamic TRPT. This modular framework allows for multiple versions of the rotor,
tether aerodynamics and TRPT representations. The developed models are validated by laboratory
and field-testing experimental data, simulated over a range of modelling options. Model-based
analysis are performed on TRPT design, rotor design and tether drag to understand any limitations
and crucial design drivers. Improved designs are explored through multi-parameter optimisation
based on steady-state analysis.

Keywords: airborne wind energy (AWE); tensile rotary power transmission (TRPT); rotary kite
turbine; steady-state TRPT model; spring-disc dynamic model; multi-spring dynamic model; tether
drag model; system analysis; optimisation design

1. Introduction

Airborne wind energy (AWE) systems provide a unique form of power generation,
in which tethered airborne devices are utilised to harness energy from the wind. With the
use of lightweight components, AWE systems are able to access remote locations and
higher altitudes, which may not be feasible for standard horizontal-axis wind turbines. A
rotary kite AWE system has multiple wings connected together by tethers to form rotors.
During the operation, the kite system is inclined to the incoming wind, and both the lift
and the torque are generated using auto-rotation without any external torque applied [1].

1.1. A Brief History of Daisy-Kite AWE Rotary Kite Turbine

The Daisy Kite systems, developed since 2012 by Windswept and Interesting Ltd.
(W&I), Shetland, UK [2], and their tensile rotary power transmission (TRPT) design were
introduced in [3] and further analysed in [4]. TRPT enables a continuous power output
with a ground-based generator. With this design, the rotors are made of multiple short
blades tied together in a ring pattern. When flown, the rotor acts like a kite autogyro.
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The kite-turbine rotor blades sweep a relatively large annular band area as compared to
standard rotors of the same blade length.

Early ring−kite rotors had simple constructions. The first prototype was a set of
4 × 2−line parafoil trainer kites, tied to an inflatable trampoline. This kite rotor was
suspended by bridles fore and aft. The bridle ends were then gathered and tied to bearings
set to two masts, one upwind and one downwind. The rotor was held in the air, its axis
pointing into wind, the parafoil kites were unfurled to fill in the wind. When the rotor
was released, it spun. The kite rotor would eventually stop spinning when the bearings
could not keep up, and the bridles wound together, crushing the rotor. Field tests have now
demonstrated that torque from a kite rotor is transmissible along bridles, and also revealed
the inherent weakness of TRPT—that long axial bridles, close together and used for torque
transmission, are prone to over-twisting.

Kite turbines are stretched out on the ground before launch. The lower ends of the
TRPT lines are connected to the power take-off wheel on the ground station generator.
Next, the top bearing of the turbine is connected to the line of a lifting kite. The lifting kite
is launched and the turbine is released up into the air using the lower end of the lifting
line (the backline). The kite turbine now acts as an autogyro in the wind. The spinning
tethers transmit power to the generator. Figure 1 illustrates a typical configuration of a
Daisy kite turbine.

Figure 1. System configuration of the Daisy-Kite AWE system.

Windswept and Interesting have implemented and assessed designs with various
parameters, including the number of blades per rotor, blade geometries and bridle con-
figurations, ring geometries, material selections, and fairings, etc. Variations of ring-kite
turbine designs in tests have improved the system performance. Rings made from modular
carbon-fibre tube sections are lighter and more rigid. Further rings of a smaller diameter
were added to extend the length of lines which could reliably transmit torque. Faster rigid
blades are used and proved to be more efficient; they require fewer bridles, which reduces
line drag.
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Multiple blade AWE systems increase AWE power-to-weight ratios by increasing total
blade area without a significant mass penalty while also reducing tether drag [5]. In Daisy
Kite’s operation, the turbine lines and rotor ring components work in tension as an inflated
network. Extending this network patterning allows the deployment of multiple lightweight
kite blades using minimal material mass. The kite turbines tests demonstrated airborne
power-to-weight ratios are larger than 0.8 kW/kg. This particularly high power-to-weight
ratio on a network-scalable system design may evolve to produce low-cost, clean energy if
it can be flown at scale.

The rotors have a demonstrated ability for working in stacks. Several multi-stage kite
turbines comprised of up to three layers have been tested. These taller kite turbines are
more challenging to launch but exhibit smoother operation and have less line drag per
blade area.

1.2. Motivation and Main Work Organisation

As a unique design in the AWE family, rotary kite systems have advantages in several
aspects. (i) Rotary kite systems are designed to produce continuous power generation,
which is different from other AWEs with cyclic power output. (ii) The design of networked
wings reduces the control requirements for each wing and for the whole system. (iii) The
networked wings provide a level of redundancy to the system, making safer turbine opera-
tion and increased robustness to environmental uncertainties. (iv) With the configuration
of networked wings, the tether drag is reduced and the overall efficiency of the system
is improved [6]. The benefits in (ii) and (iii) make rotary systems inherently more stable
compared to AWE devices with lift and drag operation modes.

There have been several designs in the rotary kite family [7–16]; most of them are
ground generation devices. In addition to the Daisy Kite introduced in Section 1.1, two
other rotary AWE system designs also utilise TRPT. One is the configuration developed
in [10] without intermediate rings between the ground station and the flying rings. Another
configuration was developed to have the open tensegrity shaft that uses straight carbon-
fibre rods to separate eight tethers [13].

Rotary kite turbines present some advantages over the leading lift-and-drag AWE
designs; many of these are qualitative based on observations from prototype testing.
There is a lack of a systematic approach for modelling, simulation, analysis, control and
performance assessment of rotary kite AWE systems (AWES). For the Daisy Kite AWES with
TRPT, several small-scale AWE prototypes have been manufactured and tested; however,
the design and operating characteristics of the TRPT systems are relatively unexplored
in the academic literature. In this work, the main aim is to build a modular modelling
framework for the Daisy Kite rotary AWES, giving mathematical representations to key
components with a focus on TRPT modelling. The model will be validated by experimental
data and numerical analysis. The developed model will be used for system analysis and
optimisation design.

The remainder of this paper is organised as follows. The model development of the
rotary kite turbine system is presented in Section 2 covering the subsystem models for
power extraction and power take off. The core models on TRPT and tether aerodynamics
are given in Section 3. Three presentations are proposed for TRPT, i.e., the steady-state
model, the spring-disc dynamic model and the multi-spring dynamic model. In addition,
two tether drag models are established using different assumptions. In Section 4, the de-
veloped models are tested and validated using collected experimental data, and several
modifications are applied to improve the spring-disc and multi-spring TRPT models.
Based on the developed models, comprehensive system analysis are performed on TRPT
design, rotor design and tether drag design in Section 5. Furthermore, optimised designs
are implemented based on the steady-state performance under assumed site conditions to
maximise the power output of the rotary kite system. Conclusions are given in Section 6.
Pseudo codes of model developments for the spring-disc and multi-spring TRPT dynamic
models are given in Appendix A. The configurations of the several TRPTs used in this work



Energies 2023, 16, 2610 4 of 42

are given in Appendix B. Some more testing results of the multi-spring TRPT model are
shown in Appendix C.

2. Modelling Framework

The purpose of modelling is to develop dynamic representations of the rotary ring
kite AWES that utilises TRPT for torque transmission. It’s a first attempt to establish such a
model with the supporting data from the Daisy Kite system, developed by W&I. To start
with, the general modelling aspects are introduced in this section, more specific modelling
on TRPT and tether aerodynamics will be presented in Section 3.

2.1. Overall System Configuration

The full system model consists of a series of connected individual modules which
can be grouped into function blocks of power extraction, power transmission and ground
station. A block diagram of the modelling framework is shown in Figure 2, including
modules and their connections within the rotary AWES model. Power-extraction modelling
is presented in Section 2.2 covering rotor aerodynamics, wing characteristics, lift kite
aerodynamics and wind models used in this work. The power take off is summarised in
Section 2.3. Modelling of TRPT for power transmission is given in Section 3, in which the
steady-state model is developed to capture the global static behaviour of the TRPT system,
the dynamic models are established to characterise the dynamics of TRPT, and two tether
drag models are proposed to calculate the torque loss within TRPT.

Figure 2. Block diagram of the rotary AWES (key variables indicated).

2.2. Power Extraction
2.2.1. Rotor Aerodynamics

The rotary kite AWES uses multiple wings to form rotors; the wings are connected to
each other at a distance from the centre of rotation, making an open centre around the hub.
An elevation angle is required for rotary AWES, and the rotor is tilted/pitched down into
the incoming flow. This causes a misalignment between the rotor plane and the wind vector,
analogous to a yawed-horizontal axis wind turbine (HAWT). Two modelling methods,
the actuator disc model and blade element momentum (BEM) theory, were used for the
rotary AWES representation.

The actuator disc model provides an initial estimate of power output achieved at a
given rotor geometry, in certain wind speeds and at a given elevation angle. The power
output from a rotor is calculated by

P =
1
2

ρV3
w ACp cos3 β, (1)
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where ρ is the air density, Vw the wind speed, A the swept area of the rotor, Cp the power
coefficient and β the elevation angle.

With BEM, the lift and drag coefficients are assumed to vary with the angle of attack
based on steady flow values. Rotary AWES rotors are constantly yawed due to the necessary
elevation angle applied. Yawed rotors may experience unsteady aerodynamic effects which
results in the blades experiencing dynamic stall. Therefore, the use of steady-state 2D lift
and drag coefficients in BEM for the modelling of rotary AWES rotors needs to be further
examined. The studies in [17–20] demonstrate that for yaw angles of up to 45◦, the results
from BEM are comparable to experimental data, but that BEM becomes less accurate as the
yaw angle becomes larger. They also show that BEM is less accurate at the blade tip and
root, for high wind speeds and for higher tip speed ratios. Given this evidence, the use of
BEM to represent the rotor aerodynamics of rotary AWES is considered to be suitable for
low elevation angles up to 30◦, wind speeds up to 14 m/s , and for tip speed ratios of less
than 7. In this work, AeroDyn v15 was used as the Rotor Aerodynamics module within the
rotary AWES model. See [4] for more details.

2.2.2. Wing Characteristics

A key input into the Rotor Aerodynamics module are the aerodynamic properties of the
wings used within the rotor. AeroDyn requires the lift and drag coefficients of each wing,
for all possible angles of attack, from 0◦ to 360◦. Two types of wings are used by various
Daisy Kite prototypes, the HQ Symphony Beach III 1.3 kite and the bespoke foam blades
using the NACA 4412 aerofoil profile.

The HQ Symphony Beach III 1.3 kite is widely available. The wings’ performance
coefficients are estimated from the available literature. The HQ kite is a ram-air kite with
a span of 1.3 m and a chord which varies from 0.55 m at the centre to 0.16 m at the tips.
To identify relevant aerodynamic characteristics, the Reynolds number (Re) and aspect
ratio (AR) of the wing were calculated. The wind-tunnel test results shared in [21] were
used to predict the lift and drag coefficients of the HQ Symphony Beach III 1.3 kite for
angles of attack from 0◦ to 30◦ in this work. Outside of this range, the coefficients were
calculated using NREL’s AirfoilPrep [22].

Given the wide and extensive use of NACA aerofoil profiles, the aerodynamic perfor-
mance coefficients for the NACA 4412 foam blades were defined based on wind-tunnel
test data from the available literature and Xfoil. Provided with the 2D shape of an aerofoil,
Xfoil calculates the lift and drag coefficients for a given Re and Mach number. The foam
blades have a span of 1 m and a constant chord length of 0.2 m. The Re for the foam blades
is calculated to be 1.4× 105 and AR to be 5. The results presented in [23], along with the
predictions from Xfoil [24], were used to define the lift and drag coefficients for the foam
blades for angles of attack in the range from −10◦ to 110◦. For values outside of this range,
similar to the HQ kites, the coefficients were calculated using NREL’s AirfoilPrep.

2.2.3. Lift-Kite Aerodynamics

The lift kite is represented as a static point force. Using the lift-kite area, S; the lift
coefficient, CL; and the drag coefficient, CD, the calculations of lift-kite aerodynamic forces
are given in (2). The values taken were: S = 3.2 m2, CL = 1 and CD = 0.2. Assuming the
elevation angle of the lift-kite tether is equal to the elevation angle, β, of the TRPT and
rotor, the lift kite’s aerodynamic force, which is in-line with the lift-kite tether lkT , can be
calculated by

lkT = lkL sin β + lkD cos β, with lkL =
1
2

ρV2
wSCL, lkD =

1
2

ρV2
wSCD. (2)

2.2.4. Wind Models

Three wind models were used for modelling and simulation in this work.
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(1) The first is the uniform and constant wind speed used to analyse steady-state perfor-
mance.

(2) The second wind model assumes that the wind speed varies with time but is uniform
in the plane perpendicular to the wind’s direction. This model is used for the
simulation of dynamic system responses.

(3) The third wind shear model accounts for the variations in wind speed in both time
and altitude. The variation in wind speed with altitude is calculated following the
power law [25]. This wind shear model is used for the entire system to integrate all
modules into the same modelling scheme.

The second and third wind models use NREL’s TurbSim [26] to generate the wind files
used within the simulations, in which the Kaimal spectra model was selected to represent
the wind turbulence, following IEC 64100-1 [27].

2.3. Ground Station—Power Take Off

The ground station consists of several components and houses the system’s drivetrain.
The driventrain components include, a wheel, which the TRPT connects to; a chain drive;
a power meter; a disc brake and the generator. To account for the rotating mass of the
drivetrain, the mass of the bottom TRPT ring was made to be heavier than the upper rings
in the TRPT. The bottom ring of the TRPT represents the wheel on the ground station to
which the TRPT is connected. This wheel is made from stainless steel and has a larger
mass compared to the other rings of the TRPT constructed from carbon-fibre tubes. This
wheel (0.85 kg, outer radius 0.21 m) and the generator (5.5 kg, radius 0.12 m) account
for most of the rotating mass within the ground station. The moments of inertia of the
generator and wheel are calculated to be 0.040 kgm2 and 0.019 kgm2, respectively. Other
moments of inertia grouping the inertia due to the chain drive, disc brake and power meter,
were calculated to be 0.002 kgm2 in this work.

The load from the generator is represented as a resisting torque applied to the lowest
ring of the TRPT. For initial simulations, this was kept at a constant value before step
changes were applied to analyse the TRPT and rotor responses. The torque measured at
the bottom of the TRPT during experimental tests was also used to set the generator torque
within simulations, which allows a more direct comparison between the model and the
field tests.

3. Power Transmission—TRPT Representations and Tether Drag Models

In this section, the developed models corresponding to the power transmission unit
of the rotary-kite turbine system (Figure 2) are presented. The TRPT modelling in this
contribution provides three representations of the system, which are different, depending
on the modelling approach with increasing complexity in an ascending order. The first
representation, also the simplest one, is based on the stationary (constant speed time-
independent) state of the system, in which the external and internal torques of a section
of TRPT are in equilibrium. For simplicity, this model is, hereafter, referred to as “steady
state” TRPT model. The steady state model, in this context, is useful for high-level power-
generation analysis and the design improvement of the system. In order to capture the
time-dependent behaviour of the system, two further dynamic TRPT representations were
developed, a simplified spring-disc model, and a multi-spring model with higher degrees
of freedom and more flexibility in describing system motion behaviour than the spring-disc
model. To assess the torque loss on TRPT, a simple drag model was derived for design
analysis under steady-state operation, followed by an improved tether-drag model for the
dynamic TRPT modelling.

3.1. Steady State TRPT Model

A single TRPT section consists of two rings and several tethers connecting the rings,
as shown in Figure 3. This equilibrium analysis is adapted from the work by Benhaïem
and Schmehl [10]. The two rings are assumed to be rigid and rotate around a common
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axis of rotation which passes through their centres; the rings are orthogonal to the axis of
rotation. All points on a ring are of the same distance from the axis of rotation at all times,
and there is no relative deformation between any two points on the same ring. It is also
assumed that the tethers are straight and do not stretch, forming the shortest path between
the attachment points at both ends. Aerodynamic effects are neglected. The system is
assumed to be massless.

As shown in Figure 3, there are two rings in a single TRPT section, the lower ring with
radius R1 and the upper ring with radius R2, sharing the same axis of rotation (O1–O2),
inclined to the wind velocity vector, Vw, by an elevation angle of β. Point A and Point B are
at the two ends of a tether adjacent to the two rings. Three reference frames are used in
Figure 3.

• Wind reference frame. It is defined as (xw, yw, zw), in which xw is parallel to the wind
velocity vector, Vw, which is parallel to the ground; yw is perpendicular to the wind
vector and also parallel to the ground; and zw is perpendicular to the xw − yw plane.

• Rotating reference frame for the lower ring. It is defined as (xa, ya, za), with the origin
at O1. xa lies on the system’s axis of rotation, ya and za are in the plane of the lower
ring, and za is towards point A.

• Rotating reference frame for the upper ring. It is denoted by (xb, yb, zb), the origin is at
O2, xb lies on the axis of rotation, yb and zb are in the plane of the upper ring, and zb is
towards point B.

Figure 3. Representation of a single TRPT section within the Daisy Kite system [28].

For a single TRPT section, considering rings of the same size, i.e., R1 = R2 = R; the
torque transmission can be calculated by [28]

Q =
RFx√

2
sin δ√

l2
t

2R2 + cos δ− 1
, (3)

in which lt is the distance between the centres of the two rings, and Fx is the total axial
force. From (3), the torsional deformation is obtained to be

cos δ =
−Q2 ±

√
Q4 − F2

x Q2(l2
t − 2R2) + F4

x R4

R2F2
x

. (4)

The torsional deformation can be calculated for any steady-state operating conditions.
The deformation of a single TRPT section can vary from 0◦ to 180◦, beyond which the
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tethers will cross with each other, and the system is said to have failed. The torsional
stiffness of a TRPT section, k, is calculated by

k =
dQ
dδ

= R2Fx

 cos δ(
l2
t − 2R2 + 2R2 cos δ

) 1
2
+

R2 sin2 δ(
l2
t − 2R2 + 2R2 cos δ

) 3
2

. (5)

The above torsional stiffness originates from the geometric stiffness of a TRPT section
that provides information about the stability of the two steady-state torque solutions.
A positive torsional stiffness shows that the steady-state solution is in equilibrium, as the
tether forces are acting in the opposite direction to the torque being transmitted, therefore
cancelling each other out, whereas a negative torsional stiffness shows that the system
is not in equilibrium as the tether forces are acting in the same direction as the torque
being transmitted. Before a negative stiffness occurs, there is an operating point at which
the stiffness becomes zero; this corresponds to the torsional deformation at which the
maximum amount of torque can be transmitted.

By setting the torsional stiffness to zero, the critical torsional deformation, δcrit,
at which the maximum torque can be transmitted is derived to be

cos δcrit = 1− ψ2

2
+

ψ

2

√
ψ2 − 4, (6)

where ψ = lt
R . It can be seen from (6) that the value of torsional deformation for maximum

torque transmission is dependant only on the geometry of the TRPT section. The steady-
state representations in (3) to (6) can be used to determine steady-state values of torque,
torsional deformation and stiffness.

3.2. TRPT Dynamic Model 1: Spring—Disc Representation

For the initial dynamic representation, this simplified model takes the same assump-
tion as in the steady state model: that the tension and torque applied to a single TRPT
section are shared equally between all tethers. Moreover, it is also assumed that the tethers
are sufficiently stiff, that they do not stretch. Therefore, the length of the tethers remains
constant and the axial length of each TRPT section varies only due to the rotation on either
end of the section. By making these two assumptions, it is possible to replace all the tethers,
in a single section of the Daisy Kite’s TRPT, with a torsional spring, where the torsional
stiffness is defined using (5) in Section 3.1. By assuming that the rings are rigid and uniform,
each ring can be represented by a single moment of inertia, J. Here, all rings within the
TRPT are assumed to share the same axis of rotation and it is assumed that all rings are
orthogonal to this axis.

A schematic of this representation, referred to as spring−disc model showing several
TRPT sections, is given in Figure 4, with each ring shown as an inertial disc and the tethers
as torsional springs. In this prototype, there are six discs, Disc 6, at the far left-hand side, is
towards the ground station end of the TRPT; Disc 1 is attached to the rotor.

As the tethers are assumed to not stretch and be of equal length, the torsional defor-
mation defines the axial deformation and, thus, the distance between discs and their axial
positions. When the torsional deformation between adjacent discs increases, the constant
tether length forces the discs to move towards each other. The disc at the ground-station
end of the TRPT is constrained to a fixed axial position. Each disc has a single rotational
degree of freedom (DoF) as indicated in Figure 4—the number of discs dictates the number
of degrees of freedom of the spring—disc representation. The moment of inertia of each
ring is calculated based on the properties of the carbon-fibre tubes (density of 1600 kg/m3)
and the diameter of each ring with the inner and outer diameters of 2.5 mm and 4.5 mm,
respectively.
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Figure 4. Schematic of the spring-disc TRPT representation. Each ring is described by a moment of
inertia, J, and the multiple tethers in each section are replaced by a single torsional spring of stiffness
k. Disc 6, on the left hand side of the schematic, represents the ground-station end of the TRPT.

The moments of inertia for each disc and the torsional stiffness of each spring, found
at each operating point using (5), make up the inertia and stiffness matrices for the TRPT,
as in (7). Both matrices are of size Nr × Nr, where Nr is the number of rings in the TRPT.
The mass and inertia matrices are obtained in a way similar to that of a standard multiple-
degrees-of-freedom system consisting of mass-spring elements [29].The moment of inertia
of the first ring, J1, and that of the last ring, JNr , are, respectively, increased to account for the
mass of the wings and the drivetrain components (Section 2.3). For a given TRPT geometry
the stiffness matrix k is defined by the discs rotational positions θ = {θ1, ..., θNr}T and the
axial force applied to the TRPT Fx, as shown by (5). The axial force, Fx, is the combination
of the thrust from the rotor and the aerodynamic force produced by the lift kite.

J =


J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
...

. . .
...

0 0 0 · · · JNr

, k =


k1 −k1 0 · · · 0
−k1 k1 + k2 −k2 · · · 0

0 −k2 k2 + k3 · · · 0
...

...
...

. . .
...

0 0 0 · · · kNr−1

. (7)

The torsional stiffness of each TRPT section will vary as the axial force, Fx, and the
rotational positions of the rings, θ, change. The torsional stiffness calculated from (5)
assumes the system is under steady-state conditions. For the system’s dynamic response
analysis, the values of torsional stiffness are updated continually to account for the current
operating point. This leads to the stiffness matrix varying with time i.e., k(t). The torsional
spring forces are the product of the stiffness matrix, k(t), and the rings’ rotational positions,
θ. A time-varying function, fS, which is dependant on the rotational positions of the rings
and the axial force, was defined to calculate the torsional spring force, fS(θ, Fx). It should
be noted that the axial force, Fx, which depends on the rotor thrust remains unchanged at
each section along the TRPT.

To account for this energy loss within the spring-disc representation, the tether drag is
converted to a torque loss, as described in Section 3.4.2. This torque loss is applied such
that it opposes the rotational motion of the TRPT. In the spring-disc representation, each
tether is split into two segments of equal length, amd the torque loss due to each segment
is applied to the nearest disc. Each disc will have an opposing torque applied to it which
arises from half the tether length above and the other half below the disc, except for the
first and last discs with only one set of tethers above and below them, respectively.

The aerodynamic opposing torque vector acting on each disk is important to be
included to complete the system’s dynamic representation. As shown in Section 3.4.2,
the torque loss, due to tether drag, for a unit length around the i-th tether point is dependant
on: the system’s elevation angle β, the wind velocity Vw, the rotational position θi and
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the speed of the tether point ωiRi. The position of the tether point ti and its speed ωiRi
are calculated from the positions and speeds of the TRPT discs, θ and θ̇, respectively.
The position vector, ti, and its radius from the axis of rotation, Ri, are calculated from the
disc’s rotational positions. The rotational velocity of a tether point is calculated by linearly
interpolating between the rotational velocities, θ̇, of the discs that are at either end of the
tether. The central point of each tether segment and each tether-segment’s length are used
to calculate the torque loss that arises from each segment. For a fixed elevation angle,
the opposing torque, due to tether drag, is a function of the wind speed Vw, the disc’s
rotational position θ and the disc’s rotational velocity θ̇. A time-varying function, fD(t),
was defined to calculate the opposing torque that is applied to each disc as a result of the
tether drag, fD(Vw, θ̇, θ).

Using the inertia matrix, J, the function for spring force, fS, and the function for torque
loss, fD, the equations of motion (EOMs) of the spring-disc model are represented by

Jθ̈+ fD(Vw, θ̇, θ) + fS(θ, Fx) = Qext, (8)

where Qext is the vector of external torque applied to the system, which includes the rotor
torque and the generator torque—for simplicity, the time-dependence notation is dropped.
It is assumed that the aerodynamic damping due to tether drag is much larger than any
internal material damping. Therefore, in the above EOMs, material damping has been
neglected. The EOMs in (8) represent a nonlinear coupled dynamic system due to the
presence of the second and third terms, which are functions of tether drag and torsional
stiffness. As such, in the presence of the arbitrary varying external torques, a suitable
numerical time-stepping method is required to solve the EOMs. Given its simplicity and
ease of implementation, the central difference integration method [29] was used to solve
(8)—see Appendix A.1 for further detail.

3.3. TRPT Dynamic Model 2: Multi-Spring Representation

The second dynamic TRPT representation is called the multi-spring model in this
contribution. This model aims at relaxing some of the modelling assumptions of the spring-
disc model to create a more general description of TRPT’s dynamics. Figure 5 illustrates a
schematic representation of the multi-spring TRPT model.

Figure 5. Schematic of the multi-spring TRPT representation. Each ring is represented by Nt (Nt = 6
in this design) linear springs with stiffness kr and the tethers by linear springs with stiffness kt.
The number of degrees of freedom for a single ring is Nt + 1.

The main additional feature, compared to the spring-disc model, is that each tether
within a TRPT section is represented by a separate linear spring with stiffness kt, removing
the assumption that the tethers are rigid elements with their lengths remaining unchanged
during the operation. The tethers are assumed to be straight and all tethers in the same
TRPT section have the same unloaded length. The rings of the TRPT are split into Nt
segments, where Nt is the number of tethers, that is, six in the current Daisy Kite TRPT
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design. The mass of each segment is represented by a point mass located at the tether
attachment position. A linear spring is assumed to connect the masses at the junctions
of two neighbouring tether attachment points with stiffness kr. This arrangement adds
tangential DoF, θi,j, on the ring circumference, at the i-th ring for mass j.

The point masses are constrained to move around the circumference of the ring and
all the masses on the same ring are constrained to move axially together due to the DoF, xi.
All the masses on a single ring have the same axial displacement. With each ring having Nt
rotational and one axial DoF, the total number of DoFs for each ring within the TRPT is,
therefore, Nt + 1. For the current Daisy Kite TRPT design, each ring has seven degrees of
freedom (Figure 5). Similar to the spring-disc model, the multi-spring model was defined
and solved using cylindrical coordinates.

As with the spring-disc representation, the multi-spring model also incorporates the
torque loss due to tether drag as described in Section 3.4.2. Again, each tether is split into
two equal segments, and the aerodynamic force for each segment is calculated using the
location of its mid point and its length. The multi-spring model includes an axial DoF for
each ring; therefore, the axial force that arises due to the aerodynamic forces on the tether
can also be taken into account. With the aerodynamic force on the tether transformed into
the tether reference frame, the Ft

a,x component corresponds to the axial force that arises due
to the airflow around the tether. The axial force for all tethers on a single ring are combined
and applied to the rings axial DoF. The torque loss and axial force applied to each mass
and ring correspond to the aerodynamic forces on half the tether above and half the tether
below it.

Given the more complex nature of the multi-spring model, Lagrange’s equations of
motion were used to derive the equations of motion The general from is given by

d
dt

∂T
∂u̇
− ∂T

∂u
+

∂V
∂u

= Qi, (9)

where u = [x θ]T is the position vector, which includes the rotational positions of the
masses θ and the axial positions of the rings, and x, u̇ = [ẋ θ̇]T is the corresponding
velocity vector.

In the Lagrange’s EOMs, (9), T is the kinetic energy, V the potential energy within the
TRPT and Qi contains all non-conservative torques applied on the system including the
external torques from rotor and generator as well as the torque losses due to the opposing
aerodynamic drags. The kinetic energy and potential energy of the system are written as

T =

Nr

∑
i=1

Nt

∑
j=1

1
2

mi,j(ẋ2
i + R2

i θ̇2
i,j), (10)

V =

Nr

∑
i=1

Nt

∑
j=1

1
2

kti,j∆l2
ti,j

+
1
2

kr2
i,j(θi,j − θi,j+1)

2, (11)

where Nr is the number of rings, i denotes the i-th ring, j denotes the j-th mass on a ring, mi,j
the mass of the j-th mass on the i-th ring, xi the axial position of the i-th ring, Ri the radius
of the i-th ring, θi,j the rotational position of the j-th mass on the i-th ring, kti,j the tether
stiffness, and kri,j the stiffness of each ring segment. ∆lti,j is the change in tether length
from its unloaded length, required to obtain the potential energy, ∆lt, which is calculated
from analysing the diagram in Figure 6.
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Figure 6. Diagram showing the change in tether length, ∆lti,j , of the j-th tether within the i-th TRPT section.

Length C in Figure 6 defines the distance between the ends of the tether in the plane
of one ring, which is calculated by

C = R2
i + R2

i−1 − 2RiRi−1 cos δ,

where δ = θi,j − θi−1,j. The change in tether length, ∆lti,j , for the j-th tether on the i-th ring
is, therefore, given by

∆lti,j =
√
(lsi + xi − xi−1)2 + R2

i + R2
i−1 − 2RiRi−1 cos(θi,j − θi−1,j)− lti,j . (12)

By substituting (10), (11) and (12) into (9), and excluding the aerodynamic forces on
the tethers and the external torques, the EOMs for a conservative system can be defined.
For simplicity, let

A1 = (lsi + xi − xi−1)
2 + R2

i,j + R2
i−1 − 2RiRi−1 cos(θi,j − θi−1,j),

A2 = (lsi+1 + xi+1 − xi)
2 + R2

i + R2
i+1 − 2Riri+1 cos(θi+1,j − θi,j),

putting the non-conservative terms aside, (9), considering L = T − V, the EOMs corre-
sponding to the axial DoF, xi, of the i-th ring is

d
dt

∂L
∂ẋi
− ∂L

∂xi
=

Nt

∑
j=1

mi,j ẍi +
Nt

∑
j=1

kti,j

 (lsi + xi − xi−1)
(√

A1 − lti,j

)
√

A1


−

Nt

∑
j=1

kti+1,j

 (lsi+1 + xi+1 − xi)
(√

A2 − lti+1,j

)
√

A2

,

(13)

and the EOMs associated with the rotational DoF, θi,j, of the j-th mass on the i-th ring is

d
dt

∂L
∂θ̇i,j
− ∂L

∂θi,j
= mi,jR2

i θ̈i,j + kti,j

RiRi−1 sin(θi,j − θi−1,j)
(√

A1 − lti,j

)
√

A1


− kti+1,j

RiRi+1 sin(θi+1,j − θi,j)
(√

A2 − lti+1,j

)
√

A2


+ 2kr2

i,jθi,j − kr2
i,j+1θi,j+1 − kr2

i,j−1θi,j−1.

(14)
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The contributions from non-conservative tems should be included at this point to
complete the derivation of EOMs according to (9). This includes the aerodynamic forces
on the tether due to the tether drag, the external rotor and generator forces and torques.
Similar to the spring-disc model, for a fixed elevation angle, the aerodynamic forces on
tethers are dependant on the wind speed, Vw, and the position and velocity of the system, u
and u̇, respectively. The function fD determines the axial force and opposing torque which
is a result of the tether aerodynamics.

For a given elevation angle, the EOMs can be written in the general form

Mü + fD(Vw, u, u̇) + fS(u) = fext, (15)

where M is the mass and inertia matrix, defined in (16); u is the position vector, which
includes the rotational and axial positions; fD is the aerodynamic forces on the tether; fS is
the spring forces; and fext is the forces from the rotor, generator and lift kite.

The rotor torque, AeroQ, is split between three of the rotational DoFs on the first ring.
This torque is applied to three points on the ring to account for the three wings of the Daisy
Kite rotor. The resisting generator torque, GenQ, is applied to the last ring in the TRPT.
It is split equally between the rotational DoFs on the last ring. Similar to the spring-disc
representation, the mass and moment of inertia of the last ring is increased to account
for the increased mass of the ground-station ring and the inertia within the drivetrain.
The mass and moment of the inertia of the first ring is also increased to account for the rotor.

The first term in (15), Mü, corresponds to the first terms in (13) and (14), the accelera-
tion terms. The spring forces, fS(u), are calculated using all but the acceleration terms in
(13) and (14).

The aerodynamic forces on the tether, fD, and the spring forces, fS, are non-linear
terms. Similar to the spring-disc representation, the central difference integration method
was applied to solve the EOMs defined in (15). Appendix A.2 provides the algorithm to
solve the EOMs of the multi-spring model.

M =



Nt

∑
j=1

m1,j 0 0 · · · 0 0 0 · · · 0

0 J1,1 0 · · · 0 0 0 · · · 0
0 0 J1,2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · J1,6 0 0 · · · 0

0 0 0 · · · 0
Nt

∑
j=1

m2,j 0 · · · 0

0 0 0 · · · 0 0 J2,1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · JNr ,Nt



(16)

3.4. Tether Drag Models-Calculation of Torque Loss in TRPT

In AWE systems, tethers connect the wings to the ground and are used to transmit the
energy harvested aloft down to the ground, either mechanically or electrically. The long
tether length required to reach the desired altitude, combined with the high wing velocities,
leads to a vast length of tether moving through the air at great speed. This results in
significant losses due to the tether drag, which reduces the system’s power-generation
efficiency. Several AWES have been designed specifically to reduce tether drag [6,30]. It
is important to analyse the tether’s impact on the Daisy Kite design in this contribution.
Here, two models were developed to derive the aerodynamic forces acting on the tethers,
from which the torque loss can be calculated.
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3.4.1. Simple Tether-Drag Model for Steady-State TRPT Representation

An initial estimate of the torque loss within the TRPT is calculated assuming no
torsional deformation, each TRPT ring is of equal radius, tethers are straight and do not
stretch, all tethers are of equal length and diameter, and the axial tension applied to the
TRPT is distributed equally among all tethers.

Assuming that the axial tension applied to the TRPT is reacted equally by the Nt
tethers, for a given maximum TRPT axial tension, Fxmax , the maximum allowable stress,
σmax, and the diameter of the tethers, d, can be calculated by

σmax =
4Fxmax

d2πNt
, d = 2

√
πNtFxmax /σmax. (17)

Then, the drag force per unit length, D, experienced by a TRPT is given by

D = ρ

√
Fxmax

σmaxπNt
CDt

Nt

∑
i=1

V2
a,i, (18)

where Va,i is the i-th tether’s apparent velocity in the direction of rotation, and CDt is the
tether’s drag coefficient.

For a TRPT that is inclined to the horizontal direction, the relative velocity that a
tether experiences will vary as the system rotates. The apparent velocity of the tether in the
direction of rotation, Va,i, is formed from two components, one from the wind, Vw, and one
from the rotational motion of the system, ωR. The component of ωR acts in parallel to
Va,i and is equal for all tethers. The component of Vw acts in the direction of the TRPT
rotation and is dependant on the tether’s rotational position θi and the system’s elevation
angle β, which is written as Vw sin θi sin β. Denoting λt = ωR/Vw as the tether speed ratio,
the apparent velocity of the i-th tether in the direction of rotation is given by

Va,i = Vw(λt + sin θi sin β). (19)

Substituting (19) into (18) and assuming that the TRPT is of constant radius, the torque
loss, Qloss, per unit length of TRPT due to tether drag is obtained as

Qloss = RρV2
w

√
Fxmax

σmaxπNt
CDt

Nt

∑
i=1

(λt + sin θi sin β)2. (20)

The steady-state torque loss of the TRPT can be calculated by determining the energy
lost due to tether drag in one revolution and averaging this over one rotation. Under steady-
state conditions, the energy loss caused by each tether is considered to be equal; therefore,
the steady-state torque loss per unit length of TRPT is given by

Qloss = RρV2
w

√
Fxmax

σmaxπNt
CDt Nt

1
2π

∫ 2π

0
(λt + sin θ sin β)2dθ

= RρV2
w

√
NtFxmax√
σmaxπ

CDt

(
λ2

t +
sin2 β

2

)
.

(21)

It can be seen from (21) that the torque loss due to tether drag depends on a number
of factors, including: the number of tethers Nt, the elevation angle β, the tether speed ratio
λt, the maximum stress of the tether material σmax, and the maximum total axial force Fxmax .
This simple tether-drag model was used within the analysis of the Daisy Kite design to
estimate torque loss for a range of operating conditions.
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3.4.2. Improved Tether Drag Model for Dynamic TRPT Representations

The torque loss shown in (21) does not take into account any torsional deformation
within the TRPT. It also neglects the components of the tether’s aerodynamic forces that are
not in the direction of the TRPT rotation. As the TRPT deforms torsionally, the tethers are
no longer parallel to the axis of rotation, which, in turn, alters the angle of attack between
the apparent wind and the tether. A change in the tether’s angle of attack will alter the
aerodynamics and the resulting torque loss. The torsional deformation of the TRPT also
results in the tether’s distance from the axis of rotation varying along its length, again
affecting the torque loss. Considering the torsional deformation in TRPT, the improved
tether-drag model was developed based on ideas in [31]. The key results are given in the
following; for more details, including the definition of the tether reference frame, see [4].

In this analysis, a number of points were considered for each tether. The aerodynamic
force vector Fa acting on the i-th tether point consists of three components: (i) force acting
tangential to the tether points radius, FD,τ , aligned with the velocity component Va,τ ;
(ii) axial force acting along the tether, FD,φ, aligned with the wind velocity component
Va,φ; and (iii) transverse force FL,τ acting perpendicular to FD,τ and FD,φ, as shown in
Figure 7 [31,32], where α is the angle between the tether and the tether points’ apparent
wind vector.

Figure 7. Diagram showing the aerodynamic force on a tether point.

The magnitudes of the three aerodynamic forces, in the wind reference frame, are
given by

FD,φ =
1
2

ρdV2
a,φπC ft , FD,τ =

1
2

ρdV2
a,τCDt , FL,τ =

1
2

ρdV2
a,τCLt , (22)

where CDt is the tether’s drag coefficient, C ft the tether’s skin friction drag coefficient,
and CLt the tether’s lift coefficient. These magnitudes are multiplied by their force unit vec-
tors to give the three aerodynamic force components vectors, FD,φ, FD,τ and FL,τ . The over-
all aerodynamic force vector, per unit length of tether, in the wind reference, is written as

Fa = FD,φ + FD,τ + FL,τ . (23)

To determine the torque loss due to the aerodynamic force in (23), the force vector can
be transformed into the tether reference frame with three elements included, i.e., Ft

a,x, Ft
a,y

and Ft
a,z, among which the Ft

a,y component is tangential to the tether-point’s radius, and can
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be used to determine the torque loss due to the tether drag. For a unit length around the
i-th tether point, the torque loss is given by

Qloss,i = Ft
a,yRi. (24)

Here, Ri is the distance of the i-th tether point from the axis of rotation. The torque
loss on the TRPT system can be obtained by applying (24) to each segment on a tether, the
results from all segments are summed to give the overall TRPT torque loss. The improved
tether drag model is used within the two dynamic representations of TRPT.

4. Model Validation and Modifications

The results from the developed models were compared with the data collected from
an experimental campaign over two years covering a range of tests, including laboratory
experiments and field tests. TRPT models of different complexity levels were also compared
in simulation environments. One field-test image is shown in Figure 8, which gives a view
of TRPT–4 with three rigid wings.

Figure 8. Image of a rigid rotor Daisy Kite prototype undergoing field tests (August 2019).

4.1. Steady State Model

To assess the accuracy of the steady state TRPT representation developed in Section 3.1,
laboratory experiments on a single TRPT section were conducted (Figure 9a). The exper-
imental results collected were compared to the torsional deformation calculated using
(4). The results for the 30 kg axial load case tested during the laboratory experiments are
shown in Figure 9b. It can be seen that under the selected torques within the testing range,
the calculated torsional deformation values match well with the experimental data. More
details on experimental settings can be found from an appended report in [4].
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Figure 9. TRPT laboratory test set-up and results, 30 kg axial load case. (a) TRPT section lab testing
with two wheels; (b) Lab testing results compared to calculated torsional deformation.

The steady state model was also simulated to compare several Daisy Kite configura-
tions. Figure 10a shows the simulation results for the soft and rigid wings using TRPT–3.
It can be clearly seen that the rigid wings achieve higher Cp values over the full range of
λ simulated. The maximum Cp achieved by the soft wings is 0.1 at λ = 3.9, whereas the
simulation with rigid wings achieves the maximum Cp of 0.15 at λ = 4.2, a 50% increase.
This highlights the improved aerodynamic performance of the rigid wings, as confirmed
by the experimental data.

Figure 10b shows the simulation results for the two different rigid blade pitch angles
tested during the experimental campaign for TRPT–3. Feathering the blades by 4◦ increases
the maximum Cp value achieved from 0.15 to 0.155 compared to the flat blades. It also
lowers the tip speed ratio, for which the maximum Cp occurs at from 4.2 to 4.0. The minor
increase in the maximum Cp in simulation is hard to see in experimental results due to the
measurement noise.

Figure 10c shows the simulation results comparing TRPT–3 and TRPT–4; there is only
a minor difference between these two. TRPT–4 achieves a lower maximum Cp value by
5× 10−4. The increase in tether length from TRPT–3 to TRPT–4 is 3.4 m, these simulation
results show that the increase in tether drag due to this additional length is minor. The
effect of tether drag on the Daisy Kite system is analysed further in Section 5.3.
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Figure 10. Steady-state power coefficient against tip speed ratio, Daisy Kite configuration compar-
isons using spring-disc model. (a) Rigid and soft wings; (b) 4◦ & 0◦ pitched rigid wings; (c) TRPT–3
and 4; (d) 3 and 6 blades.

Figure 10d shows the comparison between three- and six-bladed rotors. As mentioned
previously, the rotor aerodynamics module does not support simulating rotors with more
than three blades; the six-bladed rotor is, thus, modelled by increasing the chord length
of the three-bladed rotor. Both rotors have a 4◦ blade pitch. The simulation results show
that the six-bladed rotor achieves a higher maximum Cp value at a lower tip speed ratio,
increasing the maximum Cp from 0.155 to 0.166 and lowering the optimal tip speed ratio
from 4.0 to 3.1, when compared with the three-bladed rotor. This result is confirmed by the
experimental data (not included in this paper).

The steady-state comparisons in Figures 10 and 11 show that the mathematical model
is able to calculate the steady-state response of the six different single rotor Daisy Kite
configurations. The model results are similar to the experimental test results for different
Daisy Kite designs.

4.2. Spring-Disc Representation Compared to Field-Testing Data
4.2.1. Steady-State Response Testing

The steady-state response of the spring-disc model was compared with field-testing
data. The experimental data were averaged over one minute. It is assumed that there is no
torsional deformation within the TRPT. Figure 11 shows the comparison of the calculated
and measured power coefficient Cp over a range of tip speed ratios for the six single-rotor
configurations tested, three with soft wings and three with rigid wings.

Figure 11a–c show the results using soft wings and TRPT versions 1, 2 and 3, re-
spectively. The maximum values of Cp obtained from simulations in Figure 11a,b, at an
elevation angle of 40◦, are 0.02. The maximum value of Cp in Figure 11c at 25◦ is 0.1. It
can be seen that the simulation results using TRPT–3 (Figure 11c) show larger Cp values
and reach the maximum Cp at a higher tip speed ratio compared to the simulation results
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for TRPT–1 and –2. This is due to the lower elevation angle applied. The experimental
results for TRPT–1 and –2 were collected with the Daisy Kite using a lift kite, whereas
the experimental results for TRPT–3 are from a mast mounted test. The elevation angle
for the mast mounted test is around 25◦, smaller than the 40◦ with a lift kite. Using the
BEM theory to model the Daisy Kite’s rotor aerodynamics, it is likely to be less accurate for
higher elevation angles. When the elevation angle is increased, power generation decreases;
therefore, lower elevation angles should be more advantageous for rotary AWES.
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Figure 11. Power coefficient against tip speed ratio for various Daisy Kite configurations using
the steady-state spring-disc model compared to experimental data. (a) Soft wing TRPT−1; (b) Soft
wing TRPT−2; (c) Soft wing TRPT−3; (d) Rigid wing TRPT−3; (e) Rigid wing TRPT−4; (f) Rigid
6−wing TRPT−5.

Figure 11d–f show the results for rigid wings with TRPT versions 3, 4 and 5, respec-
tively. Among the six comparisons made, Figure 11f displays the largest difference between
the simulation and experimental results, very few of the experimental data points stay
close to the simulation results. This suggests possible missing elements in the modelling
of the six-bladed rotor. The rotor aerodynamics package, AeroDyn, used for simulation
does not support rotors with more than three blades. Therefore, to model the six-bladed
rotor, a three-bladed rotor was simulated with increased solidity, achieved by increasing
the blades chord lengths. This approximated simulation is less accurate compared to other
simulations. It can be seen from Figure 11 that the spring-disc model is able to predict the
steady-state response for the six Daisy Kite configurations.

4.2.2. Dynamic Response Testing

To assess the dynamic response of the spring-disc model, measured wind speed and
the corresponding output torque, as measured by the power meter during experimental
tests, were used as inputs to the dynamic model. The wind speed was measured by a cup
anemometer installed on a 4.8 m tall mast which was positioned adjacent to the system
relative to the wind direction. Several 5-min windows were selected from the experimental
data for this comparison study. During simulations, the generator torque and the wind
speed were kept constant for the first 50 s; this ensures that any transient behaviour at
the start of the simulation does not affect the comparison. As the time step required for
model simulation is much smaller than the sampling frequency in experiments, linear
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interpolation was applied to the experimental data. The conditions for the five experiments
are summarised in Table 1. Four TRPT configurations were used in the testings, with the
different number of carbon-fibre rings, ring size and the length of tethers between the rings
(see Figure A1 in Appendix B).

Table 1. Five experiments used for comparison with the mathematical representations.

Case Test Date Wing TRPT Wind Speed
(m/s)

Power
Output (w)

1st Natural
Frequency (Hz)

1 8 September 2019 Rigid 4 5.3 35 0.74
2 20 September 2018 Rigid 3 6.1 50 1.43
3 27 August 2018 Rigid 3 2.7 10 0.73
4 6 May 2018 Soft 2 5.8 10 1.47
5 18 June 2017 Soft 1 5.5 15 1.52

Rotor Relative Wind Speed Correction

The change in length of the TRPT impacts the relative wind speed that the rotor expe-
riences. As the TRPT length reduces or increases, the rotor moves towards or away from
the ground station. This motion is out of alignment with the wind vector by elevation angle
β. An additional component, that is parallel to the wind vector, is added to the wind speed
experienced by the rotor. This additional component is calculated using the elevation angle
and the speed at which the rotor’s centre, or the hub, moves towards or away from the
ground station. The relative wind speed at the rotor is calculated by Vwhub = Vw + Hub Speed

sin β ,
where Vw is the ambient wind speed and Hub Speed is the speed of the rotor parallel to the
system’s axis of rotation. This modified rotor relative wind speed was used in simulations.

First Natural Frequency

Simulation results contain high-frequency oscillations that are not seen in the ex-
perimental results. To investigate this further, the power spectral densities (PSD) of the
simulation and experimental data were calculated. The experimental data was recorded
at a frequency of 2 samples per second; therefore, the comparison can only be made for
frequencies up to 1 Hz. It can be seen from Figure 12 that the simulation PSD data contains
a significant peak at a frequency of around 0.7 Hz, whereas the experimental data does not.
The peak in simulation corresponds to the system’s first natural frequency, as predicted by
the spring-disc model. The model’s natural frequencies can be determined by calculating
the eigenvalues of the mass and stiffness matrices of the system at a given operating point.
Due to the non-linear relationship between the system’s state and the torsional stiffness
of each TRPT section, given by (5) in Section 3.1, the natural frequency of the system is
constantly changing. See the last column in Table 1 for the identified first mode from a
series of testings.

Due to the low sampling rate, the above-mentioned peak is not visible in the PSD of
experimental result. In order to demonstrate this, a low pass Butterworth filter was applied
to remove the oscillations in the simulation results at frequencies above the first mode.
Figure 12 shows the PSD with the filter applied compared to the experimental data and the
unfiltered model results.

The model was modified by incorporating the relative wind speed experienced by the
rotor and the low pass filter. Several sets of experimental data from different single-rotor
prototype configurations were used to compare with the spring-disc model. Table 1 shows
the experimental test days from which the 5-min windows were taken, the mean wind
speed and the mean power output during the 5-min window. It is noted that for the rigid
wing test conducted on 27 August 2018, Case 3, the wings were flat to the ring; in the
rigid wing tests conducted on 8 September 2019 and 20 September 2018, Cases 1 and 2,
the rigid wings were pitched to feather by 4◦. Figure 13 (experimental data taken from Case
1 collected on 8 September 2019) shows the power output and the ground-station angular
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velocity for the filtered simulation results compared to the experimental data. A reasonably
close match can be observed.

10!3 10!2 10!1 100 101 102

Frequency (Hz)

10!6

10!4

10!2

100

102

P
ow

er
S
p
ec
tr
a
l
D
en
si
ty

Simulation Experiment Simulation Filtered

Figure 12. Power spectral density of the ground station angular velocity for the spring-disc model
with and without a low pass filter applied.
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Figure 13. Comparison between the spring-disc model with a low pass filter and experimental data.
(a) Power output comparison; (b) Angular velocity comparison.

4.3. Multi-Spring Representation Compared to Field-Testing Data
4.3.1. Improving Computational Efficiency with Assumption of Rigid Wings

The multi-spring model allows more DoFs to be included in TRPT modelling. This,
however, comes at the cost of requiring significantly more computational time, especially
when the TRPT representation is coupled with AeroDyn in simulation.

The stability for a given time step is dependant on the system’s stiffness. From the simu-
lation studies in the previous section, it is found that the torsional stiffness of the spring-disc
model rarely exceeds 100 Nm/rad. In comparison, in the multi-spring model, the per-unit-
length stiffness of the springs is set to be 5× 105 N/m [33] for tethers, and 4× 106 N/m [34]
for rings. This leads to a much smaller time step required to achieve a stable solution in



Energies 2023, 16, 2610 22 of 42

simulation. For the spring-disc model, a time step of 0.005 s is found to be suitable to
balance the accuracy and the computational time. With the same operating conditions,
the multi-spring model requires a time step of 0.00002 s, which is 250 times smaller than
that of the spring-disc model.

To reduce the computational time required for the multi-spring model, the rings were
assumed to be rigid. The impact of ring deformation on model output was assessed by
comparing the use of rigid and flexible rings for the multi-spring model. In the simulations,
the model was not coupled to AeroDyn; instead, a constant torque and thrust of 43 Nm and
325 N, respectively, were applied at the rotor. The generator torque was set to be 38 Nm.
These values were set so that the steady state of the system was close to the operating
point at the optimal tip speed ratio, under a mean wind speed of 8 m/s, for the Daisy Kite
configuration with rigid wing rotor, referred to as TRPT–4. In this case, the optimal tip
speed ratio is 4.0. Once the simulation reached the steady state, a step reduction of 1 Nm in
the generator reaction torque was introduced for a period of 0.5 s.

Figure 14 shows the response to this change in the generator reaction torque. It can be
seen that the TRPT system with rigid rings shows a similar response in the angular velocity
change, compared to the system with flexible rings. The amplitude of the response from the
rigid-rings model is higher than the model with flexible rings. The difference between these
two is reduced when the wind speed is increased. These results suggest that neglecting
the internal rotational deformation of the TRPT rings has a negligible effect on the model
results. By assuming the rigid rings, the time step required for calculation can be increased
by a factor of five, which largely benefits the simulation study for the multi-spring model.
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Figure 14. Results from the multi−spring representation comparing rigid and flexible carbon fibre
rings within the TRPT.

4.3.2. Multi-Spring Model Compared to Experimental Data

The same 5-min window taken from test data on 8 September 2019 is used for the
initial study, where again a constant input is applied for the first 50 s of the simulation
to remove any initial transient effects. Similar to the spring-disc TRPT model, the first
natural frequency is identified from the multi-spring model, which is around 0.75 Hz, see
Figure 15 on the PSD of the ground-station rotational speed for the multi-spring TRPT
model. For the similar reason of the low sampling rate in the experimental data, a low pass
Butterworth filter was applied to remove the impact of oscillations at and above the first
natural frequency for comparison with the experimental data.
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Figure 15. Power spectral density of the ground-station rotational speed for the multi-spring model
with and without a low pass filter applied compared to the experimental data.

Figure 16 shows the power output and the ground-station angular velocity of the
filtered simulation results compared to the experimental data. Figure A2 in Appendix C
shows the ground-station angular velocity for the filtered multi-spring model results for
several other testing cases. It can be seen from Figures 16 and A2 that the multi-spring
TRPT model is able to match the experimental data to a similar degree of closeness as the
spring-disc TRPT representation.
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Figure 16. Comparison between experimental data and multi-spring model with a low pass filter.
(a) Power output comparison; (b) Angular velocity comparison.

4.4. Comparison of Spring-Disc and Multi-Spring TRPT Models

A series of simulations were run to compare the multi-spring model and the spring-
disc model. The Daisy Kite configuration in TRPT–4 with rigid wings was used at a fixed
elevation angle of 25◦.

Initially, the TRPT models were run in isolation; the rotor aerodynamics and the lift-
kite modules were used to set constant values of rotor torque, rotor thrust and lift-kite force
corresponding to a selected constant wind speed. The generator torque was set such that the
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system operates at or close to the optimal tip speed ratio. Comparisons are made between
the two TRPT models at steady uniform wind speeds of 8 m/s and 12 m/s, respectively.
The system is set to be stationary before the input change is introduced. For 8 m/s, the rotor
and generator torque were set to 43 Nm and 38 Nm, respectively; the combined rotor thrust
and lift kite force was 325 N. For 12 m/s, the rotor and generator torque were 97 Nm and
85 Nm, respectively; the combined rotor thrust and lift-kite force was 733 N. The response
of angular velocity subject to a step change in wind speed was calculated until the system
settled to the steady state. The two TRPT models produce similar steady-state values and
transient responses at both wind speeds [28].

4.4.1. Response to Short-Term Step Changes in Torque and Tension

Further simulations were conducted when short-time changes in generator torque and
axial tension were applied, separately. Starting from a steady state, the generator torque
was reduced by 1 Nm for a period of 0.5 s and then returned back to the original value. The
responses of angular velocity are similar for the two TRPT representations, both are highly
oscillatory, and the oscillation amplitude of the multi-spring model is slightly larger than
the spring-disc model.

Similarly, when the axial tension is increased by 100 N for a period of 0.5 s and then
decreased to the original value, the responses of the angular velocity were calculated for
the two TRPT representations. Again, the two models produce similar responses to the
short-time change in axial tension, both are highly oscillatory but the multi-spring model
response exhibits larger amplitude in oscillation.

The above simulations were performed at several wind speeds. The RMSE of the
two model’s rotor velocity responses were calculated and presented in Table 2. It can be
seen that the RMSE values between the two models are larger under the change made in
axial tension. A key difference between the two models is in the modelling of the variation
in axial tension along their length. When the rotor thrust or force from the lift kite changes,
the axial tension along the length of the TRPT will vary; this variation is considered in the
multi-spring representation, but not in the spring-disc model. A change in rotor thrust or
lift kite force will, therefore, propagate along the TRPT in the multi-spring model.

Table 2. Comparison of rotor velocity between the multi-spring and spring-disc models in RMSE.

Wind Speed (m/s) Change in Torque RMSE Change in Tension RMSE

6 0.056 0.332
8 0.038 0.271
10 0.019 0.186
12 0.019 0.119

From Table 2, it can also be seen that as the wind speed increases the difference
between the two model responses reduces. As the wind speed increases, the thrust from
the rotor and the force from the lift kite increase, the axial force on the TRPT is, therefore,
larger. This increases the torsional and axial stiffness of the TRPT, leading to a reduced
difference between the outputs of the two models.

4.4.2. Impact of TRPT Length

In principle, a longer TRPT will be less stiff axially. The TRPT length is increased from
10.3 m to 30 m in simulation settings. This is achieved by expanding the constant radius
sections towards the ground-station end of TRPT–4, requiring 38 sections to be added to
the original eight sections; each has a radius of 0.32 m and a section length of 0.52 m.

Similar simulations were conducted for the longer TRPT by introducing changes in
torque and axial tension. The two step changes are the same as those in Section 4.4.1. It
can be seen from Figure 17 that the amplitude values of the responses for both models
are similar; however, there is a phase shift between them due to difference between the
the signal’s dominant frequencies. This frequency difference can be simply detected
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by counting the number of signal peaks, which leads to a slight difference over 20 s.
The velocity signal of the spring-disc model demonstrates more peaks, which means that
it is a stiffer system with a higher dominant frequency. This difference is in-line with the
spring-disc modelling, in which the tethers (and rings) are assumed rigid and only the
geometric stiffness of the system due to torsional deflection is taken into account. The phase
difference is larger when the step change is introduced to the axial tension. Similar to
Section 4.4.1, the rotor velocity response RMSE was obtained and the comparison between
the two TRPT models using the 30 m TRPT is equal to 0.027 for the change in torque and
0.290 for the change in axial tension at wind speed 8 m/s, and 0.020 and 0.234, respectively,
at 12 m/s. These observations are similar to the shorter TRPT results shown in Table 2.
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Figure 17. Response of angular velocity of the rotor to changes in torque and axial tension for the
spring−disc and multi−spring models, TRPT length 30 m, wind speed of 8 m/s. (a) Response to a
change in torque; (b) Response to a change in axial tension.

4.4.3. A Few Remarks

The kite turbine models with two different TRPT dynamic representations were also
tested with the experimental data. It has been shown that for the Daisy Kite prototypes
developed to date the two dynamic TRPT representations provide matching results, espe-
cially in terms of power yield, as compared to experimental data. However, the complexity
and, therefore, the computational time required for the two models are largely different.
As discussed in Section 4.3.1, the time step required for the multi-spring model is much
smaller than the spring-disc model. To run a comparable simulation, the multi-spring
model takes over 50 times longer computational time than the spring-disc model. For this
reason, the spring-disc representation is the preferred model for analysing the dynamic
behaviour of the current Daisy Kite prototypes. However, it should be noted that the
difference between the spring-disc and multi-spring models increases with the increase
in TRPT length, due to the reduction in the system’s axial stiffness. The multi-spring
representation is likely to be more suitable for modelling larger systems. It is also noted
that the axial and torsional stiffness of a TRPT system is highly dependant on its geometry.
Therefore, the spring-disc representation could be suitable for longer TRPT lengths when
the geometry and operating state result in high stiffness of the system.

5. System Analysis and Improved/Optimised Design

To further understand the characteristics of rotary AWES, a steady-state analysis of
the Daisy Kite’s design was undertaken and is detailed in this section. The TRPT and
rotor designs are investigated in Sections 5.1 and 5.2, respectively. Their performances
were analysed to identify any limitations and crucial design drivers. Given the importance
that tether drag has on AWES, as shown in Section 3.4, the TRPT’s tether-drag impact is
investigated in Section 5.3.
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5.1. TRPT Design Analysis

The main role of a TRPT is to transfer the torque generated at the rotor down to
the ground station. The torque calculation is given in (3), from which it can be seen that
the amount of torque that a single TRPT section can transmit is dependant on the TRPT’s
geometry, the axial force applied to it and the torsional deformation of the section. Figure 18
shows how the torque, Q, varies with the torsional deformation, δ, for a set geometry and
axial force, for a single TRPT section. In this case, the two rings have the same radius
(R1, R2) of 0.4 m, the tether length (lt) is 1 m and the axial force, Fx, is set to 500 N.

0 20 40 60 80 100 120 140 160 180

Torsional Deformation (deg)

0

20

40

60

80

100

120

T
o
rq

u
e

(N
m

)

/crit

Figure 18. Amount of torque transmitted against the torsional deformation for a single TRPT section
of the Daisy Kite.

It can be seen from Figure 18 that the amount of torque that the TRPT section can
transfer is highly dependant on its torsional deformation and that there is a non-linear
relationship between the two. Initially, as the torsional deformation is increased the
transmittable torque increases, at a particular torsional deformation, δcrit, a maximum
torque value is reached. After this point, the ability for torque transmission reduces as the
torsional deformation increases further. In Figure 18, the maximum transmittable torque is
100 Nm and δcrit is 104◦. The calculation of the critical torsional deformation in (6) shows
that this value is dependent on the TRPT geometry.

Figure 18 and (3) also show that with zero torsional deformation, no torque can be
transferred. In the case of the Daisy Kite’s TRPT, it is not possible to transmit torque if
adjacent rings have the same rotational position relative to one another. If the torsional
deformation between adjacent rings exceeds 180◦, the TRPT tethers will cross and it is
no longer possible to transfer torque. Once this occurs, the TRPT fails as the torsional
deformation will rapidly increase and the tethers will become excessively twisted.

One more observation from Figure 18 is that there are two possible torsional defor-
mations for each torque value, one larger than and one smaller than δcrit. By investigating
the torsional stiffness of the TRPT, the two torsional deformations for each torque were
analysed in more depth. Figure 19 shows how the torsional stiffness varies with torsional
deformation, calculated using (5).

It can be seen from Figure 19 that the torsional stiffness of a TRPT section decreases
monotonically as the torsional deformation is increased. When the torsional deformation
is equal to δcrit, the torsional stiffness of the TRPT section is zero. For larger torsional
deformations, the torsional stiffness becomes negative. A negative torsional stiffness shows
that the TRPT is not in equilibrium as the tether forces and torque act in the same direction.
Therefore, once the TRPT rotationally deforms beyond δcrit, the ability of the TRPT section to
transmit torque collapses to zero. During the system’s operation, the torsional deformation
must be kept below δcrit. This provides a limit on the Daisy Kite’s rotational deformation
and can be used to ensure reliable operation. By measuring the tether angle or torsional
deformation, this could be used to ensure that the over twist scenario is avoided. Equally,
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by measuring the axial tension it is possible to calculate the maximum torque that the TRPT
is able to transmit, allowing limits to be set to avoid the tethers becoming twisted.
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Figure 19. Torsional stiffness variation with torsional deformation for a single TRPT section of the
Daisy Kite.

Next, the relationship between the TRPT geometry and the torque carrying ability
of a single TRPT section is analysed. Consider the case that the two rings of the TRPT
have the same radius, R. The torque can be calculated using (3) and the critical torsional
deformation angle is given by (6). When the radius of the two rings is the same, δcrit is
dependent only on ϕ, the ratio of the tether length to the ring’s radius. Figure 20 shows the
relationship between δcrit and ϕ calculated using (6).
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Figure 20. Critical torsional deformation for different tether-length-to-ring-radius ratios.

Below a ϕ value of 2, it is not geometrically possible for the torsional deformation
to reach 180◦. The tethers are, therefore, not able to cross. In this situation, the material
strength of the tethers and rings will dictate the failure point. In the case where ϕ is less
than 2, it is possible for the axial distance between two rings to reduce to zero, although in
practise the rings or tethers will fail prior to this occurring. It can be seen in Figure 20 that
the minimum value of δcrit is 90◦. It can be stated that if ϕ is less than 2 or the torsional
deformation is lower than 90◦, the operation is stable, unless the torque and axial forces are
larger than the strength of the tethers or rings can withstand.

The amount of torque that a TRPT can transmit is directly proportional to the axial
force applied to it. Given this linear relationship, the ratio between the two is a useful
metric when analysing the TRPT design. The force ratio is defined as the ratio between
the tangential force due to torque acting on the ring and the axial force applied to the
TRPT section, Fx. Figure 21 shows how this ratio changes with respect to the torsional
deformation, for a single TRPT section, where the radii of the two rings are 0.4 m and the
tether length 1 m. The force ratio is at a maximum of 0.5 when the torsional deformation
is at δcrit. The maximum value of the force ratio remains constant independent of the
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magnitudes of the torque and axial force. For a given geometry, the limit on the maximum
force ratio can be calculated that will avoid TRPT failure.
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Figure 21. Force ratio against torsional deformation.

A crucial relationship for a TRPT section, with constant ring radius, is the force ratio
versus the ratio of tether length to the ring’s radius, φ. The value of δcrit is dependant
on φ and it determines the maximum force ratio that can be achieved. Knowing this
maximum force ratio allows the maximum transferable torque for a given axial tension
to be calculated. Figure 22 shows the relationship between φ and the force ratio. This
figure acts as a useful tool for TRPT design. The shaded region on the graph indicates the
region of stable operation. The line along the top of the shaded region represents δcrit and,
therefore, above this line the ability of the TRPT to transmit torque will collapse to zero.
If the amount of torque to be transmitted is known, along with the corresponding axial
tension, all stable TRPT geometries can be identified. There are multiple TRPT geometries
for each force ratio that will result in stable operation. In general, the shorter the TRPT
section and the larger the radius, i.e., the smaller the tether length to radius ratio, the larger
is the amount of torque that can be transmitted.

Figure 22. Force ratio against the length-to-radius ratio.

5.2. Rotor Design Analysis
5.2.1. System Elevation Angle

A key difference between HAWTs and rotary AWES is the misalignment of the ro-
tor’s axis of rotation and the incoming wind. The need to avoid ground strikes and the
desire to reach higher altitudes means that the flying rotor must be tilted into the wind.
As discussed in Section 2.2.1, the tilting of the entire rotor into the wind will impact the
rotor’s performance, most crucially, the amount of power that can be extracted from the
wind. Figure 23 shows how the Daisy Kite’s three-bladed rigid rotor’s maximum power
coefficient, Cp,max, is affected by the system’s elevation angle. It shows the advantage of
reducing the elevation angle for the purpose of power production.
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Figure 23. Variation in Cpmax with system elevation angle.

5.2.2. Blade Pitch Angle

The wings are attached onto the carbon-fibre ring of the rotor using a 3D-printed cuff.
The blades pitch angle is dictated by this 3D-printed cuff. At present, the blades do not
incorporate any twist. The angle of attack and the apparent wind speed , that a point on
the wing experiences, will vary both radially and as the system rotates. With the current
design, each blade section will only be operating in optimal conditions for a short period of
time. Despite this, there will be an optimal pitch angle for the current rotor design.

Several simulations were run with different pitch angles, with results shown in
Figure 24. It can be seen that a pitch angle of 3◦ produces the maximum power coeffi-
cient value. It can also be seen from Figure 24 that by increasing the pitch angle, the tip
speed ratio that corresponds to Cp,max is reduced. A lower tip speed ratio will reduce the
tether drag experienced within the TRPT, thus improving the system’s efficiency.
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Figure 24. Effect of wing pitch angle on Cp vs. λ curve.

5.2.3. Blade Length

The outer blade portions of a rotor produce the most power. For a unit span, the outer
potions of the blade sweep a larger area giving them access to more wind power. Therefore,
the outer blade portions of a rotor produce the most power. A motivation behind rotary
AWE is to save material and cost by only building the outer portion of the blades and
replacing the inner portion with a tether. In Daisy Kite, the rotor uses blades that have a
span shorter than the rotor’s radius, leaving the rotor’s centre open. However, the tip/end
of any blade is also one of the least efficient blade sections. As the blade tip is approached
the aerodynamic performance reduces, this is usually referred to as tip loss. By leaving the
rotor centre open, the blades have two tips and a short blade may be significantly impacted
by the tip loss. To assess this effect, different blade lengths were modelled, the outer tip
radius remains constant. Figure 25 shows how the Cp,max and the rotor power are affected
by different blade lengths. The x-axis in Figure 25 shows the point on the rotor radius, r,
where the blade starts, for example, an r/R value of 0.5 corresponds to the blades inner
tip being half way between the rotor centre and outer tip radius R. The power output is
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shown as a percentage of the power normalised by a rotor with a blade length equal to the
rotor radius.
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Figure 25. Effect of blade length on rotor power output and Cp,max. (a) Cp,max; (b) Power output.

It can be seen from Figure 25a that the largest value of Cp,max is obtained when the
blades start at a radius that is located at 37% of the outer radius, i.e., the blade length is 63%
of the rotor radius. On the current Daisy Kite prototype, an r/R value of 0.37 corresponds
to a blade length of 1.4 m.

5.3. Tether-Drag Analysis
5.3.1. Analysis with Simple Tether-Drag Model

The tether drag experienced by AWES can have a large impact on their performance.
The simple tether-drag model, introduced in Section 3.4.1, was used for an initial analysis.
The torque loss per unit length of a TRPT due to tether drag can be calculated by (21). It can
be stated that under steady-state conditions, the torque loss due to tether drag is dependant
on the following design variables: the system’s elevation angle, β; the maximum stress of
the tether material, σmax; the maximum total axial force Fxmax ; the number of tethers, Nt;
the tether speed ratio, λt; the TRPT radius, R, and the tether-drag coefficient, CDt , which
could also be considered a design variable as the tether shape could be varied to alter its
drag coefficient.

It can be seen from (21) that part of the torque loss within the TRPT is proportional to
sin2 β. Lower elevation angles, therefore, increase the rotors’ power capture and reduce the
torque loss. However, a lower elevation angle results in a longer length of TRPT to reach
the same altitude for rotor operation.

The torque loss is proportional to 1√
σmax

; therefore, a tether material with a higher
yield stress will make a more efficient TRPT, as the tether cross section can be reduced.
The torque loss is also proportional to

√
Fxmax , showing that as the maximum axial force

increases the torque loss per unit length of TRPT also increases. When designing the TRPT,
it is likely that safety factors would be applied to σmax and Fxmax . Both terms along with the
number of tethers determine the required tether diameter, as shown by (17).

It can also be seen from (21) that the torque loss increases with
√

Nt. Initially, it may
be expected that the torque loss is directly proportional to the number of tethers. However,
as the number of tethers is increased the load on each tether is reduced, allowing for smaller
diameter tethers to be used. The torque loss still increases with the increase in Nt, making
it advantageous to use fewer tethers in the design.

Lastly, it can be seen that part of the torque loss is proportional to λ2
t . This highlights

the influence that the TRPT radius has on the torque loss. From λt and (21), it can be seen
that the overall torque loss is proportional to R3. This shows the importance of reducing
the TRPT’s radius to reduce torque losses. It can be stated that the radius affects the torque
loss more than any of the other factors in (21).
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From a full-system point of view, it is useful to note that by assuming the angular
velocity, ω, and the wind speed, Vw, to be constant, the tether tip speed ratio can be defined
in terms of the rotor’s tip speed ratio and the ratio between the TRPT and rotor radii, τ,
i.e., λt = λ τ, τ = RTRPT

Rrotor
. Thus, the torque loss is proportional to λ2. In terms of reducing

tether drag, it is, therefore, advantageous to design a rotor that has a lower optimal tip
speed ratio.

Equation (21) allows the identification of the factors that affect the torque loss, it
also provides an initial estimation of the TRPT’s overall torque loss. The efficiency of the
power transmission between the flying rotor and the ground station can then be calculated.
For example, at an elevation angle of 25◦ with a uniform wind speed of 8 m/s, the three-
bladed rigid winged rotor used in the Daisy Kite prototype produces a torque of 45.1 Nm,
when operating at a tip speed ratio of 4.0. Using TRPT–4, which has a length of 10.3 m,
the torque loss due to tether drag using (21) is 7.4 Nm. The tether drag for each section is
calculated using the tether radius at the midpoint of the section. Fxmax and σmax are taken
to be 37 kN and 3.5 GPa, respectively. The yield stress is chosen to represent Dyneema
SK76 [35] and the maximum axial force is chosen to correspond to a tether diameter of
1.5 mm. This initial estimate shows that 17% of the energy captured by the rotor is lost in
the TRPT. Therefore, given the operating conditions stated above, the power transmission
of TRPT–4 is estimated to have an efficiency of 83%, when operating at its optimal tip
speed ratio.

5.3.2. Analysis with Improved Tether-Drag Model

The improved tether-drag model in Section 3.4.2 is able to account for variations
in TRPT radius and torsional deformation along the rotation axis. Figure 26 shows the
steady-state torque loss from two TRPT sections with different geometries. The solid line
corresponds to a radius of 0.4 m and a tether length of 1 m, the dashed line corresponds to
a radius of 0.32 m and a tether length of 0.52 m. The geometry of the TRPT in the dashed
line matches the geometry towards the ground-station end of TRPT–4. The elevation angle
is again 25◦.
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Figure 26. Effect of TRPT torsional deformation on the torque loss due to tether drag.

As shown in Figure 26, the torque loss increases initially with the increase in torsional
deformation before reaching a maximum value, after which it decreases with the increase
in deformation angle. There are two key elements that create this profile. Firstly, as the
TRPT section deforms torsionally, the tethers will cross inside the outer radius of the TRPT.
This reduces the radius of the tether sections. The smaller radius results in the tether section
seeing a reduced apparent wind speed, the tether drag force acting at a smaller radius
also reduces the torque force generated. Secondly, as the torsional deformation increases,
the angle of attack between the tether and the apparent wind increases, leading to increased
aerodynamic force due to tether drag. This increases the tether-drag force component, FD,τ ,
which acts perpendicular to the tether—see Figure 7 in Section 3.4.2. The elevation angle
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and TRPT geometry determine at what torsional deformation the maximum torque loss
is reached.

Using the same input conditions applied to the simple tether-drag model, the torque
loss is calculated with the improved model. To assess the impact of the torsional defor-
mation, the torque loss is also calculated neglecting any torsional deformationwithin the
improved model. The results of comparing the models are shown in Table 3.

Table 3. Comparison of torque loss and transmission efficiency of the tether-drag models.

Models Torque Loss (Nm) TRPT–4 Efficiency (%)

Simple tether-drag model 7.6 83.2
Improved tether-drag model (δ neglected) 4.9 89.2

Improved tether-drag model 5.1 88.6

The preliminary studies show that the simple tether-drag model may over estimate
the torque loss compared to the improved model (see Table 3). By neglecting any torsional
deformation within the improved model, the torque loss seems to be under estimated, in the
case with TRPT–4 where the steady-state torsional deformations of the sections vary from
33◦ to 46◦. The sections that have the same geometry as the dashed line in Figure 26 have a
torsional deformation of 46◦. It can be seen that these sections are close to their maximum
torque loss. With a torsional deformation of 46◦ the torque loss is larger than when the
torsional deformation is zero. The error caused by neglecting the torsional deformation
will vary depending on the system’s operating state and the TRPT geometry.

Calculating the tether drag neglecting any torsional deformation makes the calculation
easier. When including the torsional deformation, the angular position of each TRPT ring
must be found, this requires running a dynamic TRPT model for a specific input until the
steady state is reached, as the torsional deformation is not a-priori known. The case listed
in Table 3 shows that the error caused by neglecting the torsional deformation is small.
For the initial steady-state analysis under a range of operating conditions, the torsional
deformation within the TRPT can be neglected to keep the model simple.

The improved tether-drag model was used within the spring-disc and multi-spring
representations. When used within the multi-spring model, the assumption that the tethers
do not stretch is removed, the axial DoFs within the multi-spring model allow for any axial
force that arises due to tether drag to be considered.

5.4. Optimised/Improved Design
5.4.1. Optimised Rotor Design

Rotor-design factors analysed in Section 5.2 were considered to optimise the Daisy
Kite’s rigid rotor based on the current rotor radius and blade design. For the optimised
rotor, the blade pitch angle is 3◦ and the blade length is 1.4 m. Figure 27a shows the
comparison between one configuration of the Daisy Kite rigid rotor and the optimised
design. The optimised design increases the maximum power coefficient from around 0.15
up to around 0.18, an increase by 20%. Figure 27b shows the system’s power curve based
on the value of Cp,max and a rated wind speed of 12 m/s. The rated power of the system
can be either increased or obtained at a lower wind speed. This optimised rotor design is
based on the current blade profiles. It is envisaged that these could be improved to further
increase the power capture of the Daisy Kite’s rotor.
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Figure 27. Optimised rotor design compared to the rotor used in prototype configuration 8. (a) Cp vs.
λ; (b) Power output.

5.4.2. Optimised TRPT Design

To design the TRPT, the expected axial force and torque need to be calculated. Using
the optimised rotor design, operating at its optimal tip speed ratio of 4.3, and an elevation
angle of 25◦, the rotor’s thrust and torque coefficients are 0.5 and 0.05, respectively. The
relationship between the force ratio applied to the top of the TRPT, with a radius of 1.52 m,
will vary with the change in the tip speed ratio, see Figure 28, in which the maximum force
ratio reached is 0.17, at a tip speed ratio of 2.6. Higher force ratio values correspond to
larger amounts of torque being transmitted relative to the axial force on the TRPT. For a
given geometry, larger force ratios will result in more torsional deformation, and the TRPT
will be operating closer to the point of over twist. Figure 28 shows that the maximum force
ratio occurs at a tip speed ratio of 2.6, less than the rotor’s optimal value of 4.3.

0 1 2 3 4 5 6

6

0

0.05

0.1

0.15

0.2

Fo
rc

e
Ra

tio

Figure 28. Force ratio against the tip speed ratio for the optimised Daisy Kite rotor.

With a force ratio of 0.17, the length-to-radius ratio of the TRPT can be as high as
six to provide stable operation [28]. This is much higher than that of the current TRPT
prototypes. Although large TRPT sections are advantageous to reduce the amount of
material, the impact of tether drag must be considered. Simulation studies show that the
sections of the TRPT with the largest radius cause the majority of the losses within the
TRPT [28]. As discussed in Section 5.3, the torque loss within the TRPT is proportional to
R3. The radius should, therefore, be minimised to maximise the TRPT’s efficiency. In the
current design, the radius of TRPTs is decreased gradually from the rotor towards the
ground station to avoid any abrupt changes in diameter. Given the advantage of reducing
the TRPT radius, a new TRPT design is proposed. By reducing the TRPT radius down
to a minimum at the rotor, the tether drag can be reduced. In the proposed TRPT design,
the first TRPT ring is in the plane of the rotor and the TRPT has a constant radius along
its length.
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Figure 29 shows the maximum force ratio for different TRPT radii, and how the per
unit length TRPT efficiency varies with TRPT radius. The efficiency is calculated using the
simple tether drag model assuming a tether diameter of 1.5 mm, a wind speed of 8 m/s
and the system operating at the rotor’s optimal tip speed ratio of 4.3. Here, a compromise
needs to be made when selecting the TRPT radius. A larger radius leads to lower force
ratios, allowing for longer TRPT sections or for the TRPT to operate with lower torsional
deformations and stay further from over twisting. However, a larger radius also makes
lower TRPT efficiencies. In this study, a radius of 0.5 m was selected to balance the TRPT
transmission ability and its efficiency. This results in a force ratio of 0.5, a per unit length
efficiency of 99.7%, a length to radius ratio of 2.5, and a section length of 1.25 m.
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Figure 29. Maximum force ratio and TRPT efficiency versus TRPT radius.

5.4.3. Optimised Elevation Angle and Tether Length

The optimised rotor and the improved TRPT geometry were used to find the optimal
TRPT length and elevation angle. The tether length required to reach the desired altitude
is dependant upon the system’s elevation angle. Although a larger elevation angle cor-
responds to a shorter tether required, it also results in lower power capture at the rotor,
as shown in Figure 23. To find the optimal elevation angle and TRPT length for the im-
proved Daisy Kite design detailed above, the actuator disc rotor model was used along
with the simple tether-drag model.

At an elevation angle of 25◦, the optimised rotor design has a maximum Cp value
of 0.20 at λ of 4.3. Using these values, multiple TRPT lengths were simulated to find the
optimal length and the corresponding operational altitude. The wind shear exponent is
taken to be 0.2 with a reference wind speed of 8 m/s at an altitude of 10 m. The TRPT
radius is 0.5 m and the section length is 1.25 m. Figure 30 shows the power output at the
bottom of the TRPT for a range of TRPT lengths. The power output reaches a maximum of
just over 1.4 kW when the TRPT length is 126 m. This corresponds to the rotor operating at
an altitude of 53 m.
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Figure 30. Power output for the optimised Daisy Kite rotor for different TRPT lengths.
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The above analysis assumes that the elevation angle and tip speed ratio are constant
at 25◦ and 4.3, respectively. These were varied to find the optimal values to maximise the
power output. A look-up table was created, calculated using the rotor BEM model, for the
tip speed ratio and corresponding power coefficient with the optimised rotor. The MATLAB
function fminsearch was used to maximise the power output dependent on the elevation
angle, TRPT length and tip speed ratio. The optimised results are shown in Table 4.

The optimal elevation angle is relatively low at 18.5◦ and the overall TRPT length is
fairly high at 190 m. This results in an operating altitude of 60 m. With a wind speed of
8 m/s at the reference height of 10 m, the power output is 1.6 kW at the bottom of the TRPT.
The optimal altitude for the rotor is highly dependent upon the wind shear; for example,
if a shear exponent of 0.1 is used, the calculated optimal height drops to 25 m, with an
elevation angle of 15◦ and a TRPT length of 100 m. The optimal TRPT length and elevation
angle will, therefore, vary depending on the site and wind conditions.

Table 4. Proposed Daisy Kite system design.

Rotor
Radius Blade Length TRPT Radius TRPT Section Length Elevation Angle TRPT Total Length Tip Speed Ratio

2.22 m 1.4 m 0.5 m 1.25 m 18.5◦ 190 m 3.5

6. Conclusions

In this paper, novel works on the mathematical modelling, system analysis and design
optimisation of a rotary kite AWE system, the Daisy Kite, were reported with a focus on
the unique TRPT used in power transmission.

Three TRPT models were developed, the steady-state model, the spring-disc dynamic
model and the multi-spring dynamic model. To describe rotor dynamics, a simple actuator
disc model and the BEM tool in NREL’s Aerodyn v15 were both used in the modelling
investigations. A simple tether-drag model and an improved tether-drag model were
developed to calculate torque loss due to the tether drag. Three grouped models were
made in simulation, analysis and design: (i) in the steady-state model, the actuator-disc
model and the simple-drag model were used; (ii) in the spring-disc model, AeroDyn was
incorporated for rotor aerodynamics, and the improved tether-drag model was used to
calculate torque loss; (iii) in the multi-spring model, AeroDyn and the improved tether-drag
models were used to calculate rotor and tether aerodynamics.

In Section 4, the three grouped models were tested using the data collected during the
experimental campaign. Several single-rotor prototypes tested during the experimental
campaign were included for an initial comparison with the spring-disc system model.
The results show that the spring-disc representation is able to match the experimental data
over a range of system configurations, especially when the rotor has three blades. To test the
overall performance of the models, five five-minute windows from the experimental data
were compared to both the spring-disc and the multi-spring TRPT representations. Through
this comparison study, both models were modified. The results between the two TRPT
dynamic models are similar when comparing to experimental data. However, the difference
between them increases for longer TRPTs. Given the much larger computational time
required for the multi-spring representation, the spring-disc model was used for system
analysis of the current Daisy Kite system.

The steady-state analysis in Section 5 provides insights into system design and opera-
tion, and leads to optimised design. The simple tether-drag model was used to identify
the key factors affecting the torque loss due to tether drag. It is shown that the most
important factor is the TRPT radius, R, as the torque loss increases with R3. It is, therefore,
advantageous to keep the TRPT radius small. Using the improved tether-drag model,
the efficiency of the TRPT–4, operating under steady-state conditions at a tip speed ratio of
4.0, is shown to be 89%. A new TRPT design is proposed which has a constant radius of
0.5 m along its length, and a section length of 1.25 m.
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Using the optimised rotor and the improved Daisy Kite design, a multi-parameter op-
timisation was conducted to find the optimal combination of elevation angle, TRPT length
and tip speed ratio. The numerical results show that the power output is maximised at an
elevation angle of 18.5◦, a TRPT length of 190 m and a tip speed ratio of 3.5. These results
were obtained based on the assumed wind shear, the used rotor radius and the steady-state
performance may vary when calculated for other turbine and site conditions. Nevertheless,
they provide useful guidance for future development of the Daisy Kite prototype.

This work contributes to different aspects of an rotary kite turbine system, the Daisy
kite with TRPT, which is at its early stages of modelling, analysis, design and automation.
Given the novelty of the system and the broad scope of involved research, there are various
research areas concerning this concept that remain for future works. These include con-
ducting further field experiments under more controlled conditions and higher resolution
measurements (in time, space and instrumentation) as well as the development of higher
fidelity models for the operation comparison with the field tests. The linearisation of the
existing TRPT’s dynamic models around operating points for simplified representation,
easier detection of the system’s dominant frequencies as well as identification of the most
influential factors that impact the system performance are among the perquisites, which
will benefit control system design, optimised operation and up-scaling of this rotary kite
AWE system. In addition to these fundamental aspects of future works, further research
on the practical developments is also required; for instance, about the reliable automation
method for the safe launching and landing of this system. Future work will also include
a comprehensive study to lay out an envelope of the operating strategy which is stable
and well-controlled under various weather conditions as well as different size and power
ratings to ensure the optimal power production.
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Abbreviations

AWE(S) Airborne wind energy (system) BEM Blade element momentum
DoF Degree of freedom EOM Equation of motion
RMSE Root mean square error TRPT Tensile rotary power Transmission

Appendix A. Pseudo Codes of Model Development

Given its simplicity and ease of implementation, the central difference integration
method [29] was used to solve the EOMs in (8) and (15). The algorithms to solve these sets
of equations are presented in terms of pseudo codes within this Appendix.

Appendix A.1. Spring–Disc TRPT Modelling

The algorithm used to solve the spring-disc representation for a fixed generator torque
is given in Table A1. The torque, Q, applied to each ring is the combination of the rotor
torque AeroQ, generator torque GenQ and the torque loss due to tether drag fD.

Table A1. Pseudo code for the spring-disc TRPT representation. R is the vector for the discs radii, ls

is the vector containing the TRPT section lengths, lt the vector for tether lengths in each TRPT section,
J is the inertia matrix, AeroQ the rotor torque, AeroT the rotor thrust, AeroP the rotor power, lkT the
lift kite line tension, Fx the axial force, fD the torque loss due to tether drag, Q the torque applied to
each disc, k the stiffness matrix, ∆t the time step length and θ, θ̇, θ̈ the vectors containing the discs
rotational positions, velocities and accelerations, respectively. a, b, and c are variables used within
the algorithm.

Inputs Wind speed Vw, TRPT geometry R and ls, elevation angle β, initial conditions θ2 and
θ̇2, and generator torque GenQ

Line 1 Find lt and J
Line 2 Find AeroQ2, AeroT2 and AeroP2
Line 3 Find lkT , Fx,2 and k
Line 4 Find fD,2 and Q2

Line 5 θ̈2 =
J

Q2
− kθ2

Line 6 θ1 = θ2 − ∆tθ̇2 +
∆t2

2
θ̈2

Line 7 a =
J

∆t2 , b =
2J

∆t2
Line 8 For each time step, i
Line 9 Find AeroQi, AeroTi and AeroPi
Line 10 Find lkT , Fx,i and update k
Line 11 Find fD,i and Qi
Line 12 c = Qi − aθi−1 − kθi + bθi

Line 13 θi+1 =
a
c

Line 14 θ̇i =
θi+1 − θi−1

2∆t
, θ̈i =

θi+1 − 2θi + θi−1
∆t2

Line 15 End For
Outputs θ, θ̇, θ̈, AeroQ, AeroT, AeroP, Q, Fx

Appendix A.2. Multi-Spring TRPT Modelling

The algorithm implemented to solve this multi-spring representation, for a fixed
generator torque, is given in Table A2.
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Table A2. Pseudo code for the multi-spring TRPT representation. R is the vector for the discs radii, ls

is the vector containing the TRPT section lengths, lt the vector for tether lengths in each TRPT section,
M the mass and inertia matrix, AeroQ the rotor torque, AeroT the rotor thrust, AeroP the rotor power,
lkT the lift kite line tension, fS the spring forces, fD the aerodynamic forces on the tethers, p the force
applied to each point mass, ∆t the time step length and u, u̇, ü the vectors containing the masses
positions, velocities and accelerations respectively. a, b, c are variables used within the algorithm.

Inputs Wind speed Vw, TRPT geometry R and ls, elevation angle β, initial conditions
u2 and u̇2, generator torque GenQ, and number of tethers Nt.

Line 1 Find lt and M
Line 2 Find AeroQ2, AeroT2 and AeroP2
Line 3 Find lkT , fS,2 and fD,2
Line 4 Find p2

Line 5 ü2 =
M

p2 − fS,2

Line 6 u1 = u2 − ∆tu̇2 +
∆t2

2
ü2

Line 7 a =
M
∆t2 , b =

2M
∆t2

Line 8 For each time step, i
Line 9 Find AeroQi, AeroTi and AeroPi
Line 10 Find lkT , fS,i and fD,i
Line 11 Find pi
Line 12 c = pi − aui−1 − fS,i + bui

Line 13 ui+1 =
a
c

Line 14 u̇i =
ui+1 − ui−1

2∆t
, üi =

ui+1 − 2ui + ui−1

∆t2
Line 15 End For
Outputs u, u̇, ü, AeroQ, AeroT, AeroP, fD, fS, p

Appendix B. Four TRPT Configurations

Several TRPT configurations tested in the experimental campaign were used in this
paper, see Figure A1 for their structures and dimensions. The main difference between
them is the number of carbon-fibre rings, the diameter of the rings and the length of tethers
between the rings. The ground-station wheel in versions 1, 2, and 3 has a diameter of 0.42 m,
for versions 4 this was increased to a diameter of 0.63 m. W&I have found that, in general,
the Daisy Kite’s TRPT configuration is less capable of transferring torsion as the distance
between rings becomes larger and the ring diameter is reduced [3]. The ground-station
wheel diameter was increased to allow for larger amounts of torque to be transmitted.
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(a)

(b)

(c)

(d)
Figure A1. Diagrams of TRPT iterations 1, 2, 3, and 4 used throughout this work. (a) TRPT−1;
(b) TRPT−2; (c) TRPT−3; (d) TRPT−4.
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Appendix C. Comparison of Multi-Spring Model and Experimental Data

In addition to the comparison results given in Figure 16, Section 4.3.2, another four
sets of field-testing data were used to validate the multi-spring TRPT model; results are
shown in the following figure.
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Figure A2. Comparison of the ground station angular velocity between the multi−spring model
and experimental data. (a) 20 September 2018: rigid wing, TRPT−3; (b) 27 August 2018: rigid wing,
TRPT−3; (c) 5 June 2018: soft wing, TRPT−2; (d) 18 June 2017: soft wing, TRPT−1.
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