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Abstract: With the wide use of renewable energy sources and the requirement for energy storage
technology, the field of power systems is facing the need for further technological innovation. This
paper proposes a wide-area distributed energy model based on digital twins. This model was con-
structed to more fully optimize the coordination of wide-area distributed energy in order to rationally
deploy and utilize new energy units. Moreover, the minimization of the power deviation between the
dispatch command and the actual power regulation output was also taken into account. In contrast
to previous dispatch research, the cooperative game co-optimization algorithm was applied to this
model, enabling a distributed approach that can quickly obtain a high-quality power command
scheduling scheme. Finally, the simulation and comparison experiments using this algorithm with
the wide-area distributed energy (WDE) model showed that it had the advantages of significantly
reducing the tracking error, average error, and total error and effectively improving the tracking
accuracy. The proposed method can help reduce total power deviations by about 61.1%, 55.7%, 53.1%,
and 74.8%.

Keywords: wide-area distributed energy; cooperative game; collaborative optimal control; digi-
tal twins

1. Introduction

From an energy standpoint, a whole new era in energy, marked by the wide-scale
exploration and deployment of new energy resources, is flourishing around the world [1].
In recent years, the field of power systems has faced major reforms as traditional energy
sources have become gradually depleted and people have become increasingly aware of
environmental protection.

The new energy sources are renewable and they are available for human exploitation.
New energy is embodied in the unconventional energy sources mentioned above. Fossil
fuels, such as coal, oil, and natural gas, are conventional energy sources. Recently, the level
of technology and equipment for renewable energy sources has significantly improved, and
the cost of power generation from renewable energy sources has continuously declined.
Additionally, the rise of the energy revolution and the supply-side reform of the power
market have spurred the rapid development of renewable energy sources, such as solar
energy, wind energy, and biomass. This development is further transforming the energy
structure, reducing reliance on conventional fossil fuels. Smart grid technology and energy
storage technology can make large-scale distributed energy systems a win-win situation for
all parties involved. By relying on these technologies, large-scale distributed energy systems
can become more efficient and sustainable and beneficial for all. With each distributed
unit as the participating group, the game adjustment coefficient can be selected as the
performance adjustment weight coefficient to construct a competition model for large-scale
distributed energy systems and optimize its solution algorithm, which has theoretical and
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practical significance for wide-area distributed energy systems. In this distributed energy
system, energy storage plays an important role relating to reliability and safety, so research
on energy storage technology also has great value. After the new energy is integrated into
the grid, energy storage can facilitate the real-time balance of power, enhance the capacity
factor of the system, improve the energy consumption capacity, cut peaks and fill valleys,
and add another layer to the protective shell of nations’ energy security [2,3]. With the
explosive growth in installed capacity and power generation, coupled with the difficulties
in transmission, distribution, and regulation, the support capacity of the new power
system has become more demanding, and the new power system is clearly shifting from
“source-grid-load” to “source-grid-load-storage”. In this era of new energy, energy storage
has become the fourth basic element of new power systems. Traditionally, new energy
generation capacity is generally planned, and energy storage systems of corresponding
capacity are allocated to solve the problem of power supply reliability. However, the above
approach has narrow applicability; for example, it is not applicable to power transmission
systems without local loads. With the popularization of new energy sources, more situations
have arisen that require further technical innovation [4–7].

In [8], Michael Greaves introduced the concept of product lifecycle management
to help companies make better decisions, improve efficiency, and increase innovation.
Moreover, the concept of the digital twin was first clarified in this reference. An important
point concerning digital twins is the association linking the physical and digital worlds,
which makes it possible to realize a better simulation of physical quantities by unifying
the virtual world with the real world. Thus, digital twin technology is an excellent way of
integrating the virtual and real and optimizing the management of intelligence [9]. In [10],
a digital twin-based framework for communication between a virtual smart grid and a real
power system was proposed to address the life cycle process and deployed with sensor
detection, fault diagnosis, and simulation computation. In [11], a novel framework based on
a deep neural network was proposed that can provide the features of the operational state
of the power grid with a small time delay and can be used for real-time online optimization.
To accurately derive the main feature of the operational state of the power system, a data-
driven model was proposed in [12] for the digital twin model with a recursive state and
decreased performance evaluation.

Existing scheduling optimization strategies are divided into three main categories:
centralized, point-to-point, and weakly centralized distributed [13]. For the centralized
type, the author of [14] advocated the coordination of conventional units and new energy
resources and proposed that smart grids would be affected by carbon emissions in the
future. In [15], ten multi-objective algorithms were employed to search for the optimal
Pareto front for an individual operator with the aim of addressing power quality and
operation cost. The simulation results in this reference showed that the multi-objective
algorithm could help reduce the power deviation by 45.9% compared to the engineering
approach. While the above methods were all regulated by a central dispatch, recently, due
to more new energy being deployed with the power grid, the grid is becoming more and
more distributed and control over the smart grid is changing from centralized to distributed.
For the weakly centralized distributed type, a reinforcement learning-based method was
employed in [16] to solve the problem of the dimension for dispatches with numerous units.
In [17], a multi-energy virtual power plant scheduling technology framework was proposed
to address the problems of stochasticity and volatility in distributed resources, but a relevant
discussion on the combination of the interaction process and game theory is missing. For
decentralized optimization, a novel framework for the distribution of the dispatch model
was established in [18] that can rapidly achieve consensus based on the leader-and-follower
mode. This article introduced the concept of virtual tribes. One unit is selected as the
form of distributed leadership, and the others are seen as the followers. Virtual tribes can
be regarded as a form of distributed leadership and followership in smart grid systems.
To achieve higher quality for consensus optimization, a reinforcement learning-based
consensus method was proposed in [19]. In [20], a Stackelberg equilibrium-based multi-
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agent learning method was developed to further search for the optimal dispatch scheme for
the smart grid. In [21], a comparative analysis was conducted with the example of model
predictive control, and the characteristics and advantages of centralized, non-collaborative,
and collaborative distributed control methods were pointed out. In [22], a distributed
optimal scheduling framework was constructed to address the difficulty of implementing
a centralized model for a large-scale population of producers and consumers. In [23],
the concept of the sharing economy was applied to a power system, and a master–slave
game energy-sharing operation mechanism with producers, consumers, and virtual power
plants was constructed. In [24], a producer–consumer transaction model was studied in a
large-scale distributed energy and extensive information interaction scenario based on the
framework of the power Internet of Things, but the network topology constraints of the
distribution network system were not considered.

Taking advantage of digital twins and cooperative games, the operation state of a
power grid can be simulated accurately and cooperative optimization quickly achieved.
Therefore, in this paper, we combine digital twins and cooperative game collaborative opti-
mization and provide methods from the perspective of wide-area distributed energy. The
rest of this work is organized as follows. Section 2 describes the design of the mathematical
model of wide-area distributed energy (WDE), which coordinates the conventional units
and new energy resources. Section 3 discusses the specific implementation of cooperative
game-based collaborative optimal regulation (CG-COR) for WDE. Section 4 provides the
simulation results and test descriptions. Finally, Section 5 gives the conclusions of this
paper.

2. Mathematical Model of WDE
2.1. Definition of a Digital Twin

The term “grid digital twin” refers to the digital space for the power system and the
digital model of the physical object. The “grid physical-digital twin system” refers to the
overall system composed of the corresponding physical objects and the digital twin. The
WDE is the baseline for a digital twin grid framework, and it is interactive, deductive, and
shared. “Shared” refers to the ability of the power system to share data through uniform
standardization among digital twins. “Interactive” refers to the ability of the digital twin
of the grid to develop autonomously and, in turn, guide the operation and manipulation
of physical entity objects in the power system. “Deductive” refers to the inversion and
prediction of the states of the physical entities of the power system in a virtual space.

2.2. WDE Dispatch Framework

The framework for digital twins for WDE is given in Figure 1. It has three subsystem
models, which are the virtual mathematics model, the state of the physical grid, and the
mutual communication model, respectively.

(1) Firstly, in the virtual mathematics model, the simulation model is very important for
the accuracy of optimal scheme selection, and it generally collects the signal from the
controller and the units’ operation parameters from the monitors;

(2) Then, in the state of the physical grid model, the power disturbance, area frequency,
and transmission line power of the power grid are obtained by sensors, and the model
is prepared for real-time optimization for the power dispatch;

(3) Lastly, the mutual communication model is deployed with the regulation units and
the controller, and this is the main operation for the dispatch optimization and the
physical processing of the simulation model for WDE frequency regulation.

Specifically, the WDE involves the optimizers of the participant unit and the algorithm
optimization. Frequency regulation in WDE consists of two operations. The first is a general
conditioning command sent by the main grid to the WDE in cases of disturbance of the
main grid by random variables. The second activity is that the WDE needs to assign general
instructions to the county units through an optimum algorithm based on designated sets of
rules. Figure 2 shows a schematic diagram of WDE that encompasses five different types
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(coal-fired [25], hydroelectric, liquefied natural gas (LNG) [26], wind turbine [27], and solar
photovoltaic power plant [28]).

Figure 1. Framework for digital-twin WDE.

Figure 2. Framework of WDE.
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2.3. Objective Function

Based on the obtained data, we can build a model of the physical system of a power
system with distributed resources. The system can then be sensed and analyzed, which
can effectively alleviate the drawbacks of the model drive being too cumbersome, resource-
consuming, and slow to implement. To a certain extent, the model can be decoupled from
the inline problem. The cooperative game is a type of game in which the participants make
the gain of the cooperative body optimal by executing an enforced constraint agreement.
In the digital twin of the grid for this WDE, the coupling between control signals and the
integrated deployment of the hydro unit, coal-fired unit, wind farm, LNG unit, and PV
station, which can make unified energy dispatch possible, improve the flexibility of the
power dispatch and provide a more rational deployment of regulated units. Using the
predicted method, the algorithm can better optimize adjacent control intervals to improve
the performance of the dynamic optimal dispatch. Due to the fact that this paper is mainly
focused on the dynamic regulation performance of WDE units, the optimization objective
was to minimize the total power deviation between the regulation signal and the realistic
power regulation output. Then, calculation of the objective functions should take account
of the past control interval, current control interval, and the next adjacent control interval,
as follows:

min f =
N

∑
k=1

∣∣∣∣∣∆Pm(k)−
n

∑
i=1

∆Pout
i (k + 1)

∣∣∣∣∣ (1)

where ∆Pm(k) is the predicted total power command at the kth control interval, ∆Pout
i (k + 1)

is the optimal power output at the (k + 1)th control interval according to the predicted total
power command, N denotes the total number of control intervals in one service period,
and n is the total number of regulation units for the WDE.

2.4. Constraints

In order to bring the model close to the prototype to form a digital twin, several
relevant constraints need to be taken into consideration, including the coherence constraints
of the regulation direction, electricity balance constraints, regulating capability constraints,
and generation regulation constraints (GRCs), as follows:

∆Pin
i (k)∆Pm(k) ≥ 0 (2)

∑n
i=1 ∆Pin

i (k)− ∆Pm(k) = 0 (3)

Cmin
i ≤ ∆Pin

i (k) ≤ Cmax
i (4)∣∣∆Pin

i (k)− ∆Pout
i (k− 1)

∣∣ ≤ ∆Ri∆T (5)

Equation (2) is used as the consistency constraint for the regulation direction. To fully
utilize the regulating unit, the regulating direction of the unit power command should
have the exact same direction as the total regulating command at the kth control interval,
where ∆Pin

i (k) is the power input command to the ith WDE unit from the grid at kth
control interval and ∆Pm(k) denotes the signal from the main grid to the WDE. To ensure
that the optimal scheduling scheme meets the regulation demand of the main network,
Equation (3)—the power balance constraint—needs to be satisfied. At the kth control
interval, the cumulative value of the power regulation input commands received by all
WDE units should be exactly equal to the total value of the power regulation commands
issued by the main network, with Cmin

i and Cmax
i being the minimum and maximum

capacities of the ith WDE unit. The regulation capacity constraint for the units is shown
in Equation (4). For the purpose of ensuring that the optimal scheduling scheme meets
the actual operating conditions of the WDE units, the power regulation input commands
received by all WDE units should exceed their minimum and maximum capacities at the
kth control interval, with Cmin

i and Cmax
i being the minimum and maximum capacities of

the ith WDE unit. Among the different types of WDE units, the dynamic response models
of renewable energy sources (e.g., PV plants and wind turbines) have lower time delays
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and better regulation performance, while the dynamic response models of conventional
units (e.g., coal-fired units, hydropower units, and LNG) must consider GRCs due to their
poor regulation performance. If the GRCs and power limiters are considered, a realistic
WDE unit output can be calculated, as shown in Equation (5), where ∆Pout

i (k) is the output
power command received by the ith WDE unit at the kth control interval, ∆T represents the
length of time at a control interval (generally about 4 s or 1 s), and ∆Ri is the maximum
ramp rate of the ith unit.

3. Design of CG-COR for WDE
3.1. Framework of CG-COR for WDE

Since the whole grid is an interconnected whole, the objective function value of each
distributed energy region depends not only on the actions of its internal nodes but also
on the decision results for other regions within the region; i.e., the game of interests exists
between regional grids. The game problem usually involves the following factors: the
game participants, the payoffs for the game participants, and the strategies. The objective
corresponds to the participants in the cooperative game, the optimization variables related
to each objective correspond to the set of strategies controlled by each participant in the
game, the objective value corresponds to the revenue of each participant in the game, and
the constraints on the optimization problem restrict the value of the strategies of each
participant in the game. CG-COR can be used for the further deployment of a WDE-based
grid digital twin framework in order to achieve more rational and optimal allocation of
regulation instructions. Since WDE takes the regulation commands of the past control
interval and of the next adjacent control interval into account, the framework of CG-COR
should contain two optimal steps (as shown in Figure 3), as follows:

(1) Local optimizer deployment: In the CG-COR framework for WDE, the optimizer is
employed to search for the locally optimal result for WDE when the initial parameters
for the optimization are created for CG-COR. Each unit is deployed with an optimizer
(the optimal follower) and each unit simply communicates with the virtual optimal
leader during the optimal process, which can help reduce the computation burden as
the grid becomes more and more distributed;

(2) Global scheme optimization: Optimization of the described scheme is obtained by
calculating the total power deviation between the two commands. One is the power
input command from the grid to the WDE, and the other is the real power output of the
WDE units (the cooperative game’s participants) to the power grid. The global scheme
optimization mainly concerns the results obtained by the local optimizers for each
unit of the WDE. The communication between the optimal leader and each optimal
follower can be realized using the mathematics model. As shown in Figure 4, when
the global optimization receives the locally optimal results from the optimizers, the
best fitness for the cooperative game in the current iteration will be selected according
to the total power deviation. The optimal process for global scheme optimization can
be given as follows:

(a) A WDE unit can be regarded as a balanced unit due to the power balance
constraint affecting the total units’ input and the total power command (see
Equation (3));

(b) Then, the optimal results can be obtained for each unit when the cooperative
game is performed well and the maximum benefit function has been reached;

(c) Lastly, the data for the cooperative game are collected in a data center server
(optimal leader), which is also the center for the creation of the initial parame-
ters for the optimizer.
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Figure 3. Framework of CG-COR.

Figure 4. Schematic diagram of CG-COR for WDE.

3.2. Design of CG-COR

For the conventional optimization of WDE dispatch, the optimal task is allocated by
the central dispatch, which needs the parameter of each unit and the operating state of the
power grid. The dispatch assignment can be undertaken by the central dispatch with each
unit disposed of with an optimizer, which can be seen as an intelligent body (follower).
Each optimizer has its own optimal operation and the best dispatch scheme is selected
by the central dispatch according to the cooperative game rules and the information from
each follower. Moreover, the parameters of the followers are given by the leader after the
global search in the last iteration. Typically, CG-COR mainly consists of seven operations,
as follows:

(1) Parameter initialization: Set the dimensions of the problem D, maximum number of
iterations T, and maximum number of optimizer iterations g. These parameters
maintain the same values in an optimal search;

(2) Population initialization: Set the global optimal position Xb and calculate the global
optimal fitness Fb. Firstly, the lower and upper bounds of all optimization vari-
ables are set as equal to the lower and upper adjustment capacities of each WDE
unit, respectively. Then, an initialized population P0 in the solution space Xj =

∆Pin
i (i = 1, 2, . . . , n, j = 1, 2, . . . , N) is generated according to proportions of the ca-

pacities, as follow:
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Xi
0 =


∆Pm(k)

∑n
i=1 Cmax

i
, i f ∆Pm(k) < 0

0, i f ∆Pm(k) = 0
∆Pm(k)

∑n
i=1 Cmax

i
, i f ∆Pm(k) > 0

(6)

where Xi
0 represents the ith dimension of an initialized solution;

(3) Local search: For the local search, the initial parameter for each follower is formulated
using the global optimal scheme. For the ith follower, the other followers’ inputs
remain the same in the optimal search and can be set as the value of the last iteration’s
solution in the global search. This can help reduce the computation time in the optimal
search for the followers. According to the power balance constraint in Equation (2),
an arbitrary unit can be regarded as the balanced unit. Firstly, according to the
cooperative game framework, if only a unit’s power command is set as the variable, the
other n-2 units’ power commands can be set to the fixed values of the global optimal
solution X0, and the balanced units can be given as xb = ∆Pm(k)−∑n

i=1(i 6=b) ∆Pin
i (k).

Then, an interior point method-based solver is set up to run n-1 iterations for each
variable as a basis for a fast search for the global optimal solution for a single variable.
Lastly, these optimal results are sent to the optimal leader for the next operation. The
optimal formula is as follows:

fi(Xi) =
N
∑

k=1

∣∣∆Pin
i (k + 1)− ∆Pout

i (k + 1) + ∆Pin
b (k + 1)− ∆Pout

b (k + 1)
∣∣ (7)

s.t. ∆Pin
i (k)∆Pm(k) ≥ 0 (8)

∆Pin
b (k)∆Pm(k) ≥ 0 (9)

Cmin
i ≤ ∆Pin

i (k) ≤ Cmax
i (10)

Cmin
b ≤ ∆Pin

b (k) ≤ Cmax
b (11)∣∣∆Pin

i (k)− ∆Pout
i (k− 1)

∣∣ ≤ ∆Ri∆T (12)∣∣∆Pin
b (k)− ∆Pout

b (k− 1)
∣∣ ≤ ∆Rb∆T (13)

i = 1, 2, . . . , n, i 6= b{
Fi(Xi) = fi(Xi), i f Cmin

b ≤ xb ≤ Cmax
b

Fi(Xi) = abs
[(

xb − Cmax
b
)(

xb − Cmin
b
)]
·ε , else

(14)

where fi and Fi represent the objective function and the fitness function for the ith
follower in its optimal search, respectively; ∆Pin

b (k) and ∆Pout
b (k− 1) represent the

power input command from the grid to the balanced unit in the WDE and the real
power output of the balanced unit at the kth time control interval, respectively; Cmin

b
and Cmax

b represent the maximum power input command and the minimum power
output of the balanced unit, respectively; ∆Rb denotes the regulation power ramp for
the balanced unit; and ε represents a faculty coefficient, which was set to 108 in this
study;

(4) Local search update: The algorithm for the followers’ solver can be implemented using
the interior point method, which is updated with the barrier method;

(5) Global scheme optimization: For global optimization, the optimal leader obtains the
optimal resources from each follower, and the best solution in the current iteration is se-
lected according to the best fitness value. The n-1 local best solution at the tth iteration
is given as Xt

i(i = 1, 2, . . . , n, i 6= b) and local best fitness as Ft
i(i = 1, 2, . . . , n, i 6= b),

which help prepare for the following update;
(6) Optimal location update: The minimum value for the local best fitness as Ft

i is employed
to update the current global optimal fitness Fb and the corresponding local best
solution for the current global optimal position Xb. According to the cooperative
game’s rule, the optimal scheme with the best fitness value for the optimal leader is
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selected. Then, the initial parameters for each optimizer are updated according to the
optimal scheme created by the optimal leader. The optimal search continues in a cycle
between steps (2)–(4) until the subsequent termination conditions satisfy the required
settings;

(7) Termination conditions: If the current global optimal fitness Ft is larger than that of
the last iteration Fb or the current iteration t reaches the maximum of iteration T, the
optimal search is terminated.

3.3. Calculation Flow

The entire calculation flow for modeling WDE using CG-COR is provided in Algorithm 1.

Algorithm 1. The execution procedure for ARMA-GA for WDE.

1. FOR1 k:=1 to Nt
2. Input the total power regulation command at the current control interval;
3. Initialize the parameters of CG-COR and its leader’s solver;

4. FOR2 t:=1 to Tor Ft
i < Fb

5. Send the optimal location and optimal fitness to the followers’ solver;
6. FOR3 i:=1 to n (i 6= b)
7. Update the variable location and the corresponding fixed value for optimization of the

solver;
8. Initialize the solution for the ith follower and the corresponding optimal constraints from

Equations (8)–(13);
9. FOR4 j:=1 to g
10. Calculate the objective function value using Equation (7) with the constraints from

Equations (8)–(13);
11. Calculate the fitness function value using Equation (14);
12. Update the location of the ith follower according to the barrier method for the interior

point;
13. END FOR4
14. END FOR3
15. Select the globally optimal result according to the followers with the best fitness function;
16. Update the optimal location and optimal fitness for the next global search;
17. END FOR2
18. Update the units’ output power to the grid;
19. END FOR1

4. Case Studies

In this study, a WDE model was developed to verify the superiority of the proposed
algorithm through a comparison with the industrial proportional method (PROP) [15].
Table 1 shows the main parameters of the WDE units: coal-fired, LNG, wind farm (WF),
and PV. The interior point method was employed for the solver. For the parameters of
the CG-COR, the maximum number of iterations of the method was set to 200, and the
maximum number of iterations of the interior method was set to 10. The simulation
experiment was carried out on a personal computer using the MATLAB 2019b platform.
The sampling time for the MATLAB platform was 0.01 s, the solver was ode 45, and the
computer used an Intel(R) Core TM i7-8650U CPU.

Table 1. Main parameters of WDE units in area A of the two-area LFC model.

Unit No. Type Td (s) ∆Prate (MW/min) ∆Pmax(MW) ∆Pmin(MW)

G1 Coal-fired 60 30 40 −20
G2 LNG 20 18 20 −30
G3 Hydro 5 150 10 −20
G4 WF 1 — 15 −10
G5 PV 1 — 10 −15
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4.1. Statistical Test Experiments
4.1.1. Convergence for the Followers’ Search

To verify the advantages of the proposed CG-COR, static tests were performed at three
different powers. In these tests, the interior point method was employed to execute the
followers’ search for the WDE units. To analyze the influence of the iteration number for
the local optimization on the convergence of the global optimization, different iteration
numbers for the local optimizer were used in the simulation test. The experimental results
are represented in Figure 5. The legend of Figure 5 presents the different settings for the
local optimizer, and the lateral axis with the iteration number represents the convergence
process of the global search. From Figure 5a, it can be seen that the convergence results for
10 and 15 generations tended to be the same, but the experiment required fewer iterations
for the convergence with 15 generations. The number of iterations required to obtain
suitable results for the 5 generation method was three times greater than that for the
15 generation method. In Figure 5b, the number of iterations required for convergence and
the fitness optimization results were close for 15 and 10 generations in the experiment, but
the 5 generation iterator was significantly inferior to the previous two generations in terms
of the number of iterations required for the optimization process. As shown in Figure 5c,
the 15 generation optimizer gave slightly better results than the 10 generation optimizer
and had a more significant advantage over the 5 generation optimizer. When weighed
in terms of the number of iterations required, the 5 generation optimizer clearly required
more iterations than the 15 generation optimizer to obtain superior results, about ten times
more. However, from the point of view of the time spent in the optimization process, the
more generations were involved, the more time was consumed by the iterations and the
slower the computation was. Lastly, the figures listed in Table 2 are the computation times
at different power moments for the generations with 5, 10, and 15 iterations, respectively.

Figure 5. Comparison of accuracy of WDE models with different numbers of iterations.
(a) ∆PC = 40 MW, (b) ∆PC = 60 MW, and (c) ∆PC = 80 MW.

Table 2. The computation times at different power moments for generations with 5, 10, and 15 itera-
tions for the followers’ optimizers.

∆PD (MW) 5 Generations (s) 10 Generations (s) 15 Generations (s)

−80 4.322 0.305 0.166
−70 1.427 0.178 0.171
−60 0.859 0.278 0.239
−50 0.785 0.295 0.258
−40 0.538 0.322 0.278
−30 0.405 0.327 0.306
−20 0.336 0.229 0.275
−10 0.221 0.269 0.272

0 0.267 0.224 0.310
10 0.350 0.270 0.211
20 0.554 0.353 0.251
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Table 2. Cont.

∆PD (MW) 5 Generations (s) 10 Generations (s) 15 Generations (s)

30 0.786 0.297 0.254
40 1.294 0.224 0.215
50 2.257 0.220 0.155
60 1.947 0.237 0.147
70 1.515 0.183 0.142
80 4.322 0.305 0.166

4.1.2. Optimal Power Command for Global Search

In this test, the corresponding load disturbance was applied in the power grid, and the
power input command for the optimal followers in the optimal process is given in Figure 6.
In the three statistical tests, the iterations for the followers’ optimizer were set to ten. As
shown in Figure 6, the globally optimal search for the optimal leader obtained high-quality
results with fewer than ten iterations. In Figure 6a,b, the power command for G1 (coal-fired
unit) led to convergence to 0, while the power commands for G4 (wind farm) and G5 (PV)
increased their maximum power output across the entirety of the optimal process. This
indicates that the proposed method can help maximize the power output for new energy,
such as PV and wind farms. In Figure 6c, the power output for the WF unit reaches capacity
in two iterations. The power outputs for hydro and PV units increase to their maximum in
three and four iterations. Lastly, the counterparts for the LNG and coal-fired units reach a
power balance in nine iterations.

Figure 6. Power input commands for each follower obtained with their optimizers during the global
optimal search for WDE. (a) ∆PC = 40 MW, (b) ∆PC = 60 MW, (c) ∆PC = 80 MW.

4.2. Statistical Test Experiments
4.2.1. Step Load Disturbance

For the step load disturbance test, several load disturbance simulation experiments
(∆PD = −40 MW, as given in Figure 7; ∆PD = −50 MW, as given in Figure 8; and
∆PD = −60 MW, as given in Figure 9) were conducted to verify the advantages of the
proposed CG-COR. To analyze the effect of the algorithm applied to the WDE model,
the proportional (PROP) method was used to perform comparative analysis experiments
for each equivalent case. As shown in Figure 7a, application of the CG-COR method to
the model resulted in a power deviation nearly four times smaller than that of the PROP
method throughout the optimization process. The variation in the power deviation region
under load disturbance is further illustrated in Figure 7b. From the figure, it can be seen
that the total power command for PROP appeared overshoot, with an overshoot power
regulation curve that first falls and then rises, while the proposed method obtained a
non-overshoot power regulation curve with superior performance. In Figure 7c,d, two
standard indices (area control error (ACE) and control performance standard (CPS1)) are
shown to compare the optimal convergences with the two algorithms. From the figure, it
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can be seen that the proposed CG-COR can produce a power scheme with higher quality
for the ACE and CPS1 indices, which means that the proposed method provides more
optimal convergence in the optimization of WDE.

Figure 7. Real−time dispatch scheme obtained for the WDE dispatch model when ∆PD = −40 MW.
(a) Variation in power deviation between the input power command and the actual power output.
(b) Area change for power deviation with the load disturbance. (c) The area control error (ACE)
change curve for the two algorithms during the process. (d) The control performance standard (CPS1)
change curve for the two algorithms during the process.

Figure 8. Real−time dispatch scheme obtained for the WDE dispatch model when ∆PD = −50 MW.
(a) Variation in power deviation between the input power command and the actual power output.
(b) Area change for power deviation with the load disturbance.
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Figure 9. Real−time dispatch scheme obtained for the WDE dispatch model when ∆PD = −60 MW.
(a) Variation in power deviation between the input power command and the actual power output.
(b) Area change for power deviation with the load disturbance.

As shown in Figure 8a, the proposed method resulted in a smaller power deviation
than the PROP method across the whole optimization. Further description of the change in
the total power deviation is given in Figure 8b, which shows that a non-overshoot power
regulation curve was obtained with the proposed method, while an overshoot power
regulation curve was acquired with the PROP method.

From Figure 9, it can be seen that the area for the power deviation obtained with
the PROP method covered that of CG-COR, indicating that the CG-COR algorithm could
effectively reduce the power deviation in the optimization process; moreover, it can be
easily seen from the figure that CG-COR had a lower total power command than the PROP
algorithm.

4.2.2. Continuous Step Load Disturbance

In the following continuous test, for further validation of the performance of the CG-
COR model, we implemented a more random load disturbance that more closely resembled
the actual variation in load and power users (as shown in Figure 10). Similarly, a lower
total power deviation was obtained between the input power command and the actual
output profile, as can be seen in Figure 10a. It is noteworthy that, as Figure 10b shows, a
non-overshoot actual output power curve was obtained with the proposed method across
the whole of the optimal dispatch process, which means that the CG-COR can effectively
coordinate the regulation performance of the regulated units and obtain a high-quality
dispatch scheme for the power grid. Figure 10 shows a schematic of the CG-COR for WDE.
Moreover, in Figure 10c,d, the ACE and CPS1 indices are given for comparison with the
optimal convergence for the two algorithms. There is no doubt that the proposed method
could obtain a CPS1 curve (Figure 10c) with lower magnitudes and a slower peak for the
ACE curve (Figure 10d) than the conventional PROP method. The regulation amounts for
the energy with five resources obtained by the two algorithms are given in Figure 10e,f. It
is obvious that the power dispatch scheme obtained with CG-COR could maximize the
energy output from the wind and PV units and keep the coal-fire output stable.
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Figure 10. Real−time dispatch scheme obtained with the WDE dispatch model when using a random
load disturbance. (a) Variation in power deviation between the input power command and the actual
power output. (b) Random load disturbance and regulation curves. (c) The area control error (ACE)
change curve during the process for the two algorithms. (d) The control performance standard (CPS1)
change curve during the process for the two algorithms. (e) The regulation amount for the energy
obtained with the CG-COR method. (f) The regulation amount for the energy obtained with the
PROP method.

Lastly, Table 3 shows the simulation results from the four tests mentioned above. The
method column includes a power grid with a single WDE unit, CG-COR with multiple
WDE units, and PROP with multiple WDE units. As the table shows, there is no doubt that
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higher control performance was obtained for the grid with multiple WDE units than with
a single WDE unit. It is obvious that the scheduling scheme obtained with the proposed
method could not only be resolved quickly in time but the solution obtained was of higher
quality. In terms of performance, the proposed method improved the accuracy for the
intensity of the closeness between the total power input command and total power output
curve. To be specific, the proposed method helped reduce the total power deviation by
about 61.1%, 55.7%, 53.1%, and 74.8%.

Table 3. Comparison of results for online optimization with different disturbances.

∆PD Method Accuracy (%) Deviation (MW)

−40 MW
CG-COR 91.32 81.60

PROP 90.96 209.65
Single WDE 89.32 804.28

−50 MW
CG-COR 91.29 116.00

PROP 90.96 262.02
Single WDE 89.32 1005.27

−60 MW
CG-COR 91.28 147.59

PROP 90.96 314.43
Single WDE 89.32 1260.80

Disturbance 1 (see Figure 10a)
CG-COR 88.23 631.18

PROP 79.18 2504.87
Single WDE 62.74 6675.08

5. Conclusions

To summarize, this paper makes the following four contributions:

(1) A digital twin-based WDE model is proposed that can fully coordinate all regulated
units and fully considers and rationally utilizes new energy units;

(2) A form of cooperative game optimization-based WDE scheduling is proposed that
can reasonably allocate power commands for multiple control resource systems. The
proposed leader-and-follower mode can help reduce the optimization time due to the
distributed optimization process;

(3) Through the simulation and comparison experiments performed with the WDE model,
it was found that the optimal WDE scheduling scheme based on the cooperative game
optimization algorithm could solve the scheduling problem more effectively;

(4) The proposed CG-COR model could effectively coordinate the regulation resources
for WDE units. It enhanced the intensity of the closeness between the total power
input command and output curve, and it reduced the total power deviation by 61.1%,
55.7%, 53.1%, and 74.8%, respectively.

Based on the current technology and research directions, future research could include
the following:

(1) As the number of electric vehicles is likely to increase significantly in the future,
the master–slave game could be considered to rationally guide the charging and
discharging of electric vehicles and reduce the cost of electricity;

(2) A large number of flexible loads are involved in the operation of power systems,
resulting in convenience for the demand response, while the game model becomes
more complex. Therefore, it is necessary to study the demand response based on an
incomplete information game;

(3) Power losses will be considered in a future study. The optimization will take into
account factors such as transmission and conversion losses. The topology of the grid
and regulation resources will also be analyzed in a future study.
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Nomenclature

ACE area control error
CPS1 control performance standard
CG-COR cooperative game-based collaborative optimal regulation
GRC generation regulation constraint
LNG liquefied natural gas
PROP proportional method
PV photovoltaic
WDE wide-area distributed energy
WF wind farm
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