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Abstract: In bearing fault diagnosis, ensemble empirical mode decomposition (EEMD) is a reliable
technique for treating rolling bearing vibration signals by dividing them into intrinsic mode func-
tions (IMFs). Traditional methods used in EEMD consist of identifying IMFs containing the fault
information and reconstructing them. However, an incorrect selection can result in the loss of useful
IMFs or the addition of unnecessary ones. To overcome this drawback, this paper presents a novel
method called combined modes ensemble empirical mode decomposition (CMEEMD) to directly
obtain a combination of useful IMFs containing fault information. This is without needing to pass
through the processes of IMF selection and reconstruction, as well as guaranteeing that no defect
information is lost. Owing to the small signal-to-noise ratio, this makes it difficult to determine the
fault information of a rolling bearing at the early stage. Therefore, improving noise reduction is
an essential procedure for detecting defects. The paper introduces a robust process for extracting
rolling bearings defect information based on CMEEMD and an enhanced deconvolution technique.
Firstly, the proposed CMEEMD extracts all combined modes (CMs) from adjoining IMFs decomposed
from the raw fault signal by EEMD. Then, a selection indicator known as kurtosis median absolute
deviation (KMAD) is created in this research to identify the combination of the appropriate IMFs.
Finally, the enhanced deconvolution process minimizes noise and improves defect identification in
the identified CM. Analyzing real and simulated bearing signals demonstrates that the developed
method shows excellent performance in extracting defect information. Compared results between
selecting the sensitive IMF using kurtosis and selecting the sensitive CM using the proposed KMAD
show that the identified CM contains rich fault information in many cases. Furthermore, our compar-
isons revealed that the enhanced deconvolution approach proposed here outperformed the minimum
entropy deconvolution (MED) approach for improving fault pulses and the wavelet de-noising
method for noise suppression.

Keywords: combined modes ensemble empirical mode decomposition; KMAD indicator; three-sigma
rule; enhanced minimum entropy deconvolution; rolling element bearing faults; fault detection

1. Introduction

The large-scale use of induction machines accounts for 90% of the industry’s total
energy consumption. Several defects often lead to unexpected failures. These defects can
lead to severe damage to the machine if they are overlooked initially. According to previous
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studies, the high percentage of failures in induction machines is caused by bearing faults.
As a result, it is highly recommended to monitor small and medium voltage machines
continuously for bearing faults [1,2]. Bearing health condition is commonly monitored by
vibration monitoring. The vibration signals provide a wealth of information regarding
machine health conditions [3]. Many approaches aim to pick up the characteristic defect
information from the rolling bearing’s non-stationary and nonlinear vibration signal by
employing appropriate signal processing techniques. Huang et al. [4] created a time-
frequency analysis approach known as empirical mode decomposition (EMD). EMD differs
from short-time Fourier transform and wavelet transform as it is not dependent on the
basis function. It is based on adaptive decomposition characteristics and decomposes
signals into intrinsic mode functions (IMFs). EMD is suitable for non-stationary and non-
linear vibration signals analysis [5], such as bearing faults, and has been widely used for
this purpose. However, a significant problem with EMD is the mixing of modes. As a
solution to this challenge, an improved version of EMD called ensemble empirical mode
decomposition (EEMD) is proposed in [6]. An IMF in the EEMD consists of the average
of a set of trials. The results of the EMD decomposition are used for each trial and a
finite-amplitude white noise [7]. Compared to the EMD, IMFs produced by the EEMD
can better highlight the signal’s significant features. The focus of researchers has always
been on how to identify EEMD’s important IMFs and how to improve the level of noise
minimization. These two main issues will be briefly discussed below.

Considering that the decomposed bearing vibration signal contains some IMFs repre-
senting defect features, as well as other IMFs containing unused information, researchers
have focused on identifying suitable IMFs. Wang et al. [8] suggested the use of the highest
value of kurtosis to pick the relevant IMF. Yang et al. [9] selected the effective IMF using
mutual information. Li J et al. [10] calculated each IMF’s similarity to the input signal based
on Spearman’s rho to identify the required IMF. A merit index for determining the relevant
IMF has been proposed in [11]. However, if only the most suitable IMF is considered, fault
information contained in other IMFs may be lost. In contrast, Li Z et al. [12] developed
a weighted kurtosis index difference spectrum (WKIDS) to choose the important IMFs.
Ma et al. [13] used the correlation coefficient to select the effective IMFs. Luo et al. [14]
identified the effective IMFs by using high kurtosis values. However, Damine et al. [15]
demonstrated that choosing the most suitable IMF can result in the loss of other important
IMFs, and that selecting multiple IMFs can result in the inclusion of unnecessary ones. To
address the abovementioned issues, this paper offers a novel approach called combined
modes ensemble empirical mode decomposition (CMEEMD). This method is based on the
extraction of combined modes (CMs) from the measured vibration signal. After that, a
selection indicator is created to identify the combination of suitable IMFs. The purpose of
this step is to obtain the most information about the defect directly from the input signal,
without having to pass through the IMFs selection and reconstruction processes. It also
ensures that no information about the defect is wasted or irrelevant data are included.

Owing to the effect of surrounding noise, extracting bearing fault information at the
early stage of damage is challenging. Therefore, it is essential to reveal the defect pulses
in the vibration signal. The most commonly used deconvolution process is the minimum
entropy deconvolution (MED). The MED is designed to retrieve the bearing defect pulses in
the input signal. Pennacchi et al. [16] examined the efficiency of the MED on experimental
signals and found that it can detect bearing defects. However, when the original signal
contains noise, the efficiency of MED is reduced. In addition, the output of MED will also be
affected by noise interference. Therefore, researchers were concentrated on increasing the
efficiency of the MED. Chatterton et al. [17] combined EMD with MED to improve bearing
defect detection. Ding et al. [18] introduced a deconvolution process using autoregressive
MED for extracting bearing features.

In view of the above considerations, this paper presents an enhanced deconvolution
approach, which focuses on eliminating the noise interference in the MED output by
introducing a de-noising method derived from the three-sigma rule [19]. A new procedure
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for extracting bearing defect features based on CMEEMD and an enhanced deconvolution
process is discussed in this research work. The following describes the originality of these
procedures. Firstly, the proposed CMEEMD decomposes the original signal into CMs. An
indicator is created to identify the appropriate combination that combines the effective IMFs
instead of selecting and reconstructing them. Secondly, an enhanced deconvolution process
based on MED and a noise suppression technique using the three-sigma rule is performed
on the selected CM. Finally, the envelope spectrum is applied, and the characteristic fault
frequency is extracted to diagnose the bearing fault.

The remaining sections of this paper are organised as following: Section 2 is dedicated
to the basic theories of EEMD, MED, and the rule of three-sigma de-noising method.
Section 3 details the proposed methods of this research. Section 3.1 gives the steps of the
CMEEMD. In Section 3.2, the process of selecting an appropriate combination is introduced.
In Section 3.3, the enhanced deconvolution strategy is presented. Section 3.4 describes
the new bearing fault diagnosis procedure. Section 4 presents the results of applying the
proposed method to the simulated signal. In Section 5, the suggested process is performed
on the experimental data, and the results are verified. In Section 6, the conclusion of this
paper is presented.

2. Theoretical Analysis
2.1. EEMD Method

By comparing EEMD and EMD, it has been concluded that EEMD may be more
effective at revealing the characteristic fault information of rolling element bearings [20].
EEMD solves the problem of mode mixing in EMD by adding Gaussian white noise to
the original signal. Thus, we can better highlight the signal’s intrinsic characteristics. The
algorithm of EEMD [7] is given below, and Figure 1 shows the process flow diagram.

(1) Add a random white Gaussian noise β wi(t) to the existing signal:

xi(t)= x (t) + β wi(t) (1)

where β wi(t) is the i-th added white noise series, and xi(t) represents the noise-added
signal (i = 1, 2, . . . , i).

(2) Divide by EMD the novel signal and obtain N sets of IMFs:

xi(t) =
N

∑
j=1

cij(t) + ri (2)

where cij(t) is the IMFs and ri. is the residue.
(3) Using the formula below, determine the ensemble means cj(t) of the I trials:

cj(t) =
I

∑
i=1

cij(t) (3)

where cj(t) (c1, c2,..., cN) is the IMFs divided by EEMD.
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Figure 1. Flow chart of the ensemble empirical mode decomposition (EEMD) algorithm to obtain the
intrinsic mode functions (IMFs).

2.2. Minimum Entropy Deconvolution Technique

MED was originally introduced by Ralph [21]. The MED highlights the transient
components of the signal with a finite impulse response (FIR) filter. It decreases a signal’s
randomness by minimizing its entropy. Two terms can represent a general signal x(n):

x(n) = z(n) * w(n) + η(n) (4)

There is a convolution between the defect impulse z and its excitation w, which is the
first term in the equation. The second term takes a random noise into account. FIR filter
h(n) can be used in minimum entropy deconvolution (MED) to process the original signal.
From [22,23], it is possible to obtain:

u(n) = x(n)∗h(n) =
M−1

∑
i=0

h(i)x(n− i) (5)

where n = 0, 1, . . . , N, N= T + M− 2. The deconvolution filter length is M, and the input
sequence x(n) length is T. In MED, a signal’s entropy is minimized by maximizing the
Varimax function. The Varimax function for u(n) is:
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V(u) =
∑N

n=0 u4(n)
(∑N

n=0 u2(n))2
(6)

The filtering parameters that maximize V(u) are such that:

∂V(u)
∂h(n)

= 0 (7)

As a result of substituting Equations (6) in (7) and solving the derivative, we obtain:

∑M−1
i=0 h(i)∑N

n=0 x(n− i)x(n− k) = ∑N
n=0

u3(n)x(n− k)
V(u) ‖ u ‖2 (8)

where k = 0, 1, . . . , M− 1.
Equation (8) can be written as:

RXXh = b (9)

where RXX corresponds to a matrix of autocorrelation, h is the filter coefficients vector, and
b includes the input of the filter x(n) cross-correlated with the cube of its output u(n). The
following steps summarize the optimal inverse filter solution:

• Assume that h(0) is a set of initial filter coefficients;
• Calculate u(0) and V(u);
• Calculate Rxx
• Determine b(1) and h(1);
• Repeat the procedure until an optimal filter is obtained.

2.3. The Three-Sigma Rule for Noise Minimization

In probability and statistics, the three-sigma rule states that approximately 99.73% of
data following a normal distribution are located inside a range of three standard deviations
from the mean [24].

P{µ− 3σ < Y < µ+ 3σ} ≈ 99.73% (10)

The mean and standard deviation are represented by µ and σ, respectively. The normal
distribution appears with:

E(Y) = µ = 0 (11)

D(Y) = E
(

Y2
)
− [E(Y)]2= E

(
Y2
)
= σ2 (12)

The variance and the expectation are represented by D(Y) and E(Y), respectively.
Based on Equation (12), the root mean square (RMS) value of Y is:

Yrms =

√
1
n ∑n

i=1[Xi,−, E(Y)]2 =

√
1
n ∑n

i=1 yi
2 =

√
E(Y) = σ (13)

where yi stands for the sample data of Y and n for the number of samples.
Using Equations (11) and (13), Equation (10) can be written as:

P{−3σ < Y < 3σ}= P{−3Yrms < Y < 3Yrms} ≈ 99.73% (14)

Based on the assumption that a fault-free rolling bearing follows the normal distribu-
tion [25], Equation (14) shows that nearly all the noise in the bearing vibration signal Y is
distributed within ±3Yrms. Due to this, it is necessary to remove the components within
±3Yrms. The steps of the de-noising process are as follows [26]:
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1. y (t) is normalized by using zero-mean normalization:

Z(t) =
y− µ

σ
(15)

where Z(t) is the normalized signal.
2. Determine Zrms of Z(t);
3. Replace the sampling data zi of Z(t) falling between ±3Zrms with zero while leaving

zi outside of ±3Zrms unchanged.

w(t) =
{

0, if |z i| 6 3Zrms
zi(t), otherwise

(16)

where w(t) represents y(t) after removing the unnecessary components.

3. Proposed Methods
3.1. Combined Modes Ensemble Empirical Mode Decomposition (CMEEMD)

The proposed CMEEMD aims to extract all the CMs from the adjoining IMFs decom-
posed from the bearing fault vibration signal using EEMD. This process is described in
detail below with a flowchart shown in Figure 2. In this paper, adjoining IMFs are combined
using the following expression:

CMi→j= IMFi + . . . + IMFj (17)

where CMi→j is the combined modes of adjoining IMFs from the i-th mode to the j-th mode,
IMFi is the IMF that starts the combination, and IMFj is the IMF that finishes it. Extraction
of CMs is done as follows:

• Divide these CMs into groups. The first group consists of CMs starting with IMF1. By
using Equation (17), we obtain:

CM1→j = IMF1 + . . . + IMFj 2 ≤ j ≤ N (18)

where CM1→j is the combination of adjoining IMFs from IMF1 to the j-th IMF for
j = 2, . . . N, N is the number of IMFs.

• Using Equation (18), extract all CMs starting with IMF1:

CM1→2= IMF1 + IMF2
CM1→3= IMF1 + IMF2 + IMF3

...
CM1→N= IMF1 + IMF2 + IMF3 + . . . + IMFN

(19)

• The second group is constituted by CMs starting with the second mode. In this case,
Equation (17) can be expressed as:

CM2→j = IMF2 + . . . + IMFj 3 ≤ j ≤ N (20)

where CM2→j is the combination of adjoining IMFs from IMF2 to the j-th IMF for
j = 3, . . . N.

• Using Equation (20), extract all CMs starting with IMF2:

CM2→3= IMF2 + IMF3
CM2→4= IMF2 + IMF3 + IMF4

...
CM2→N= IMF2 + IMF3 + IMF4 + . . . + IMFN

(21)
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• The process continues until we reach the N− 1 group. In this case, the last combination
can be represented by the following equation:

CMN−1→N = IMFN−1 + IMFN (22)
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Figure 2. Flow chart of the proposed combined modes ensemble empirical mode decomposition
(CMEEMD).

3.2. Sensitive CM Selection Using KMAD Indicator

Once all the CMs have been extracted, we need to identify the appropriate combination
of sensitive IMFs. An indicator was required to select this combination among all the other
CMs. In many studies, maximum kurtosis was used to identify the most sensitive IMF.
However, if we consider only the best IMF, we may lose information about faults contained
in other IMFs [27]. Therefore, this paper uses the kurtosis of the combined IMFs. The
probability of identifying the appropriate combination is higher when the kurtosis value of
the corresponding combination is high. The expression of kurtosis is defined as follows [28]:

K =
1
N ∑N

i=1
(xi − µ)4

σ4 (23)

where the amplitude of the vibration waveform is indicated by xi, the mean of the signal by
µ, the standard deviation by σ, and the length of the samples by N. According to [29–31],
IMFs with high-frequency bands of the vibration signal contain the main fault information
about the rolling bearings. It is known that the higher the frequency band, the larger the
median absolute deviation (MAD). Therefore, the MAD can be used to identify IMFs with
high-frequency bands. The expression of MAD is defined as follows [32]:

MAD (y) = median (|yn −median(y)|) (24)

where yn represents the n-th sampling of the signal y. To ensure that only sensitive IMFs
are combined in the effective combination, the proposed selection indicator aims to prevent
unwanted IMFs from being added. Accordingly, as the number of IMFs in the combination
decreases, the probability of obtaining the required combination increases. Based on all the
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above, the paper proposes an indicator (KMAD), which combines kurtosis and MAD to
select the appropriate combination of sensitive IMFs.

KMADi→j =
Ki→j . MADi

∑
j
i MADn

(25)

In this equation, Ki→j is the kurtosis value of CMi→j, where CMi→j is the combined
modes of adjoining IMFs from the i-th IMF to the j-th IMF, MADi is the mean absolute
deviation of the i-th IMF that starts the combination, and ∑

j
i MADn means the sum of

MADs of IMFs from the i-th IMF to the j-th IMF. A combination with fewer IMFs has a
lower value of ∑

j
i MADn, which increases the probability of obtaining the combination of

useful IMFs. For each CMi→j, KMADi→j is calculated, where the highest value corresponds
to the required combination.

3.3. The Enhanced Deconvolution Process

One of the most commonly used methods for this is MED. However, when the input
signal contains noise, the effectiveness of the MED will be reduced. For this reason, noise
will affect the MED output. Therefore, an enhanced deconvolution approach is presented
in this paper, which aims to minimize noise interference in the MED output by integrating
the three-sigma rule (see Section 2.3). Figure 3 is a flow chart illustrating the enhanced
MED strategy, and the steps are as follows:

1. Apply the MED technique to the input signal;
2. Perform the de-noising method derived from the three-sigma rule on the MED output.

It consists of the following steps:

• Normalize the MED output using zero-mean normalization;
• Calculate the root mean square value Yrms of the normalized signal Y(t);
• Replace the sampling data yi of Y(t) falling between ±3Yrms with zero while keeping

yi outside of ±3Yrms unmodified.
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Figure 3. Proposed enhanced deconvolution process flowchart.

3.4. The Proposed Strategy for Bearing Fault Detection

This paper describes a novel feature extraction method based on CMEEMD and
proposes a deconvolution process to diagnose the bearing fault from the vibration signals.
Figure 4 illustrates the flowchart of the proposed method for detecting bearing defects. The
detailed process of the feature extraction method proposed is as follows:

1. Perform CMEEMD on the fault vibration signal as follows:

• Decompose the fault vibration signal with the defect into IMFs by EEMD;
• Extract all combined modes (CMs) from adjoining IMFs (see Section 3.1).
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2. Select the appropriate combination using the KMAD indicator (see Section 3.2):

• Calculate the KMAD value of each CM;
• Select the required combination based on the highest value of KMAD.

3. Perform the enhanced deconvolution process on the selected CM (see Section 3.3).
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4. The Simulation Validation

A simulation of an inner ring defect bearing is presented in this section to illustrate
the effectiveness and usefulness of the suggested method for extracting fault characteristics.
The periodic impulses represent the vibration waveform caused by a local failure in the
bearing. However, these impulses are usually buried in white noise. As a result, we can
obtain the simulated signal of the rolling bearing from [33]. In this paper, the sampling
frequency is 12,000 Hz, the resonant frequency is 3000 Hz, the inner-race fault frequency is
79 Hz, the time lag is zero, the rotational frequency is 28 Hz, and the damping ratio B = 500.
The random noise has a zero mean and variance of σ2 = 0.72. The data length of the signal
is 10,240. The simulated signal y(t) is plotted in Figure 5a. It can be seen that the noise effect
prevents the extraction of periodic impulses. From the envelope spectrum in Figure 5b,
although the fault characteristic fi and the first harmonic 2fi can be extracted, the remaining
harmonics are covered by noise interference. To improve fault detection, this signal needs
to be pre-processed.
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4.1. Analysis of the Proposed Method

Based on the detailed flowchart of the proposed feature extraction method described
in Figure 4, the following processes are followed.

4.1.1. CMEEMD Analysis

According to [29–31], the significant defect information about rolling bearings is
included in IMFs with high-frequency bands. Therefore, the proposed CMEEMD uses the
EEMD to decompose this simulated signal into six IMFs. Then, one extracts all the CMs
from the adjoining IMFs. Based on the recommended method for extracting combined
modes CMs detailed in Section 3.1, fifteen CMs are generated from the six IMFs. The
obtained IMFs are plotted in Figure 6, and the extracted CMs are illustrated in Figure 7.
The next step identifies the most sensitive combination.
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4.1.2. Selecting the Appropriate CM

Based on the time-domain waveforms given in Figure 7, the differences between the
CMs are insignificant. Therefore, the most effective combination is selected using the
proposed KMAD indicator. Based on Equation (25), the KMAD values of each combination
are illustrated in Figure 8. It is observed that the combination CM1→2 has the highest value
among all the other combinations. This indicates that it is the appropriate combination of
the sensitive IMFs, i.e., IMF1 and IMF2.
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4.1.3. Performing the Proposed Deconvolution Process

This method focuses on minimizing noise interference in the MED output. The
first step is to highlight the fault impulses in selected combination CM1→2 using MED.
Following that, we minimize the noise using the rule of three-sigma. As illustrated in
Figure 9a, the noise is minimized, and the fault impulses are emphasized. From the
envelope spectrum in Figure 9b, we can efficiently and accurately extract the inner race
fault characteristic frequency fi and nine harmonics (2fi, 3fi, 4fi, 5fi, 6fi, 7fi, 8fi, 9fi, and
10fi). This indicates that the rolling bearing fault feature extraction method proposed in
this paper can extract fault information excellently.
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Figure 9. Simulated bearing fault diagnosis results for processing the selected CM using: proposed
method (a,b); conventional MED (c,d); and wavelet denoising (e,f).

4.2. Advantages of the Proposed Methods for the Diagnosis of the Simulated Signal

To demonstrate the superiority of the proposed enhanced deconvolution process, the
conventional MED is performed on the selected combination CM1→2. Figure 9c,d shows
the results of processing the selected combination CM1→2. by the MED. As shown in



Energies 2023, 16, 2604 13 of 27

Figure 9c, the fault impulses are highlighted, and the noise level is decreased. However,
some noise interference can still be seen. By comparing it with Figure 9a, it is clear that
noise interference has been reduced significantly. From the envelope spectrum in Figure 9d,
we can extract only the inner race fault characteristic frequency fi and five harmonics (2fi,
3fi, 4fi, 5fi, and 6fi). In comparison with Figure 9b, it is apparent that we can get more
fault information. The comparison results demonstrate that the proposed enhanced MED
outperformed the MED for improving fault detection. To demonstrate the superiority of the
enhanced MED approach in minimizing noise, the wavelet de-noised method is performed
on the selected combination CM1→2. Figure 9e shows that the noise interference is reduced
to some extent; however, the extracted fault frequency and its harmonics in Figure 9f are
not as good as in Figure 9b. In this case, the wavelet de-noising method is less efficient in
suppressing noise, making it difficult to extract fault information from the combination
CM1→2. The results demonstrate that the proposed enhanced MED outperformed the
wavelet de-noising method in suppressing noise. The inter-harmonics (inter-characteristic
frequencies of the faults) present the harmonics of the rotational frequency which are
considered as extracted information. In Figure 9b, one can see that the harmonics multiple
of the rotational frequency are obvious, while they are hidden in Figure 9d. This is due
to the fact that the noise has been minimised in Figure 9a. In addition, a comparison
of the conventional IMF selection method using maximum kurtosis with the proposed
KMAD selection indicator is presented to illustrate its advantages. Table 1 shows the
kurtosis values of the first six IMFs. It can be seen that IMF1 has the highest value of all
the decomposition results, so it is selected as a sensitive IMF. IMF1 was treated using the
enhanced deconvolution approach. As shown in the envelope spectrum of Figure 10a, the
extracted fault information is weaker than the extracted fault information in Figure 10b.
This indicates that the combination CM1→2 contains rich fault feature information. The
KMAD indicator identified CM1→2 as a combination of suitable IMFs, i.e., IMF1 and IMF2.
Consequently, if we choose only IMF1, the information contained in IMF2 will be lost. This
proves that selecting the appropriate combination using the KMAD selection indicator
overcomes the drawback of the IMF selection method using kurtosis to ensure that no
information about the defect is lost.

Table 1. Kurtosis values of each intrinsic mode function (IMF).

IMF Kurtosis

IMF1 4.6127
IMF2 3.2595
IMF3 3.0748
IMF4 3.0268
IMF5 2.9883
IMF6 2.8621
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5. Experimental Validation

Experimental data from the Case Western Reserve University [34] was used to validate
the proposed method’s effectiveness for detecting rolling bearing faults. As shown in
Figure 11, the experimental set is composed of a 2 hp motor, a torque sensor/encoder, a
dynamometer, and control electronics. Single point faults were introduced using electro-
discharge machining, providing defects in the outer ring, the ball, and the inner ring.
The rotating speed of the shaft varied from 1730 to 1797 RPM. We used the time signal
of the drive end bearing in this study, recorded for the inner race, outer race, and ball
fault. The data were gathered with 12,000 Hz. The deep groove ball bearing 6205-2RS JEM
SKF was used in this experimental test. The bearing parameters are detailed in [34]. The
bearing defect is localized in the early stages: a crack or spall. Rolling elements generate
shock impulses every time they hit a local fault in the inner or outer ring. These repeated
shock pulses produce a vibration at the frequency associated with the faulty element.
This frequency is usually called the fault characteristics frequency, for example, BPFI (ball
passing frequency inner race), BPFO (ball passing frequency outer race), and BFF (ball fault
frequency), which are related to the inner race, the outer race, and the ball, respectively.
The following are their mathematical equations [35]:
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Fr, Nb, Dc, Db, and β correspond to the frequency of rotation, rolling element number,
pitch diameter, ball diameter, and angle of contact, respectively.

5.1. Case 1: Diagnosis of the Inner Race Fault

In this case, the vibration signal emanates from the inner race fault. The shaft speed is
1772 rpm, the load is 1hp, and the fault size is 0.007 inches. According to Equation (26), the
calculated fault characteristic frequency for the inner race is 159.9 Hz. Taking 24,000 data
points for analysis, I measured original bearing signal with an inner race fault signal is
plotted in Figure 12a. The periodic impulses cannot be extracted due to the noise effect.
From the envelope spectrum in Figure 12b, the fault characteristic fi and the first harmonic
can be extracted. However, the other harmonics are surrounded by noise interference.
Therefore, this signal requires pre-processing to improve fault detection.
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5.1.1. Analysis of the Proposed Method

First, the proposed CMEEMD is used to extract the CMs from the experimental inner
race fault signal. From the first six IMFs, fifteen combined modes (CMs) are generated using
the method detailed in Section 3.1. The obtained IMFs are plotted in Figure 13, and the
extracted CMs are illustrated in Figure 14. The next step is determining the most appropriate
combination. By looking at the time domain waveform of each combination in Figure 14,
it can be seen that the difference between the CMs is not significant. It is impossible
to recognize directly which combination contains the most information about the fault.
Therefore, the appropriate combination is selected using the proposed KMAD indicator.
Based on Equation (25), Figure 15 illustrates the KMAD values of each combination. The
combination CM1→2 has the highest value among all the other combinations, indicating
that it is the best combination of the sensitive IMFs, including IMF1 and IMF2. Following
this, the enhanced MED approach is executed on the selected combination. First, MED is
used to minimize the entropy of CM1→2. After that, the output MED noise is minimized
using the three-sigma rule. As illustrated in Figure 16a, the noise is restricted, and the fault
impulses are highlighted. From the envelope spectrum in Figure 16b, we can extract the
inner race fault characteristic frequency fi and ten harmonics (2fi, 3fi, 4fi, 5fi, 6fi, 7fi, 8fi,
9fi, 10fi, and 11fi). This suggests that the rolling bearing fault feature extraction method
proposed in this paper is able to extract rich fault information.
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5.1.2. Advantages of the Proposed Techniques for Inner Race Fault Diagnosis

Figure 16c,d shows the results of processing CM1→2 by the conventional MED. As
shown in Figure 16c, the fault impulses are emphasized, and the noise level is reduced.
However, it can be seen that some noise interference still exists. According to Figure 16a,
noise interference has been reduced effectively. From the envelope spectrum in Figure 16d,
we can distinguish only the inner race fault characteristic frequency fi and six harmonics
(2fi, 3fi, 4fi, 5fi, 6fi, and 7fi). By comparing it with Figure 16b, it is clear that we can get
more fault information. The comparison results show that the enhanced MED performs
better than the MED in improving defect detection. To show the enhanced MED approach’s
superiority in eliminating noise, the wavelet de-noised method is performed on the selected
combination CM1→2. As shown in Figure 16e, although the noise is reduced, the fault
impulses are not highlighted as in Figure 16a. In addition, the extracted fault frequency
and its harmonics in Figure 16f are not as excellent as those in Figure 16b. In this case, it
can be said that the inability of the wavelet de-noising method to reduce noise effectively
makes it difficult to extract rich fault information from the combination CM1→2. The
comparison results demonstrate that the enhanced MED performs better than the wavelet
de-noising method in eliminating noise. The amplitudes of the inter-harmonics shown in
Figure 16b,d,f are much smaller than those shown in Figure 9b,d,f, respectively. This is
due to the fact that a signal with high noise (σ2 = 0.72) is created in the simulation. This
makes it more difficult to eliminate noise interference in the simulated signal than in the
experimental signal. As a result, the amplitude of the noise interference will mix with
the inter-harmonics. To illustrate the advantages of the KMAD selection indicator, this
paper conducted a comparison with the IMF selection method using kurtosis. Table 2
shows the kurtosis values of the first six IMFs. It is evident that IMF2 has the highest
value among all the decomposition results, so it is selected as the sensitive IMF. IMF2 was
processed using the enhanced MED approach. From the envelope spectrum of Figure 17a,
it is clear that the extracted fault information is less than the extracted fault information in
Figure 17b. This shows that the combination CM1→2 holds rich fault feature information.
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The KMAD indicator selected CM1→2 as an appropriate combination of suitable IMFs,
namely IMF1 and IMF2. As a result, if we take only IMF2, the information in IMF1 will be
lost. This demonstrates that utilizing the KMAD selection indicator to select the appropriate
combination overcomes the disadvantage of using kurtosis to choose the sensitive IMF and
guarantees no information about the fault is lost.

Table 2. Kurtosis values of each IMF for Inner Race Fault Diagnosis.

IMF Kurtosis

IMF1 4.6903
IMF2 4.7682
IMF3 4.3248
IMF4 3.0268
IMF5 2.5395
IMF6 2.6651
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5.2. Case 2: Diagnosis of the Outer Race Fault

The vibration signal in this case is caused by an outer race fault, with the shaft rotating
at 1797 rpm and no load applied. The size of the fault is 0.021 inches, and the calculated
fault characteristic frequency is 107.01 Hz. Taking 24,000 data points for analysis, Figure 18a
shows the measured bearing signal with an outer race fault. It can be seen that the noise
prevents the periodic impulses from being extracted. From the envelope spectrum in
Figure 18b, although the fault characteristic frequency fo and the first harmonic 2fo can be
extracted, the remaining harmonics are shrouded in noise interference. Therefore, this fault
signal necessitates pre-processing to improve fault detection.
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5.2.1. Analysis of the Proposed Method

In the first step, CMEEMD extracts the CMs from the experimental outer race fault
signal. Using the CMs extraction technique described in Section 3.1, fifteen CMs are created
from the first six IMFs. Figure 19 shows the resulting IMFs, and Figure 20 shows the
extracted CMs. The next step is to determine which combination is the most sensitive. The
time-domain waveforms of each combination in Figure 20 show that there is no noticeable
difference between the CMs. It is impossible to directly recognize the combination that
combines only the useful IMFs. As a result, the suggested KMAD indicator is used to iden-
tify the appropriate combination. Figure 21 shows the KMAD values for each combination.
The combination CM1→2 has the highest value. This indicates that it is a combination of
sensitive IMFs, i.e., IMF1 and IMF2. Following that, the combination CM1→2 was processed
using the enhanced MED approach. First, MED highlights the fault impulses of CM1→2.
Then, the MED output is treated to the de-noised method derived from the three-sigma
rule. As shown in Figure 22a, the noise is minimized, and the fault impulses are prominent.
From the envelope spectrum in Figure 22b, we can accurately extract the outer race fault
characteristic frequency fo and nine harmonics (2fo, 3fo, 4fo, 5fo, 6fo, 7fo, 8fo, 9fo, and 10fo).
This implies that the proposed method for bearing fault feature extraction can effectively
extract rich fault information.

5.2.2. Advantages of the Proposed Techniques for Outer Race Fault Diagnosis

The results of processing CM1→2 by MED are shown in Figure 22c,d. As seen in
Figure 22c, the noise level is decreased, and the fault impulses are accentuated. However,
there still exists noise interference. Compared to Figure 22a, noise interference has been
significantly reduced. Analyzing the envelope spectrum in Figure 22d, it can be seen that
we can extract less fault information than we can in Figure 22b. It is evident from the
comparison results that the enhanced MED is more effective in improving fault detection
compared to the MED. The wavelet de-noising method is performed on the selected
combination, and the results are shown in Figure 22e,f. Although the noise has been
reduced to a certain extent in Figure 22e, the extracted fault frequency and its harmonics in
Figure 22f are less accurate than those extracted in Figure 22b. In this case, the inability of
the wavelet de-noising to successfully decrease noise prevents the extraction of rich fault
information from the combination CM1→2. The results of the comparison confirm that the
proposed enhanced MED eliminates noise better than the wavelet de-noising method. To
show the advantages of the CM selection method using KMAD, this paper performs a
comparison with the IMF selection method using kurtosis. The kurtosis values for the first
six IMFs are presented in Table 3. It appears that IMF2 has the highest value, so it is selected
as a sensitive IMF. Next, IMF2 was treated using the enhanced MED approach. Based on
the envelope spectrum of Figure 23a, we can extract only the outer race fault characteristic
frequency fo and three harmonics (2fo, 3fo, 4fo). By comparing it with Figure 23b, it is
clear that we can extract more fault information (fo, 2fo, 3fo, 4fo, 5fo, 6fo, 7fo, 8fo, 9fo, and
10fo). This indicates that the selected combination contains rich defect information. The
KMAD indicator identified CM1→2 as an appropriate combination of suitable IMFs, i.e.,
IMF1 and IMF2. Therefore, if we only select IMF2, the fault information in IMF1 will be
wasted. This demonstrates that selecting the appropriate combination using the proposed
indicator overcomes the disadvantage of the IMF selection using kurtosis to assure that no
defect information is wasted.
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Figure 22. Outer race fault diagnosis results for processing the selected CM using: proposed method
(a,b); conventional MED (c,d); and wavelet denoising (e,f).

Energies 2023, 16, x FOR PEER REVIEW 22 of 27 
 

 

Table 3. Kurtosis values of each IMF for Outer Race Fault Diagnosis. 

IMF Kurtosis 
IMF1 17.7045 
IMF2 25.1902 
IMF3 10.6024 
IMF4 8.8478 
IMF5 10.0602 
IMF6 11.0606 

 

 

Figure 23. Diagnosis results using: (a) sensitive IMF-based Kurtosis; (b) sensitive CM-based KMAD. 

5.3. Case 3: Diagnosis of the Ball Bearing Fault 
The ball race fault in this case generates the vibration signal. The shaft speed is 1772 

rpm, the load is 1 hp, and the fault size is 0.028 inches. The calculated fault characteristic 
frequency for the ball race is 139.18 Hz based on Equation (28). Analyzing 24,000 data 
points, the bearing signal with a ball race fault is shown in Figure 24a. Due to the noise, it 
is difficult to distinguish the impact characteristics. From the envelope spectrum in Figure 
24b, although the fault characteristic frequency fୠ can be distinguished, its harmonics are 
masked by noise interference. To improve fault detection, this fault signal requires a pre-
processing step. 

 

 
Figure 24. Experimental ball bearing defect: (a) waveform; (b) envelope spectrum. 

5.3.1. Analysis of the Proposed Method 
First, CMEEMD extracts the CMs of adjoining modes resulting from the decomposi-

tion of the ball defect vibration signal. The first six IMFs produce fifteen CMs using the 
CMs extraction technique described in Section 3.1. The obtained IMFs are shown in Figure 
25, and the extracted CMs are shown in Figure 26. Identifying the most sensitive combi-
nation is the next step. According to Figure 26, there is no noticeable difference between 
the CMs based on their time-domain waveforms. Directly identifying the combination of 
useful IMFs is impossible. Therefore, the suggested KMAD indicator is used to identify 

0 200 400 600 800 1000 1200

Frequency
(a)

0

0.05

0.1

0.15 fo

2fo

3fo

0 200 400 600 800 1000 1200

Frequency (Hz)
(b) 

0

0.05

0.1

0.15

0.2

0.25

0.3

A
m

pl
itu

de

fo

2fo

3fo

4fo 5fo 6fo 7fo 8fo 9fo
10fo

Figure 23. Diagnosis results using: (a) sensitive IMF-based Kurtosis; (b) sensitive CM-based KMAD.



Energies 2023, 16, 2604 22 of 27

Table 3. Kurtosis values of each IMF for Outer Race Fault Diagnosis.

IMF Kurtosis

IMF1 17.7045
IMF2 25.1902
IMF3 10.6024
IMF4 8.8478
IMF5 10.0602
IMF6 11.0606

5.3. Case 3: Diagnosis of the Ball Bearing Fault

The ball race fault in this case generates the vibration signal. The shaft speed is
1772 rpm, the load is 1 hp, and the fault size is 0.028 inches. The calculated fault character-
istic frequency for the ball race is 139.18 Hz based on Equation (28). Analyzing 24,000 data
points, the bearing signal with a ball race fault is shown in Figure 24a. Due to the noise, it
is difficult to distinguish the impact characteristics. From the envelope spectrum in Fig-
ure 24b, although the fault characteristic frequency fb can be distinguished, its harmonics
are masked by noise interference. To improve fault detection, this fault signal requires a
pre-processing step.
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Figure 24. Experimental ball bearing defect: (a) waveform; (b) envelope spectrum.

5.3.1. Analysis of the Proposed Method

First, CMEEMD extracts the CMs of adjoining modes resulting from the decomposition
of the ball defect vibration signal. The first six IMFs produce fifteen CMs using the CMs
extraction technique described in Section 3.1. The obtained IMFs are shown in Figure 25,
and the extracted CMs are shown in Figure 26. Identifying the most sensitive combination
is the next step. According to Figure 26, there is no noticeable difference between the
CMs based on their time-domain waveforms. Directly identifying the combination of
useful IMFs is impossible. Therefore, the suggested KMAD indicator is used to identify the
appropriate combination. According to Figure 27, the combination CM1→2 has the highest
KMAD value. Accordingly, it indicates that it combines sensitive IMFs, i.e., IMF1 and IMF2.
The combination CM1→2 was then performed using the enhanced deconvolution approach
presented here. The noise is reduced considerably as shown in Figure 28a, and rich fault
information (fb, 2fb, 3fb, 4fb, 5fb, 6fb, 7fb, 8fb, and 9fb) can be extracted from the envelope
spectrum presented in Figure 28b. This suggests that the proposed strategy can greatly
enhance fault identification. Additionally, this demonstrates the validity of the proposed
strategy for bearing fault feature extraction.
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Figure 28. Ball fault diagnosis results for processing the selected CM using: proposed method (a,b);
conventional MED (c,d); and wavelet denoising (e,f).

5.3.2. Advantages of the Proposed Techniques for Ball Bearing Fault Diagnosis

Figure 28c,d shows the results of processing the combination CM1→2 by the MED. As
shown in Figure 28c, despite the noise level reduction, noise interference is still present.
Compared to Figure 28a, the noise interference has been successfully minimized. Based on
the envelope spectrum in Figure 28d, we can distinguish only the characteristic frequency of
the ball race fault fb and five harmonics (2fb, 3fb, 4fb, 6fb, 7fb). Comparing it with Figure 28b,
it is clear that the fault frequency with its multiplication components are extracted perfectly.
It is evident from the results of the comparison that the enhanced MED is better than
the MED for improving fault detection. The wavelet de-noised method is performed on
the selected combination, and the results are shown in Figure 28e,f. Although the noise
has been reduced to a certain extent in Figure 28e, the envelope spectrum presented in
Figure 28f shows that we can distinguish only the characteristic frequency fb and the first
harmonic, whereas Figure 28b shows that we can perfectly extract fault information (fb,
2fb, 3fb, 4fb, 5fb, 6fb, 7fb, 8fb, and 9fb). In this case, the inability of the wavelet de-noising
approach to successfully decrease noise prevents the extraction of rich fault information
from the combination CM1→2. It is evident from the comparison results that the enhanced
MED suppresses noise more effectively than the wavelet de-noising technique. As an
illustration of the advantages of the proposed CM selection method, we have compared it
to the IMF selection method using maximum kurtosis. From Table 4, it can be seen that
IMF5 has the highest value, so it is selected as a sensitive IMF. This IMF was processed
using the proposed enhanced MED, and the envelope spectrum is shown in Figure 29a.
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It is clear that no information about the defect can be extracted. This is due to the fact
that the use of maximum kurtosis to select the sensitive IMF failed in this case, while the
envelope spectrum in Figure 29b illustrated rich fault information. This is because the
KMAD indicator proposed here succeeds in selecting the combination of valuable IMFs
and proves its superiority for choosing the appropriate combination of useful IMFs.

Table 4. Kurtosis values of each IMF.

IMF Kurtosis

IMF1 3.9782
IMF2 3.6592
IMF3 4.4182
IMF4 4.4670
IMF5 5.0951
IMF6 3.5202
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6. Conclusions

A novel rolling bearing fault feature extraction method is presented here, composed of
the following proposed ideas: CMEEMD, the KMAD selection indicator, and an enhanced
deconvolution approach. Firstly, the proposed CMEEMD extracts all the CMs from the
original bearing vibration signal. A selection indicator named KMAD is proposed to
identify the appropriate combination of suitable IMFs. This step aims to directly obtain
a signal containing the most characteristic information about the fault, without going
through the IMFs selection and reconstruction processes, and guaranteeing that no defect
information is lost. Secondly, due to the effect of background noise, it is difficult to obtain
rich fault information. Therefore, the proposed enhanced MED is performed on the selected
combination. The principle of the enhanced MED is to minimize the noise of the MED
output to obtain better analysis results. The selection method used in this paper has been
applied to several other bearing vibration signals. From these experimental data, we found
that the selected combination is most often CM1→2; however, in rare cases it can also be
CM1→3 and CM2→3. On the other hand, several researchers confirm that the bearing defect
information is included in the first IMFs. This supports and confirms the validity of the
presented method.

The analysis of the simulated signal (presented in Section 4) and experimental rolling
bearing cases (inner race, outer race, and ball race presented in Section 5) leads to the
following results being concluded:

1. Compared to the MED technique, the enhanced MED presented in this paper is more
robust in revealing defect pulses (taking Figure 9 as an example).

2. Comparison with the wavelet de-noising method demonstrated that the enhanced
MED performs well with noise suppression and is more effective in revealing fault
information (taking Figure 28 as an example).

3. Compared results between the sensitive IMF using maximum kurtosis and the sensi-
tive CM using the proposed KMAD indicate that the CM selected contains rich fault
feature information (taking Figure 17 as an example).
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4. CMEEMD and KMAD proposed herein solves the drawback of the IMF selection
method by using the maximum kurtosis value to ensure that no information about
the defect is wasted (taking Figure 23 as an example).

5. In contrast to the conventional IMF selection method that failed to identify the ap-
propriate IMF for the ball defect, the KMAD indicator was successful in selecting the
appropriate combination of useful IMFs (see Figure 29).

6. The analysis of simulated and experimental rolling bearing signals confirms that the
proposed strategy for bearing fault diagnosis can greatly enhance fault detection and
effectively extract rich fault information (taking Figures 9 and 28 as examples).
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