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Abstract: This study numerically analyses the effects of chamber modifications to investigate the im-
provement of in-cylinder combustion characteristics of the diesel engine using a computational fluid
dynamics (CFD) approach. Five different modified chambers, namely, the double swirl combustion
chamber (DSCC), bathtub combustion chamber (BTCC), double toroidal re-entrant combustion cham-
ber (DTRCC), shallow depth combustion chamber (SCC), and stepped bowl combustion chamber
(SBCC) were developed and compared with a reference flat combustion chamber (FCC). The effects
of chamber modifications on temperature formation, velocity distribution, injection profiles, and
in-cylinder turbulent motions (swirl and tumble ratio) were investigated. During the compression
stroke, near top dead centre, the SCC showed a peak temperature of 970 K, followed by the FCC
(968 K), SBCC (967 K), and DTRCC (748 K to 815 K). The DSCC and the SCC showed a high swirl
ratio above 0.6, whereas the DTRCC and the BTCC showed a high tumble ratio of approximately
0.4. This study found that the SCC, BTCC, and DSCC have better combustion rates than the FCC
in terms of temperature, heat release rate, and velocity distribution. However, the DTRCC showed
poor temperature formation rates and rapid heat release rates (approx. 150 J/◦CA), which can lead to
rapid combustion and knocking tendencies. In conclusion, the DSCC and the SCC showed better
combustion rates than the other chambers. In addition, turbulent motions inside the chambers
avoided combustion in crevice regions. This study recommends avoiding chambers with wider bowls
in order to prevent uneven combustion across the cylinder. Furthermore, split bowls such as the
DSCC, along with adjusted injection rates, can provide better results in terms of combustion.

Keywords: combustion chamber modification; combustion simulation; heat release rate; cylinder
temperature; CFD analysis

1. Introduction

Air–fuel mixture formation inside the engine cylinder is mainly responsible for en-
gine performance and emissions [1]. With the improper mixture, fuel accumulation can
occur inside the chamber due to an uneven distribution of air and fuel, which can cause
incomplete combustion. To address these issues, engine modifications such as nozzle
modifications [2] and port flow design have been investigated during recent decades to
improve the overall in-cylinder combustion [3–5]. In addition, injection modifications [6]
and piston bowl modifications [7] have been experimentally investigated to improve the
combustion behaviour of diesel engines. Among these, the piston bowl modification tech-
nique is well-documented in the literature as one good active technique that directly affects
air–fuel mixture formation.

Piston bowl modifications have gained significant attention in the last decade due
to their active interactions inside the cylinder during the air–fuel mixture formation [8].
The piston bowl influences the air–fuel mixture through turbulence, which is governed by
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swirl and tumble motions. Wall-wetting and the formation of fuel pockets can be avoided
using chamber modifications. Biodiesel tends to form fuel pockets inside the chamber
as biodiesel viscosity is higher than diesel fuel [9–12]. Moreover, biodiesel is proven as
the prospective replacement for diesel fuel to reduce greenhouse gas emissions [13–17].
Several experimental results have shown increased engine performance and combustion
with piston bowl geometry modifications using biodiesel as a fuel. For instance, Jaichandar
and Annamalai [18,19] and Jaichandar et al. [20] conducted an experimental analysis with
combustion chamber modifications on different piston bowl geometries. The study re-
ported that the modified toroidal re-entrant combustion chamber (TRCC) showed improved
combustion characteristics, reduced fuel consumption, and increased thermal efficiency
compared with the conventional test engine chamber, the Hemispherical combustion cham-
ber (HCC). In addition, Channappagoudra et al. [21] conducted an experimental analysis
with the TRCC, HCC, Straight Sided Piston Bowl Geometry (SSPBG), and TCC. The study
reported that the TRCC showed better results than the others because of improved fuel
atomisation, increased cylinder temperature, and high turbulent kinetic energy. How-
ever, these experimental studies do not provide a detailed understanding of the effects of
chamber modifications on air–fuel mixture formation and combustion rates.

Optical and computational studies have helped to understand in-cylinder flow fields
with respect to modified geometries and operating parameters. Optical studies have
allowed researchers to understand flame movements, flow patterns, and combustion evo-
lution [22]. On the other hand, computational studies have assisted in developing new
design geometries. They helped to investigate the in-cylinder fluid flow behaviour with
respect to the chambers, along with the engine characteristics and emission estimations.
Previous simulation studies have described the chamber modifications based on injection
behaviour. For instance, Li et al. [23] proposed a double swirl combustion chamber (DSCC)
where the injected fuel splits in the chamber grooves and spreads towards the squish and
bowl region. Later, Li et al. [24] introduced a lateral swirl combustion chamber (LSCS)
to accommodate the fuel inside the chamber, so the combustion occurs near the bowl
region. These studies have indicated better combustion with the modified chambers with
reduced soot emissions. However, the thermal profile of the combustion chamber has
not been explained clearly enough to understand the intrinsic role of modified chambers.
Furthermore, modified chambers greatly support low-temperature combustion (LTC) en-
gines [25,26] and dual-fuel engines [27,28]. For example, Han et al. [29] analysed a longer
air–fuel mixture period formed in the swirl direction due to the bowl chamber, which led
to low-temperature combustion.

In the past few decades, several experimental studies have been conducted on piston
bowl modifications, suggesting that the bowl chamber has influenced engine characteristics
such as engine performance and emissions [30–33]. However, very few studies have
focused on investigating flow combustion behaviour inside the chamber in relation to
bowl modifications [30,34,35]. Hence, the novelty of this study is to examine and analyse
combustion behaviour with respect to different combustion chamber modifications. This
study used a CFD approach to investigate the combustion regime by analysing in-cylinder
temperature and velocity profiles. In addition, to investigate rapid combustion and heat
release rates, multiple injection pulses were used for all piston bowl geometries.

The scope of this study was to investigate flow parameters inside the chamber with
respect to chamber modifications. This study considered six different bowl chambers
and performed the simulation at set operating conditions to evaluate key results from the
modified chambers. The following section explains our simulation modelling methodology,
along with the designs of different chamber profiles. Furthermore, this study presents
critical results and discusses the effect of chamber modifications on cylinder compression
rates, temperature, and velocity profiles with respect to crank angles. Finally, the study’s
conclusions and recommendations are presented.
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2. Methodology

The combustion sector simulation was carried out with Ansys IC engine fluent tool.
Firstly, a flat combustion chamber was prepared similar to the Kubota V3300 engine model
by maintaining the engine’s bore, stroke, compression ratio, and displacement. Figure 1
presents the process flowchart for engine simulation. The simulation methodology contains
three main parts—geometry preparation, simulation, and post-processing. Geometry
preparation is essential to fluid volume extraction and meshing. Data related to valve
positions, valve seats, port alignments, and positions were gathered and accommodated
in preparing the combustion chamber. Later, the chamber was updated with respect to
fluid extraction and meshing errors. A computational mesh was created to calculate the
results at each time step [36]. The input variables and initialisation process were carried out
during the simulation setup, and the analysis was performed during the post-processing
stage. Later, bowl shapes were designed by adjusting the clearance volume to maintain
the engine compression ratio and displacement. A detailed explanation of these stages is
explained in the following sections.
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Figure 1. Flowchart for modelling and simulation of the engine.

2.1. Geometry Preparation and Meshing

In this simulation, the geometry was prepared based on the Kubota V3300 engine, as
shown in Figure 2a. The detailed engine specifications are listed in Table 1. The Kubota
V3300 engine is a four-cylinder heavy-duty tractor engine with two inlet valves and one
exhaust valve. Moreover, it has a pre-chamber, where the combustion takes place in a
separate combustion chamber and, from there, combusted gases travel to the main chamber.
The modelling experiments were carried out on this Kubota V3300, a four-cylinder, four-
stroke, compression ignition engine. The engine has a bore of 98 mm, a stroke of 110 mm,
and a compression ratio of 22.6:1. The simulation was conducted at a speed of 1500 rpm.

A combustion chamber was created with two inlet valves and ports, and one exhaust
valve and port. The cylinder displacement volume and pre-chamber rates were calculated,
categorised, maintained, and modelled as direct injection engines. Arbitrary dimensions of
the chamber components, such as valve heights and cylinder thickness, were assumed for
the fluid extraction part as these have negligible impact on the combustion process. The
fluid volume of the chamber was extracted by removing all the solid components except
the valves, as shown in Figure 2b. A sector adaptive combustion simulation was carried
out with an angle of 60◦. The decomposed sector component of the cylinder chamber is
presented in Figure 2c. During the decomposition process, the valve sets were deleted; the
engine port was divided into a given sector angle of 60◦; and the clearance volume and
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crevice were adjusted with respect to the compression ratio, as shown in Figure 2c. In the
next stage, adaptive refinement technology was used to generate the mesh for the model.
Figure 2d presents the mesh component of a sector of a flat combustion chamber.
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Figure 2. Geometry setup: (a) chamber with inlet and exhaust valves and ports; (b) fluid volume
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Table 1. Engine Specifications.

Make Kubota V3300

Engine type Vertical, 4-cycle liquid cooled diesel
Total displacement 3.318 (litres)

Fuel Diesel surrogate (n-heptane)
Bore 98 mm

Stroke 110 mm
Compression ratio 22.6:1

Speed 1500 rpm
Fuel Diesel

Cooling system Water-cooled

2.2. Simulation Setup and Post-Processing

Ansys IC engine fluent software was used to conduct computational fluid dynamics
(CFD) analysis. It provides an integrated environment with capabilities to set up powerful
IC engine designs. Modelling an internal combustion engine involves dynamic interactions
between moving geometries, fuel injection, and combustion processes. CFD involves jet
formation, wall impingements, and combustion. The governing equations for the CFD
analysis follow Navier–Stokes equations, which include conservation of energy, momentum,
and continuity equations [37,38]. The governing equations are as follows.

The continuity equation:

∂ρ

∂t︸︷︷︸
material derivative

+ ∇(ρV)︸ ︷︷ ︸
convective acceleration

= 0 (1)

where ρ denotes the density of the fluid and V is the flow velocities in m/s.
The energy equation:

∂(ρe)
∂t

+ ∇(ρeV)︸ ︷︷ ︸
kinetic energy

=
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
︸ ︷︷ ︸

conductive term

(2)

Here, ‘e’ refers to the internal energy, k indicates the thermal conductivity, and T is
the temperature.

The momentum equation (2-Dimensional):



Energies 2023, 16, 2586 5 of 18

∂(ρu)
∂t

+
∂
(
ρu2)
∂x

+
∂(ρuv)

∂y︸ ︷︷ ︸
inertia f orce

= −∂(p)
∂x︸ ︷︷ ︸

pressure gradient

+

∂

∂x

(
λ

(
∂v
∂x

+
∂u
∂y

)
V + 2µ

∂u
∂x

)
+

∂

∂y

(
µ

(
∂v
∂x

+
∂u
∂y

))
︸ ︷︷ ︸

viscous f orce

(3)

∂(ρv)
∂t

+
∂
(
ρv2)
∂y

+
∂(ρuv)

∂x
= −∂(p)

∂y
+

∂

∂x

(
µ

(
∂v
∂x

+
∂u
∂y

))
+

∂

∂y

(
λ∇V + 2µ

(
∂v
∂x

))
(4)

Here, u and v are velocity magnitudes in the x and y directions, λ and µ are the shear
stress (viscous effect) and dynamic viscosity, and p indicates pressure in Pascals.

The empirical k-ε model was used in this simulation. The turbulent motions inside
the chamber were analysed using the Renormalization Group (RNG) k-ε model based on
Reynolds averaged Navier–Stokes equations. The study adopted the RNG k-ε turbulent
model to couple the stream fields and converge the solution into a continuity equation.
This two-equation model statistically averages the multiscale eddies that are formed during
combustion and can capture the horizontal velocity profiles along the free-flow streams.
The turbulent kinetic energies (k) and the dissipation rates (ε) of these eddies are calculated
using k-ε model [38,39].

To observe the turbulent kinetic energy (k):

∂(ρk)
∂t

+
∂(ρkµi)

∂xi
=

∂

∂xj

[
µi
σk

∂k
∂t

]
+ 2µtEijEij − ρε (5)

To observe the dissipation rate (ε):

∂(ρε)

∂t
+

∂(ρεµi)

∂xi
=

∂

∂xj

[
µt

σe

∂ε

∂xj

]
+ C1ε

ε

k
2µtEijEij − C2ερ

ε2

k
(6)

Apart from these, the Kelvin–Helmholtz (KH) instability model was used to predict
the primary break-up model. A sector grid with periodic boundaries was adopted in
this closed study from intake valve opening to exhaust valve closing. Dynamic mesh
parameters, boundary conditions, materials, monitor setup, and relaxation factors were
assigned during the simulation setup and initialised the solution.

The simulation setup procedure and boundary conditions were kept the same for all
the piston bowl chambers. The simulation was conducted from the inlet valve closing
period to the exhaust valve opening period. A constant swirl number of 1.3 was given to
the inlet profiles with an injection angle of 70◦. The injection was given with respect to
the crank angle degree of 344 ◦CA to 370 ◦CA, as shown in Figure 3a. As represented in
Figure 3b, the injection was provided with mass flow rates at three different intervals as
pilot, main, and post injections. The natural atmospheric air composition was added as
the intake air, and the cylinder walls were assigned to 440 K. The engine speed was kept
constant at 1500 rpm.

Monitor definitions were created at the chamber bottom, chamber top and chamber
fluid portion of the different cut planes. Max-vel-monitor was created to observe the
maximum velocity, vol-avg-temp-monitor was created to observe the volume integral of
temperature. During the post-processing stage, the results were recorded with respect to the
monitor definitions according to the assigned cut planes. Before initialisation, the model
setup, mixture formation, dynamic meshing, injections solution methods and solution
controls were adjusted to solve the simulation. To verify the discretised equations, the
convergence criteria for the velocity, k and ε were set to 1 × 10−4, and energy was set to
1 × 10−6 with over 1400 iterations.
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Figure 3. Fuel injection profiles: (a) injected fuel mass vs. ◦CA; (b) injected fuel velocity vs. ◦CA.

2.3. Grid Sensitivity Analysis

A computational grid independence study was performed for the FCC chamber to
analyse the impact of the mesh grid on the simulation process. Firstly, a finer mesh was
created with a reference mesh size of 0.611 and with five inflation layers. The fine mesh
created 1,948,328 nodes and 1,878,444 elements. Similarly, the coarser mesh was created
with a reference mesh size of 0.917 and with three inflation layers. The coarse mesh
generated 597,824 nodes and 566,470 elements. Figure 4 presents the apparent heat release
rate for the fine and coarse mesh. It can be seen from Figure 4 that the type of mesh used
has a slight impact on the simulation results. Hence, the study progressed with the finer
mesh attributes.
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2.4. Model Validation

The FCC simulation setup was validated against experimental data considering the
heat release rate. The purpose of this validation was to examine the in-cylinder combustion
behaviour of the modelling setup at constant boundary conditions with respect to the
combustion condition of the test engine. The model was validated with a single injection
profile (with an injection period between 356 ◦CA and 376 ◦CA), similar to the test engine
injection. As presented in Figure 5, a similar trend is noted in both the experimental and
simulation setup. The trend was observed during the combustion stroke between crank
angles of 350 ◦CA and 400 ◦CA. The results are validated by adjusting the injection profile
with respect to the crank angles. The error percentage between the actual and simulated
output was calculated as 3.8%. Though there is some discrepancy in both graphs, the
overall error percentage is less than 5%, and the heat release rate trend is good.
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2.5. Chamber Geometry Modification

As discussed before, the clearance volume of the flat chamber was adjusted by main-
taining the same compression ratio and displacement volume to the design of the com-
bustion chambers with respect to the test engine. Bowl geometries such as the double
swirl combustion chamber (DSCC), bathtub combustion chamber (BTCC), double toroidal
re-entrant combustion chamber (DTRCC), shallow depth combustion chamber (SCC), and
stepped bowl combustion chamber (SBCC) were designed as shown in Figure 6. The
simulation was carried out for these modified chambers with the simulation steps dis-
cussed above by maintaining the same operating parameters and boundary conditions to
maintain consistency.
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3. Results and Discussions
3.1. Effect of Chamber Modifications on Compression Behaviour

Figure 7 illustrates the temperature distribution of the chamber at the end of the
compression stroke at 344 ◦CA. The results show that varying the bowl shape has a visible
impact on the compression rate, which is one of the primary operating parameters for
a compression ignition engine. As shown in Figure 7, the SCC (970 K) showed a high-
temperature formation than the reference piston FCC (968 K), followed by the SBCC
(967 K) and BTCC (966 K). The DTRCC demonstrated inferior temperature formation
(748 K to 815 K) during the compression stroke, which may be due to a longer bowl
diameter. For the DTRCC, it can be seen from the temperature plots that the crevice region
has high-temperature formation, which can cause rapid and poor combustion in crevice
regions. Several studies have reported high unburnt hydrocarbons and NOx emissions
when combustion occurs in crevice regions of the chamber [40,41].
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During the compression stroke, particles become closer together, and the highly
inhomogeneous flow of the intake stroke becomes relatively homogeneous during the
compression stroke, as shown in Figures 7 and 8 [42]. The velocity distribution of different
piston bowl chambers at 344 ◦CA is illustrated in Figure 8. It is observed from the results
that high-velocity rates are formed in the squish region near the cylinder wall. Even though
the FCC has no bowl shape, high-velocity motions (8.97 m/s) are observed near the wall
region due to surface interactions between the compressed air and moving surfaces of the
piston and wall. This phenomenon indicates that the injected air is pushed away from
the cylinder axis and makes space for the injected fuel. As predicted, low-velocity rates
were observed in the crevice regions as they have very confined spaces. Interestingly,
the DTRCC (9.18 m/s) showed high-velocity formation at the end of the compression
stroke. Usually, entropy (degree of randomness) should increase under high-temperature
conditions; however, compared to the other chambers, the DTRCC formed high-velocity
flow motions in the squish region. This is because the DTRCC has less squish space and
longer bowl regions; meanwhile, the fluid and wall surface interactions also create high
velocities near the wall region. Hence, higher turbulent kinetic energy(TKE) was noticed at
the confined squish region. Similar behaviour was also seen in the BTCC (9.24 m/s), with
higher TKE than the SCC (9 m/s) because of the shorter squish region.
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3.2. Effect of Chamber Modifications on Fuel Particle Distribution

Figure 9 presents the fuel particle distribution with respect to velocity and temperature
at 368 ◦CA during the injection period, which is near the top dead centre (TDC). The DSCC
(2170 K) and BTCC (2140 K) showed high-temperature formation rates during the injection
period compared with the FCC (2120 K). Due to poor compression rates, the DTRCC
showed lower temperature formation at 1990 K compared with other chambers.

To understand fuel dispersion inside the chamber with respect to bowl shape, the
temperature and velocity rate of particle traces were analysed. Bowl design signifies fuel
distribution and combustion. For instance, in the DSCC and SCC, the fuel is sprayed
directly into the bowl region, which restricts the fuel from spreading to the squish and
crevice regions. Velocity contours also support that the DSCC and SCC have no particle
motions after the bowl region. Targeting the least flow restriction benefits the air–fuel
mixture because the loss in spray momentum helps distribute the fuel around the bowl
region [43]. A free-flow of particle momentum was noticed with the FCC, DTRCC, BTCC,
and SCC due to the absence of complex obstructions to the injected fuel. The results for
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these chambers indicate that the injected fuel momentum spreads towards the squish and
crevice regions. The distribution rate in the squish region was greater for the FCC and
DTRCC due to the absence of hard bowl obstructions. As discussed earlier, accumulated
fuels in the crevice and squish regions cause improper combustion and release higher
NOx and UBHC emissions. High-density fuels such as biodiesel have more scope for
forming fuel pockets near the crevice regions, making them more susceptible to uniform
combustion [44].
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3.3. Effect of Chamber Modifications on In-Cylinder Temperature Distribution

Figures 10 and 11 show the in-cylinder temperature distribution for modified chambers
during the middle and end of the combustion stroke at crank angles of 431 ◦CA and 467 ◦CA,
respectively. As presented in Figures 10 and 11, the chambers with fewer bowl obstructions,
such as the FCC and DTRCC, revealed that combustion spreads towards the cylinder wall
region with respect to fuel droplet dispersion. Furthermore, because the spray mixture
is more prone to hit the walls, it can cause combustion near the wall region. Therefore,
there are higher chances for cylinder heat loss as the high-temperature areas are situated
alongside the wall. Moreover, compared with other bowl chambers, the FCC and DTRCC
showed combustion formation in the crevice regions (Figures 10 and 11). However, the bowl
chambers of the DSCC, BTCC, and SCC, showed high-temperature distribution during the
combustion stroke, indicating that combustion happened alongside the bowl region. A
poor temperature distribution was noted in the DTRCC, where the combustion occurred
near the squish region because of the shorter squish area and wider bowl chamber.
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Fuel injection is mainly responsible for carrying the combustion near the bowl region.
As shown in Figure 9, the injected fuel is dispersed into squish regions for the DTRCC,
BTCC, DBCC, and SCC chambers; hence, the combustion plots (Figures 10 and 11) also
show combustion at the squish regions of these chambers. Thus, it is concluded from the
analysis that in order to conduct combustion with piston bowl geometries, injection type
and angle should be adjusted to utilise the bowl region.

3.4. Effect of Chamber Modifications on the In-Cylinder Velocity Distribution

Figures 12 and 13 show velocity distributions at 431 ◦CA and 467 ◦CA for different
modified chambers. It is observed from the results that higher velocity magnitudes are
recorded on top of the piston surface as the piston moves towards the bottom dead centre
BDC. Here, the velocity counters represent two main activities: turbulence and piston
work [45]. The high velocities situated on the piston head for the SCC (approx. 10.5 m/s)
generate significantly more power during the power stroke. In the case of the FCC, the
fluid streams dispersed around the piston surface, showing higher velocities than other
chambers due to the absence of a bowl region. Furthermore, the DTRCC with a broader
bowl exhibited poor velocity distribution due to the formation of less turbulence inside
the chamber. Higher magnitude of velocity regimes, 13.9 m/s at 431 ◦CA and 15 m/s at
497 ◦CA, were noticed for the DTRCC. However, the irregular velocity stream distribution
was recorded for the DSCC due to the uneven turbulence distribution of fluid streams.
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3.5. Effect of Chamber Modifications on the Heat Release Rate

The apparent heat release rate (AHRR) for different modified chambers is illustrated
in Figure 14. The three humps during the injection were mainly due to the compound
HRR caused by multiple split injections. Compared with the reference FCC, all the piston
bowl chambers showed high HRRs with pilot injection. This may be due to the increased
turbulence rate generated by the piston bowl chambers during the injection stages. The
AHRR in the DTRCC was high and more rapid than in the other chambers. However,
temperature plots (Figures 10 and 11) and velocity plots (Figures 12 and 13) showed poor
combustion rates and spatial distribution within the DTRCC. The main reason for these
poor temperatures, velocities, and HRR was uneven and rapid combustion. Furthermore,
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as knocking intensity is proportional to peak HRR, the DTRCC is more susceptible to
generating knocking under high turbulence conditions.
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All the chambers showed high AHRRs during the main fuel injection period compared
with the FCC. The DSCC and SCC gradually decreased with combustion, suggesting that
better fuel combustion occurred with the DSCC and SCC than the BTCC, FCC, SBCC, and
DTRCC. During the third injection, the SCC did not record significant variations in the
HRR. This may be due to fuel accumulation in the deeper bowl chamber, and suggests that
a third post-injection is not required in the SCC chamber model. On the other hand, all the
chambers, including the FCC, reacted with the post-injection. Usually, mixture swirling
occurs mainly in the bowl region, and it is highly beneficial if the chamber can utilise
the squish region. In the case of the DSCC, the injected fuel split towards the bowl and
squish area. Thus, the DSCC showed better combustion release rates when compared with
other chambers.

3.6. Swirl Ratio and Tumble Ratio

Swirl ratio and tumble ratio greatly influence the air-fuel mixing process. Swirl and
tumble flow induce the air flow field, increasing burning rate and TKE. Figure 15 shows the
swirl ratio for different piston bowl geometries with respect to crank angles. It is observed
that during the suction and compression stroke, swirl ratio is high, then started falling
to approximately 0.0 at the end of the compression stroke (380 ◦CA). Again, during the
combustion stroke at 382 ◦CA to 460 ◦CA, variation in swirl motions were observed for
all the chambers. The DSCC showed a high swirl ratio among all the chambers because
of the double swirl bowl chamber, followed by the SCC and BTCC. This clearly indicates
that shorter and deeper bowl chambers have higher swirl ratios than longer and shallower
bowl chambers (as seen in the SBCC, DTRCC, and FCC).
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Figure 16 shows the tumble ratio for different piston bowl geometries with respect
to crank angles. The magnitude of the tumble and swirl ratio follows the right-hand rule;
hence, the negative ranges in the graphs (Figures 15 and 16) represent the counter-clockwise
direction of the flow [46]. When comparing both motions, we observed that the swirl ratio
was more dominant in these chambers compared with the tumble ratio. During the suction
stroke, near 243 ◦CA to 280 ◦CA, variations in tumble motions were observed; meanwhile,
during the compression stroke, a negative trend in the tumble ratio was noted. Again,
during the combustion stroke, variation in the tumble ratio was seen. For the DTRCC,
SBCC, and FCC, a peak tumble ratio was observed over other chambers, which was the
opposite of the swirl ratio results. Furthermore, a high tumble ratio was observed during
the combustion stroke, whereas a high swirl ratio was observed during the suction stroke.

Energies 2023, 16, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 16. Variation of tumble ratios for different geometries with respect to crank angle. 

4. Conclusions and Recommendations 
This research paper provides the computational results of DSCC, DTRCC, BTCC, 

SBCC and SCC geometries and their combustion analysis with respect to the FCC. The 
conclusions of this study are as follows: 
1. The results show that the combustion distribution pattern is quite different among 

the piston bowl geometries. From the examined velocity profiles, the bowl depth and 
length affect the spatial distribution of fluid motions inside the cylinder, which 
causes high-turbulence motions around the chamber. 

2. The DSCC (swirl chamber) showed better combustion performance than the other 
chambers considering the better temperature and velocity distribution, as well as the 
high swirl ratio and low HRR. 

3. The SCC showed better combustion rates, velocity distribution, and HRR compared 
with the FCC and others, whereas the DTRCC showed poor temperature formation 
and rapid velocity distribution, which can lead to knocking. 

4. A high swirl ratio was observed during the suction stroke, and a high tumble ratio 
was observed during the combustion stroke, which increased the turbulence rates of 
the piston bowl geometries. 
It is noted that this paper concentrates on the characteristics and behaviour of cham-

ber modifications using simulation results, particularly examining the changes and im-
pact of chamber modifications on combustion. The DSCC has a groove structure that splits 
the injected fuel into the squish and bowl regions. As the DSCC provided better results, it 
is recommended to add groove structures to bowl chambers for better combustion. This 
study shows that fuel injection distribution impacts combustion rates. Furthermore, 

240 260 280 300 320 340 360 380 400 420 440 460

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sw
irl

 ra
tio

Crank angle (0CA)

 FCC  DTRCC  BTCC  DSCC  SBCC  SCC

Compression stroke Combustion stroke

Injection period

Figure 16. Variation of tumble ratios for different geometries with respect to crank angle.

4. Conclusions and Recommendations

This research paper provides the computational results of DSCC, DTRCC, BTCC,
SBCC and SCC geometries and their combustion analysis with respect to the FCC. The
conclusions of this study are as follows:

1. The results show that the combustion distribution pattern is quite different among
the piston bowl geometries. From the examined velocity profiles, the bowl depth and
length affect the spatial distribution of fluid motions inside the cylinder, which causes
high-turbulence motions around the chamber.

2. The DSCC (swirl chamber) showed better combustion performance than the other
chambers considering the better temperature and velocity distribution, as well as the
high swirl ratio and low HRR.
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3. The SCC showed better combustion rates, velocity distribution, and HRR compared
with the FCC and others, whereas the DTRCC showed poor temperature formation
and rapid velocity distribution, which can lead to knocking.

4. A high swirl ratio was observed during the suction stroke, and a high tumble ratio
was observed during the combustion stroke, which increased the turbulence rates of
the piston bowl geometries.

It is noted that this paper concentrates on the characteristics and behaviour of chamber
modifications using simulation results, particularly examining the changes and impact
of chamber modifications on combustion. The DSCC has a groove structure that splits
the injected fuel into the squish and bowl regions. As the DSCC provided better results,
it is recommended to add groove structures to bowl chambers for better combustion.
This study shows that fuel injection distribution impacts combustion rates. Furthermore,
injected spray plays a controlling role in causing combustion near bowl regions. Hence, one
should consider adjusting injection rates and spray patterns when optimising combustion
chambers. In addition, emission formation rates of modified chambers need to be tested to
examine the role of chamber modifications on emission formations.
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Nomenclature

AHRR Apparent heat release rate
BDC Bottom dead centre
BTCC Bathtub combustion chamber
CFD Computational fluid dynamics
DSCC Double swirl combustion chamber
DTRCC Double toroidal re-entrant combustion chamber
FCC Flat combustion chamber
HCC Hemispherical combustion chamber
SCC Shallow depth combustion chamber
SBCC Stepped bowl combustion chamber
TDC Top dead centre
TKE Turbulent kinetic energy
TRCC Toroidal re-entrant combustion chamber
LSCC Lateral swirl combustion chamber
LTC Low-temperature combustion
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