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Abstract: Lithofacies identification and classification are critical for characterizing the hydrocarbon
potential of unconventional resources. Although extensive applications of machine learning models
in predicting lithofacies have been applied to conventional reservoir systems, the effectiveness of
machine learning models in predicting clay-rich, lacustrine shale lithofacies has yet to be tackled.
Here, we apply machine learning models to conventional well log data to automatically identify
the shale lithofacies of Gulong Shale in the Songliao Basin. The shale lithofacies were classified
into six types based on total organic carbon and mineral composition data from core analysis and
geochemical logs. We compared the accuracy of Multilayer Perceptron (MLP), Support Vector
Machine (SVM), Extreme Gradient Boosting (XGBoost), and Random Forest models. We mitigated
the bias of imbalanced data by applying oversampling algorithms. Our results show that ensemble
methods (XGBoost and Random Forest) have a better performance in shale lithofacies identification
than the other models do, with accuracies of 0.868 and 0.884, respectively. The organic siliceous
shale proposed to have the best hydrocarbon potential in Gulong Shale can be identified with F1
scores of 0.853 by XGBoost and 0.877 by Random Forest. Our study suggests that ensemble machine
learning models can effectively identify the lithofacies of clay-rich shale from conventional well logs,
providing insight into the sweet spot prediction of unconventional reservoirs. Further improvements
in model performances can be achieved by adding domain knowledge and employing advanced well
log data.

Keywords: machine learning models; ensemble methods; XGBoost; random forest; shale lithofacies;
well log; Songliao basin; Gulong sag

1. Introduction

Lithofacies classification is essential for studying the paleoenvironment and paleogeog-
raphy of lacustrine and marine fine-grained sedimentary systems [1–6] and unconventional
oil and gas reservoirs [7–9]. The common approach to classifying shale lithofacies in sub-
surface stratigraphic succession relies on advanced geochemical well logs or laboratory
analyses of core samples. Total organic carbon (TOC) and mineral composition act as
two important components for classifying shale lithofacies of subsurface stratigraphic
succession [10–16] because they are closely linked to the hydrocarbon generation potential
and petrophysical properties of shale reservoirs [13,17,18]. However, geochemical logging
and coring are expensive and time consuming. Therefore, the studies of lithology, stacking
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patterns of lithofacies, and oil-bearing properties of subsurface shale reservoirs heavily rely
on conventional well log data.

Well logs have been widely used in lithofacies interpretation, facies modeling, and
reservoir characterization of stratigraphy formation because they can reflect the physical
properties of the subsurface strata and have less economic and time costs than core anal-
ysis does [19–24]. Well logging data generally incorporates various reservoir parameters
(such as lithology, depositional facies, porosity, permeability, and fluid contact) [20,25].
A standard lithofacies interpretation procedure requires geoscientists who are familiar
with geological settings to inspect multiple well logs simultaneously. This approach re-
lies heavily on human experience and is prone to individual bias. The heterogeneous
behavior of shale reservoirs also adds uncertainty to the interpretation processes [26]. As a
result, a more objective and human bias-free method is required to decode multivariable
information from well logs.

In recent decades, machine learning models have been increasingly explored for the
identification of lithofacies and reservoir characterization from well logs [27–35] and seismic
data [26,36]. The major advantage of machine learning algorithms is that they can handle
high-dimensional, nonlinear problems, such as quantitative lithofacies modeling in geo-
logical applications [25–27,37]. Although extensive studies of lithofacies prediction using
machine learning models have been applied in recent years, most studies have focused on
conventional reservoir systems [26–28,30–32,38] and only a few applications are performed
in shale reservoirs. Previous research has applied quantitative lithofacies modeling of
Marcellus and Bakken Shale of the United States using the artificial neural network (ANN),
Support Vector Machine (SVM), Self-Organizing Map (SOM), and Multi-Resolution Graph-
based Clustering (MRGC) [14,16]. These studies mainly work on the marine sedimentary
formation (e.g., Bakken and Marcellus Formations) with a mixed lithological component,
including quartz, feldspar, calcite, dolomite, and clay. The effectiveness of machine learning
models in predicting clay-rich, lacustrine shale lithofacies has yet to be tackled.

In this study, we investigate the performances of machine learning models in predict-
ing lacustrine shale lithofacies from conventional well logs. Well log and TOC data were
collected from eight wells from the Cretaceous Qingshankou Formation of Songliao Basin,
China. We labeled the lithofacies based on mineral composition and TOC data from core
analysis and elemental capture spectroscopy log (ECS). We consider four machine learning
models: SVM, Multilayer Perceptron (MLP), Extreme Gradient Boosting (XGBoost), and
Random Forest. The oversampling method was applied to the data to mitigate the effect of
class imbalance. Then, we trained the models on the training dataset and compared the
performances of the four classifiers in predicting shale lithofacies on the validation dataset.
The workflow of this study is shown in Figure 1. The results show that ensemble methods
(XGBoost and Random Forest) outperform the other classifiers, with the best prediction
given by Random Forest. Our findings suggest that machine learning models are effective
and reliable in identifying the lithofacies of clay-rich shale, such as Gulong Shale, and can
improve the efficiency of sweet spot appraisal and prediction of unconventional reservoirs.
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Figure 1. The flowchart illustrates the workflow of this study. Refer to the text for abbreviations of
well logs and models.

2. Geological Settings and Gulong Lithofacies

Songliao Basin, an intracratonic basin in north-eastern China, covers ~260,000 km2,
with a sizable sedimentary layer that is up to 6000 m thick and has been deposited since
the Cretaceous period [39–41]. Gulong Shale was named after its location, the Gulong
depression in the central area of Songliao Basin, occupying an area of ~3700 km2 (Figure 2).
In this study, Gulong Shale refers to the fine-grained sedimentary rocks of the upper
Cretaceous Qingshankou Formation.

The Qingshankou Formation was deposited during the post-thermal subsidence
stage [41,42] and has been one of the most important shale oil sources in China [10]. Its
stratigraphy is subdivided into three members (K2qn1–K2qn3) from bottom to top. Oil
shale succession is mainly preserved in the K2qn1 and K2qn2 members [10,43]. The first
member (K2qn1) is represented by semi-deep and deep lacustrine deposits of grey/black
and dark grey shale. It was developed during maximum lake expansion, with a thickness
of 60–120 m. The second member (K2qn2) developed semi-deep lacustrine facies domi-
nated by black and grey shale interlayered with thin siltstone and limestone. This study
investigates the lithofacies of members one and two (K2qn1 and K2qn2, respectively) of the
Qingshankou Formation.
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Figure 2. Geological Maps showing the study area (modified from Liu et al. 2019 [44]). (A) Location
of Songliao Basin. (B) Tectonic divisions of the Songliao Basin Central depression, with a shaded
area representing the central depression. The red square denotes the study area in Figure 2C. (C) The
1st-order structural boundary outlines the central depression, and the 2nd-order structural boundary
constraints Gulong Sag (shaded area); studied wells are shown in red circles.

Gulong Shale lithofacies has been classified based on TOC and XRD data from core
geochemical analysis [10–12,17]. The K2qn1 and K2qn2 members of the Qingshankou
Formation have TOC values ranging from 0.5% to 5.5%, with a mean of 1.9% and a clay
volume ranging from 10% to 55%, with an average of 40% [10,11]. Overall, the Gulong
Shale is rich in felsic components (quartz and feldspar) and clay minerals and is poor
in carbonates (calcite and dolomite) (Figure 3). In this study, we applied a quantitative
classification scheme based on TOC from laboratory examination and clay volume from
ECS log (Figure 4). TOC > 2% is the cutoff for organic-rich shale, 1% < TOC < 2% is the cutoff
for organic shale, and TOC < 1% is the cutoff for gray mudstone. Then, we subdivided
the lithofacies with a 35% threshold for clay volume. Six lithofacies are classified for
Gulong shale.

Organic-rich shale (ORS): This contains the highest organic matter (TOC ≥ 2%) and
clay contents (clay ≥ 35%) among the six lithofacies of Gulong shale. It takes up to 12%
of the total lithofacies. The well log characteristics are represented by high resistivity and
high GR values.

Organic-rich siliceous shale (ORSS): This has the highest organic matter (TOC ≥ 2%),
with clay contents of less than 35%. It holds the lowest proportion (5%) of the total
lithofacies. The log curves are generally shown to have high resistivity values and lower
GR values than ORS ones do.

Organic shale (OS): This is medium-rich in organic matters (1% ≤ TOC < 2%), with
high clay contents (clay ≥ 35%). It is the most abundant one (taking up to 32%) among
total lithofacies. The well log features exhibit medium-high resistivity values and high
GR values.
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Figure 4. Tree diagram showing the criteria for classifying Gulong Shale lithofacies.

Organic siliceous shale (OSS): This is medium-rich in organic matters (1% ≤ TOC < 2%),
with clay contents of less than 35%. It is the second most abundant lithofacies, accounting
for 29% of the total lithofacies. The log features are characterized by medium-high resistivity
values and a lower GR than that of OS.

Gray mudstone (GM): This is poor in organic matter (TOC < 1%), but rich in clay
contents (clay ≥ 35%). It takes up to 9% of the total lithofacies. The well log characteristics
are represented by low resistivity and high GR values.

Gray siliceous mudstone (GSM): This is poor in organic matter, (TOC < 1%) with clay
contents of less than 35%, represented by lower resistivity and GR values than those of the
other lithofacies on the log curves. It accounts for 13% of the total lithofacies.

Overall, ORSS lithofacies (TOC≥ 2% and clay < 35%) are relatively rare in the datasets.
In contrast, OS (1%≤ TOC < 2% and clay≥ 35%) and OSS (1%≤ TOC < 2% and clay < 35%)
are most abundant ones. Classified lithofacies were calibrated with core-based ground
truth information.
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3. Materials and Methods
3.1. Selection of Well Logs

In this study, we chose seven conventional well logs (Figures 5 and 6), including
compensated neutron log (CNL), caliper log (CAL), density log (DEN), acoustic log (DT),
gamma-ray log (GR), shallow laterolog resistivity log (LLS), and deep laterolog resistivity
log (LLD), for lithofacies modeling. Well log data were collected from eight wells with a
total thickness of 3426 m. The correlation between each two well logs was investigated by
cross-plotting (Figure 5). The petrophysical properties of the well logs are as follows.
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gray siliceous mudstone (GSM). Refer to the text for abbreviations of well logs.
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training wells. Shale lithofacies were classified using elemental capture spectroscopy logs (ECS) and
measured TOC data. See the text for abbreviations of lithofacies and well logs.
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CNL log: This measures hydrogen concentration in a formation and operates by
bombarding the formation with high-energy neutrons. Hydrogen may present as water or
hydrocarbon in the pore spaces of reservoir rocks. As a result, the neutron energy loss can
be associated with the porosity of a formation.

CAL log: this measures the size and shape of a borehole and can be an important
indicator of shale swelling, washouts, and cave-ins in the boreholes.

DEN log: This compares the radiation sent from a Gamma source to those that are
scattered back. It provides a formation’s bulk density consisting of rock density and fluid
density contained in the pore spaces.

DT log: This measures the transit time of compressional sound waves to travel through
the formation. It reflects lithological properties and is mainly used to calibrate seismic data
and derive the density of a formation.

GR log: This measures the naturally occurring radiation of borehole rocks from
potassium, thorium, and uranium isotopes. Clay has a high concentration of these isotopes,
and thus can be distinguished by the Gamma log. The primary application of the Gamma
log includes determining lithology, estimating shale content, and correlating the core with
the logged depth.

Resistivity log: This measures the resistivities of subsurface formations, which de-
pends on the resistivity of the formation water. It is a key parameter in determining the
hydrocarbon saturation, water saturation, and porosity of a formation.

3.2. Well Log Data Processing

Data processing is requisite for training machine learning models. We selected oil-
bearing layers of 8 wells to ensure all the data reflect the same geofluid conditions. Then,
we cleaned the well log data by removing the invalid and missing values. Because different
well logs have different magnitudes of values, all the data should be normalized to achieve
similar magnitude and bias. The normalization scheme is as follows:

µ =
1
n

n

∑
i=1

xi (1)

σ =

√
1

n− 1

n

∑
i=1

(xi − µ)2 (2)

x′i =
xi − µ

σ
(3)

where n is the number of samples; µ and σ are the mean and sample standard deviation of
the samples; x′i is the normalized value of xi. After normalization, all types of well log data
have a mean value of 0 and a standard deviation of 1.

3.3. Machine Learning Models

Machine learning has gained popularity in the last two decades in academic and in-
dustrial communities thanks to the rapid development of computing capabilities, especially
in the GPU [45,46]. It is widely used in natural language processing, computer vision, and
prediction tasks. Lithofacies prediction, in this study, utilized supervised learning, which
generates prediction models based on training applied to labeled data. Each data point
consists of a mapping between a feature vector and its labels, in other words, the desired
output. Supervised learning algorithms infer parameters of artificial functions from the
training data so that the realization of the cost function is minimized. With the inferred
parameters, a model can be constructed to predict the output of new samples.

3.3.1. Multilayer Perceptron (MLP)

The MLP is a class of artificial neural networks with adjacent layers that are fully
connected [47]. An MLP generally consists of three components: input layers, hidden layers,
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and output layers, where adjacent layers are connected by matrix multiplication (linear
transformation) and nonlinear activation functions (Figure 7). The input layers retrieve the
feature vectors from the dataset, and then send them to the hidden layers located between
the input and output layers. In each hidden layer, the input data are applied with weights
(affine transformation) and directed through a nonlinear transformation where the outputs
are generated and sent to the next layers. The output size must be the same as the size of
the next layer. The output layers are the last section of the feedforward process, where the
prediction is obtained.
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The value of the node is given by:

y = σ(w·x + b) (4)

where σ represents the nonlinear activation function, w represents the weight of the layer,
x represents the previous layer’s output, and b represents the bias.

The backpropagation algorithm is the most widely used method to train an MLP
model. The basic idea of backpropagation is to repeatedly adjust the weights of the layers
to minimize a measure of the difference between the actual output vector and the desired
output vector (cost functions). To determine the direction and magnitude of adjustments on
weights, gradients of the cost function of parameters are computed with chain rules. Then,
for each batch of data points in the training data sets, gradients are calculated and applied
with the learning rate to the original weights, resulting in updated weights. By feeding the
batches and executing the process iteratively, the cost function can be minimized such that
the model will function well in the prediction task.

3.3.2. Support Vector Machine (SVM)

The SVM is a class of supervised learning algorithms that finds the optimal hyperplane
or a set of hyperplanes that separate the data points in the high-dimensional feature space
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into different classes [48,49]. The best hyperplane is determined by the criteria that its
distance from it to the nearest data point on each side is maximized (Figure 8).
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Given n data points of { (xi, yi)|i = 1 . . . n }, where xi are the feature vectors and
yi ∈ {−1, 1} are the labels of the data points, a hyperplane can be written as wTx− b = 0,
where w is the normal vector to the hyperplane. Suppose the set of data points is lin-
early separable. In that case, two parallel hyperplanes can be selected such that data
points with each class fall into different regions determined by the opposite sides of the
two hyperplanes. Without the loss of generality, the two hyperplanes can be written as

wTx− b = 1 (5)

and
wTx− b = −1 (6)

Their distance is 2
‖w‖ . The SVM aims to find the pair of parallel hyperplanes such that

the distance between them is maximized.
The task of finding such hyperplanes can be formulated as a quadratic optimization problem:

Minimize ‖w‖2
2

Subject to: yi
(
wTxi − b

)
≥ 1, ∀i ∈ {1, . . . , n}

where ‖w‖2 is the L2 norm of w.
The formulation above assumes that the data points are linearly separable. However,

in many datasets, the data points are not linearly separable, but can be separated by a
nonlinear bound. To use SVM on these datasets, one can transform the feature space with
a nonlinear kernel function such that the linear classifier SVM can potentially be applied
to the transformed data points. Common kernels include the polynomial function (poly),
Gaussian radial basis function (RBF), and sigmoid function.

3.3.3. Random Forest

Random Forest is an ensemble learning algorithm that constructs several decision trees
and outputs the class that owns the majority vote of the trees [50]. It is an extension of the
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bootstrap aggregation algorithm. Unfortunately, the simple decision tree algorithm often
overfits when the tree has grown very deep and learns irregular patterns. To overcome
this shortcoming, the Random Forest combines the predictions from the trained trees with
various subsets of the data so that the trees cancel out the irregular patterns.

The Random Forest algorithm begins with random sampling with replacement from
the dataset and randomly selecting a subset of features. The randomness of the samples
lowers the correlation between the trees and decreases the variance of the model, which
helps to mitigate the overfitting effect. For the details of training a decision tree, the reader
can refer to [51]. For IEEE transactions on systems, man, and cybernetics, see [51]. Next,
each sample is used to train an individual decision tree. After training, a prediction can be
made by selecting the majority vote of the decision trees given the same input.

3.3.4. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) implements a gradient-boosting algorithm be-
longing to the ensemble learning family [52]. This implementation improves the efficiency
and scalability more compared to that of the original gradient boosting algorithm. A gradi-
ent boosting algorithm accumulates weak learners, where they are generated sequentially
based on the previous one, and finally, produces a strong learner. The weak learner is
generated based on the residual of the previous learner, which is the difference between
the actual and predicted values. As the boosting process continues, it gradually adjusts
the model to improve its performance. In the optimization process of XGBoost, the second-
order Taylor expansion is used to speed the convergence in the gradient descent. XGBoost
also introduces regularization terms and shrinkage to control overfitting.

The gradient boosting iteration used in the XGBoost algorithm can be briefly illustrated
as follows:

Fm(X) = Fm−1(X) + αmhm(X, rm−1)

where Fm is the prediction model at the mth stage and rm−1 is the computed residual of
at the previous stage. hm is a function that is trained to predict the residual rm. αm is the
regularization parameter, which is computed by argmin

α
∑m

i=1 L(Yi, Fi−1(Xi) + αhi(xi, ri−1),

where L(Y, F(X)) is a differentiable convex loss function for the residuals. In each iteration,
a new tree that predicts the residuals of the prior trees is added to the model to make an
updated prediction, and the loss functions for residuals are optimized with the gradient
descent method. With the iterations continuing, the residuals can be compensated by the
new tree iteratively.

3.3.5. Data Resampling, Tuning Processes, and Prediction Evaluation

In many circumstances, the training or test data sets are imbalanced, where the
numbers of data points in each class are highly discrepant. The training process of the
machine learning algorithms may suffer from an imbalance such that the decision function
favors the classes with a great number of samples. To mitigate this issue, data resampling
algorithms are developed and applied to data sets to reduce the impact caused by the
imbalance. One widely used technique called oversampling is used to create synthetic data
points for the classes with smaller sample sizes so that the numbers of samples in each
class are balanced. There are two major algorithms for oversampling, Synthetic Minority
Oversampling Technique (SMOTE) [53] and Adaptive Synthetic (ADASYN) [54]. Both
algorithms were applied to the datasets before the training process. The performance of the
two oversampling methods is reported later and compared with the result of the untreated
data set.

In each machine learning model, several parameters define the architecture of models
and the behavior of algorithms, which influences performance and efficiency. These
parameters are called hyperparameters. Finding optimal values of the hyperparameters
is the key to creating a useful model, where the optimal values may differ in different
problems. Hyperparameter tuning is an exploration process that systematically searches the
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parameter space for a good setting. A naïve, but widely used, approach is the grid search,
where the Cartesian product of all the candidates is explored. We used this approach to
determine the optimal hyperparameter settings. The determined optimal hyperparameters
were used in machine learning models for predicting Gulong Shale lithofacies.

There are several performance metrics to evaluate the classification model. These
metrics include accuracy, precision, recall, and F1 score, defined as the following equations.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2TP

2TP + FP + FN
(10)

TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively. Accuracy is the proportion of true results among the total examined
samples. Precision is the proportion of predicted positive that is truly positive. The recall is
the proportion of the correctly classified samples in the designated class. The F1 score is
the harmonic mean of precision and recall, which measures the comprehensive goodness
of the two metrics. All four metrics range from 0 to 1.

3.4. Overfitting and Cross-Validation

Overfitting may occur in the training process of supervised learning and needs to be
prevented. An overfitted model fits well against the training data, but poorly against unseen
data. As a result, the model lacks generalization capability and may fail to make reliable
predictions on future observations. Early stopping, pruning, regularization, ensembling,
and data augmentation are common approaches to prevent overfitting. In this study, we
added regularization terms to the cost functions of SVM, Random Forest, and XGBoost
algorithms and applied a 0.2 dropout rate to MLP to reduce the influence of overfitting.

K-fold cross-validation is widely used to detect overfitting. The dataset is shuffled and
split evenly into k subsets called folds. The training process consists of a series of iterations.
In each iteration, one fold is selected as the validation set, and the model is trained with
the remaining k − 1 folds as the training set. The model is then evaluated and scored on
the selected validation. The iterations repeat until all k folds have been selected as the
validation set. The scores of all the iterations are averaged to illustrate the performance of
the model. In our study, we used 5-fold cross-validation to obtain the assessment of the
prediction models. In each iteration, precision, recall, and F1 score are calculated. They
were averaged after all the iterations had been completed.

4. Results

All four machine learning algorithms were trained and tested using eight well logs.
The hyperparameters were fine-tuned for each machine learning algorithm. Table 1 sum-
marizes the tuning parameters, candidate values, and corresponding optimal values. All
the trained models were evaluated on the test dataset for performance evaluation. The
evaluation metrics include accuracy, precision, recall, and the F1 score. We tested SMOTE
and ADASYN to select the better oversampling algorithm to be used for the data imbal-
ance treatment. The comparison of performances of oversampling algorithms is shown
in Table 2.
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Table 1. Tuning parameters, candidates, and optimal values of each machine learning models.

Algorithms Parameters Candidates Optimal Value

MLP
Number of hidden layers 1, 2 2
Number of neurons in a hidden layer 10, 20, 50, 100 100

SVM
Kernel Polynomial, Sigmoid, RBF RBF
Regularization 0.1, 1, 10 10
Gamma 0.0001, 0.001, 0.1 0.1

XGBoost
Learning rate 0.01, 0.02, 0.05, 0.1 0.1
Maximum child weight 1, 3, 5, 7 1
Maximum tree depth 7, 9, 12, 15 15

Random Forest
Minimum samples split 2, 4, 7, 10 2
Minimum samples leaf 1, 2, 5, 10, 20 1
Maximum tree depth 5, 10, 15, 20 20

Table 2. Comparison of the performances of oversampling algorithms.

Oversampling Algorithms SVM MLP XGBoost Random Forest

No sampling 0.708 0.810 0.845 0.875
SMOTE 0.723 0.809 0.868 0.884
ADASYN 0.693 0.794 0.853 0.870

4.1. Tuning Parameters

Table 1 summarizes the hyperparameters that were tuned, the candidate values, and
the corresponding optimal values. The MLP performance depends on the number of
hidden layers and neurons in hidden layers. Increasing the numbers of hidden layers and
neurons improved the MLP performance. However, it takes more time and memory in the
training process. The SVM algorithm achieves optimal performance using the RBF kernel
function. Greater regularization and Gamma parameters also boosted the performance
of SVM in our case. In the ensemble methods of XGBoost and Random Forest, deeper
trees lead to better model performances with the cost of a longer training time and more
memory utilization.

4.2. The Effect of Resampling on Imbalanced Datasets

The distribution of the Gulong Shale lithofacies is highly imbalanced (Figure 9). For
example, the smallest class, ORSS, is about 5%, while the largest class, OS, takes up over
30%. To alleviate the prediction bias caused by imbalanced datasets, SMOTE and ADASYN
oversampling methods were applied in the test run. As shown in Table 2, the ADASYN
algorithm shows a slight improvement in the accuracy of the XGBoost model, but lower
accuracies for SVM, MLP, and Random forest. The SMOTE algorithm shows slightly higher
accuracy than the datasets without treatment do of up to 0.023. Since SMOTE was more
effective in improving models’ performances, we used SMOTE for the data imbalance
treatment before training.

4.3. Performances of Machine Learning Models

The performance matrix of SVM, MLP, XGBoost, and Random Forest is reported in
Table 3. Overall, the two ensembled algorithms achieve significantly better results than
SVM and MLP did. The Random Forest one shows superior performance among the
four models, with an accuracy, precision, recall, and F1 scores on the test datasets of 0.884,
0.859, 0.874, and 0.866, respectively. Similar results are performed by XGBoost (0.868, 0.847,
0.855, and 0.851, respectively), which are better than those of the MLP model (0.809, 0.785,
0.809, and 0.794, respectively). The performance of SVM is poorer than those of the other
three algorithms (0.723, 0.691, 0.732, and 0.704, respectively).
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Table 3. Precision, recall and F1-scores for 5-fold-cross-validation over machine learning models.

SVM MLP XGBoost Random Forest

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

ORS 0.808 0.777 0.792 0.871 0.857 0.864 0.923 0.925 0.924 0.932 0.920 0.926
ORSS 0.456 0.751 0.568 0.601 0.762 0.672 0.731 0.745 0.738 0.716 0.801 0.756
OS 0.793 0.750 0.771 0.850 0.819 0.835 0.904 0.887 0.895 0.917 0.909 0.913
OSS 0.746 0.663 0.702 0.798 0.778 0.788 0.858 0.847 0.853 0.894 0.861 0.877
GM 0.633 0.790 0.703 0.742 0.859 0.796 0.848 0.879 0.863 0.879 0.860 0.870
GSM 0.712 0.660 0.685 0.847 0.779 0.812 0.821 0.848 0.834 0.817 0.892 0.853
Average 0.691 0.732 0.704 0.785 0.809 0.794 0.847 0.855 0.851 0.859 0.874 0.866

The confusion matrices of the four models are shown in Figure 10. ORS yields the
highest precision among six lithofacies, with the best prediction of 0.932 performed by
Random Forest. ORSS has the worst precisions, which are often mistakenly predicted as
ORS, OS, or OSS ones. In the results of two ensembled models, the precisions of all the
classes are above 0.8, except for ORSS.
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5. Discussion
5.1. Comparison of the Performances of Machine Learning Models in Shale Lithofacies Prediction
from Well Logs

The performances of ensemble methods (Random Forest and XGBoost) surpass those
of MLP and SVM, with the highest accuracy of 0.884 predicted by Random Forest (Figure 10).
SVM shows the lowest accuracy among the four models, with an accuracy of 0.723. For
the Random Forest and XGBoost models, clay-rich lithofacies (ORS, OR, and GM) show
a higher rate of accurate prediction than siliceous-rich lithofacies (ORSS, OSS, and GSM).
This indicates that clay content is an important factor influencing the accuracy of lithofacies
prediction from well logs. More than 80% of ORS can be predicted accurately in all
four models, indicating that shale with high TOC and high clay contents has distinct
features in the well log data, which makes it easier to be differentiated from other lithofacies.
The lower rate of accurate prediction on ORSS may result from its feature that is not
significant enough against ORS, OS, and OSS.

A test well is used to evaluate the generalization capability of the models. We used
the random forest model, which has the best performance in our study, to predict the
lithofacies along the depth of the test well. The comparison between the ground truth and
predicted lithofacies is illustrated in Figure 11, and the performance matrix is reported in
Table 4. The accuracy of the random forest model on the test well is 0.867, indicating a great
generalization performance. An interesting observation is that the prediction performance
is significantly better on OSS, GM, and GSM.

Table 4. Precision, recall, and F1-score of Random forest model on a test well.

Precision Recall F1-Score

ORS 0.847 0.835 0.841
ORSS 0.721 0.844 0.778

OS 0.836 0.835 0.835
OSS 0.917 0.89 0.903
GM 0.934 0.87 0.901

GSM 0.943 0.916 0.929
Average 0.866 0.865 0.865
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In this study, the poorer performance of SVM than that of MLP is different from the
observation of the Bakken and Marcellus Shale in the U.S., suggesting that the SVM algo-
rithm outperforms ANN, SOM, and MRGC in lithofacies identification, with an accuracy
of 0.825 [16]. This discrepancy is likely to be caused by the differences in shale mineralogy.
Bakken and Marcellus Formations deposit marine, organic-rich (average TOC of 15%)
shale [14,16,55]. The mineral composition is highly heterogenous, with average contents
of quartz, clay, and carbonates of over 35%, 30%, and 25%, respectively. However, the
Gulong Shale of the Qingshankou Formation is rich in quartz and clay (average of 60–75%)
and poor in carbonate contents (average of 7%) [11,12]. The lithological composition of
Gulong Shale is more homogenous than those of Bakken and Marcellus Shale. Hence,
the variety of mineral compositions may affect the classifiers’ performance. A thorough
analysis of the shale mineralogy would benefit the selection of classifiers for automated
lithofacies prediction.

5.2. Prediction of Sweet Spots Based on Lithofacies Analysis

This study shows that ensemble machine learning models (Random Forest and XG-
Boost) are effective in identifying shale lithofacies from well logs, which can benefit the
sweet spot prediction of shale reservoirs. The sedimentological, geochemical, and CT
scanning studies have investigated the oil-bearing properties and favorable lithofacies
of the Gulong Shale [10,11,18]. Among the six lithofacies classified in this study, organic
siliceous shale has higher hydrocarbon generation potential and well-developed pore space,
with macro-pores taking up to 21–48% of it [10]. The organic-rich shale and organic shale
contain a relatively high TOC, but the pores are small and mostly isolated due to their
high clay content. On the other hand, gray mudstone and siliceous mudstone have well-
developed pores, but their hydrocarbon generation potential is low. Thus, organic siliceous
shale is favorable lithofacies for the Gulong Shale of the Qingshankou Formation. The
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prediction accuracy of organic siliceous shale is 0.884 by Random Forest models, indicating
that the machine learning model is capable of providing fast and efficient identification to
favorable shale lithofacies of non-cored stratigraphy succession, and thus, benefit sweet
spot prediction.

5.3. Future Works of Machine Learning Models for Lithofacies Prediction

The ensemble machine learning models in this study show advantages in predicting
lithofacies and sweet spots of unconventional reservoirs with a high accuracy and low
economic cost. However, more works are necessary to improve the model architecture.
In this study, ORSS is often identified as ORS and OS, indicating that the current features
from well logs are not sufficient at differentiating ORSS from other lithofacies. More input
features are required to improve the model’s performance. Further improvements can be
made from two aspects: adding domain knowledge and employing advanced well log
data. Each type of depositional system has its unique lithological and lithofacies patterns.
For example, a channel deposit of a fluvial system is characterized by an upward fining
trend in grain size; a mouth bar of a deltaic system shows an upward coarsening pattern
in the lithological column. Machine learning studies of fluvial lithofacies prediction have
shown that the model accuracy increases by considering the vertical combination patterns
of the lithology [30,56]. Hence, if some features of stacking patterns of shale lithofacies are
added to models, the accuracy can be further improved. In addition to incorporate domain
knowledge in the model, advanced well logs can bring additional geological information
to enhance the prediction result. In shale reservoirs, the pores are generally rare, and the
pore sizes are small, making conventional well logs difficult to provide accurate porosity
estimations. As a result, nuclear magnetic resonance (NMR) logging has been increasingly
embraced for its advantages in directly measuring porosity. Porosity-related parameters
such as laminations and fractures implied by NMR logs can provide additional features
for training models and potentially improve the performance. Other advanced well logs,
such as borehole image logs providing structural and fracture analyses, may yield extra
knowledge for lithofacies identification.

6. Conclusions

In this study, we examined the effectiveness of machine learning models in predicting
clay-rich shale lithofacies from conventional well logs. We collected well log and TOC
data from the Gulong Shale of the Qingshankou Formation in the Songliao Basin, China.
ECS logs and TOC data were used to classify the Gulong Shale lithofacies into six groups.
Four machine learning models (MLP, SVM, Random Forest, and XGBoost) were trained to
identify the shale lithofacies from conventional well logs. Our major findings are as follows:

1. Ensemble models (Random Forest and XGBoost) yield a better performance than the
other models do for shale lithofacies identification. Random Forest conducts the best
prediction with an accuracy of 0.884, precision of 0.859, recall of 0.874, and F1 score
of 0.866.

2. The differences in the models’ performances in predicting Gulong Shale and Bakken
and Marcellus Shale in the previous studies may be due to the different mineral com-
positions. Our findings show that ensemble methods (Random Forest and XGBoost
algorithms) are more suitable for classifying homogenous, clay-rich lithofacies such
as Gulong Shale than the other models are.

3. The performance of machine learning models on lithofacies prediction of shale
can be associated with mineral composition. Understanding the characteristics of
shale mineralogy is critical for choosing the appropriate classifiers for automated
lithofacies prediction.

4. Machine learning models have a large potential for identifying shale lithofacies of
non-cored stratigraphic succession and predicting sweet spots of unconventional
reservoirs. Further improvements in model performances can be achieved by adding
domain knowledge and employing advanced well log data.



Energies 2023, 16, 2581 17 of 19

Author Contributions: Conceptualization, M.H.; methodology M.H.; software, M.H. and Y.L. (Yihuai
Lou); validation, M.H. and Y.X.; formal analysis, M.H.; investigation, M.H.; resources, Y.X. and Z.L.;
data curation, Z.Y.; writing—original draft preparation, M.H.; writing—review and editing, Y.L.
(Yuming Liu); visualization, M.H.; supervision, Z.Y.; project administration, Y.X. and Z.L.; funding
acquisition, Y.L. (Yuming Liu) and Z.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (grants
no. 42172154 and no. U22B2075).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CNL Compensated neutron log
CAL Caliper log
DEN Density log
DT Acoustic log
GR Gamma-ray log
LLS Shallow laterolog resistivity log
LLD Deep laterolog resistivity log
K2qn1 The first member of the Qingshankou Formation
K2qn2 The second member of the Qingshankou Formation
K2qn3 The third member of the Qingshankou Formation
ORS organic-rich shale
ORSS organic-rich siliceous shale
OS organic shale
OSS organic siliceous shale
GM gray mudstone
GSM gray siliceous mudstone
MP Multilayer Perceptron
SVM Support vector machine
XGBoost Extreme gradient boosting
SMOTE Synthetic Minority Oversampling Technique
ADASYN Adaptive Synthetic
TP True positive
TN True negative
FP False positive
FN False negative
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