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Abstract: To achieve high efficiency and low degradation of a polymer electrolyte fuel cell (PEMFC),
it is necessary to maintain an appropriate level of humidification in the fuel cell membrane. Thus,
membrane humidifiers are typically used in PEMFC systems. Parameter studies are important to
evaluate membrane humidifiers under various operating conditions to reduce the amount of physical
tests. However, simulative studies are computationally expensive when using detailed models.
To reduce the computational cost, surrogate models are set up. In our study, a 3D computational
fluid dynamics (CFD) model of a hollow fibre membrane humidifier is presented and validated
using measurement data. Based on the results of the validated CFD model, a surrogate model of
the humidifier is constructed using proper orthogonal decomposition (POD) in combination with
different interpolation methods. To evaluate the surrogate models, their results are compared against
reference solutions from the CFD model. Our results show that a Halton design combined with a
thin-plate-spline interpolation results in the most accurate surrogate humidifier model. Its normalised
mean absolute error for 18 test points when predicting the water mass fraction in the membrane
humidifier is 0.58%. Furthermore, it is demonstrated that the solutions of the POD model can be used
to initialise CFD calculations and thus accelerate the calculation of steady state CFD solutions.

Keywords: mass transfer; membrane humidifier; surrogate model; POD; experiment; CFD

1. Introduction

Polymer electrolyte fuel cells (PEMFCs) are considered to be a zero emission drive train
solution for vehicles that can replace the currently used internal combustion engines [1–3].
The current state of research on PEMFCs has been outlined in various recent articles [1,4,5].
One major research area is the water management of PEMFCs [4,6,7]. Our study focuses on
a membrane humidifier, which is an important component for the water management of
PEMFCs. The purpose of using a membrane humidifier is to ensure sufficient humidifica-
tion of the proton-exchange membrane (PEM) used in the PEM fuel cell. The humidification
of the membrane is indirectly achieved via humidification of the supplied air. In general,
the humidification of the PEM is important to reach a high efficiency and service lifetime
of the fuel cell, as shown by [7–9]. The water used for the humidification is produced
by the electrochemical reaction of hydrogen and oxygen in the PEM fuel. The produced
water is carried out of the fuel cell by the air flow at the cathode. This wet air flow enters
the so-called wet side of the humidifier. Inside the membrane humidifier, the entering
water is partially transferred from the wet air flow to the dry supply air flow through the
humidifier membrane. This membrane is the key component of the humidifier, which is
highly permeable to water vapour but poses a resistance to the transport of other gases. In
the literature, mainly two types of membrane humidifiers for PEM fuel cell systems are
investigated and discussed: hollow fibre and flat membrane modules. Park et al. [10] and
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Vu et al. [11] analyse the water transfer of hollow fibre humidifiers experimentally. Further-
more, water transfer in flat membrane humidifiers is studied experimentally by [12,13]. In
most cases, experimental work is complemented by modelling and simulation to analyse
humidifiers under different operating conditions. Such simulation studies with varying
parameter combinations have been carried out by [10,14–16], among others. An overview
of the application of CFD models and simulations in the field of membrane technology can
be found in [17]. CFD models of flat membrane humidifiers are set up and investigated in
different studies and are shown to be an accurate tool to investigate the water transfer in
membrane humidifiers [15,16,18,19]. Schmitz et al. present a 3D CFD model of a hollow
fibre humidifier to analyse the sorption behaviour and the water transport in membrane
humidifiers and validate the model with measurement data [20]. Even though only a
small part of the flow domain is modelled for the CFD analysis, good agreement with
measurement data is achieved [20], which motivates our approach to used a downscaled
model. Another 3D CFD model of a hollow fibre membrane module was set up to analyse
a gas separation process [21]. This model was successfully employed to analyse local
concentrations and to optimise the efficiency of separation [21]. In summary, the potential
of using CFD simulations to investigate humidifiers is well documented in the literature.
Our study aims to set up a 3D CFD model of a hollow fibre humidifier that allows us
to investigate the effect of parameter variations on water transfer and distribution in a
membrane humidifier that has not yet been investigated in the literature to the authors’
knowledge. The parameter variation focuses on the operating conditions applied at the
inlets of the humidifier, namely the air mass flow rates, the operating temperature and
pressure and the amount of water available at the wet stream inlet. The parameters are
listed in the vector ζ:

ζoperation =


ṁair,in

Tin
YH2O,wet,in

pout

 (1)

Although the developed CFD model is derived from [16] and is built upon physical knowl-
edge, some parameters of the model, especially of the membrane, are unknown and need to
be identified using measurements. Therefore, measurements were conducted on a custom
tailored test stand and are used for parameter calibration of the membrane model. Another
measurement data set is used in the following to validate the calibrated CFD model.

A remaining challenge when making use of excessive simulation studies with 3D CFD
models is that many high-fidelity models are time consuming to solve and require large
amounts of computational resources [22]. To overcome this issue, surrogate models can
be used, yielding a sufficient accuracy while significantly reducing computational cost
with respect to time as well as hardware. In the field of aerodynamic research, the use of
surrogate models based on proper orthogonal decomposition (POD) is well established,
and many publications are available. An overview can be found in [22–24]. In addition,
POD-based surrogate models have been successfully applied to the analysis of energy
converters [25,26]. Bai et al. [25] show that POD in combination with regression splines
leads to an accurate model of a PEM fuel cell. Those results motivate the transfer of the
method to the humidifier. The current paper is focused on the application of POD as a
dimensionality reductions technique in combination with an interpolation model (POD+I)
to accelerate parameter studies for steady-state results. For this method, simulation results
at different operation conditions are calculated using the CFD model. Thereon, the CFD
results are stored in a matrix and POD is applied to it, yielding a set of POD modes
and coefficients. The POD coefficients are a function of the parameter combinations, as
shown by [23]. This relationship between the parameter vector given in Equation (1) and
POD coefficients can be captured with an interpolation or regression model [23]. Using
this interpolation or regression model, the POD coefficients for an untried parameter
combination, i.e., a combination not included in the training data for the surrogate model,
can be obtained [23]. A more detailed explanation of the used methods are given in
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Section 3. One clear advantage of the investigated POD methods compared to scalar
surrogate models is that a 3D solution at untried parameter combinations is acquired, which
provides information about the field data and can additionally be used to calculate scalar
quantities [22]. The creation of a surrogate model using POD+I requires computational
time and resources for calculating solutions of the high-fidelity model, also called full-order
model. Those high-fidelity results serve as information upon which the reduced order
model is built and should therefore contain as much information about the problem to
be solved as possible. To keep this upfront investment to a minimum, the parameter
combinations that are investigated by the high-fidelity model are chosen using design of
computer experiments (DoCE) methods. In summary, the aims of our study are:

1. To build a CFD model representing the hollow fibre membrane humidifier and to
validate by experimental data.

2. To apply the method of POD+I to the hollow fibre membrane humidifier.
3. To examine if POD+I is a suitable tool to accelerate parameter studies for such mass

exchangers.
4. To identify the most suited DoCE to build the surrogate model upon.
5. To find a suited interpolation method to be used by the POD+I model.

To the best knowledge of the authors, POD+I methods have never been applied to
membrane mass exchangers. Therefore, the potentials of the aforementioned methods are
analysed in the present study.

2. Test Stand and Investigated Hollow Fibre Membrane Humidifier
2.1. Description of the Hollow Fibre Membrane Humidifier

A sketch of a hollow humidifier geometry is schematically depicted in Figure 1. In the
sketched geometry, a small number of 12 fibres is depicted to clearly highlight the features
and flow situation. A similar geometry is used in the CFD simulations in Section 4. As
shown in Figure 1, the wet and dry air streams are in a counterflow arrangement to achieve
high vapour transfer rates. As seen in Figure 1, the wet air stream is fed to the fibres,
whereas the dry stream flows through the shell. As a result of the manufacturing process,
the fibres are placed randomly inside the shell; therefore, the water transfer behaviour is
expected to be inhomogeneous. The correlation of fibre placement and water distribution
is investigated in the CFD results. A potting technique is used at both ends of the fibres to
separate the wet and dry sides of the humidifier.

dH lF

dF,o

dF,i

Dry InletDry Outlet

W
e
t 

O
u
tl

e
t

W
e
t 

In
le

t

Potting

A

A - A

A

B

Detail B

Figure 1. Schematic drawing of the modelled hollow fibre humidifier. The fibres are marked in light
grey and the shell side with white background. The flow is arranged in counterflow, as seen in cut
view A-A. A detailed view of the fibre is given in B.

The humidifier investigated in the experimental studies is commercially available
from the company Fumatech [27]. It is designed to be used in combination with a PEM fuel
cell, offering an electrical power output of about 700 W rated at an air flow of 50 sLPM.
A total of 488 hollow fibres are placed randomly into the housing. The hollow fibre
membranes are made of an undisclosed polymer composite consisting of Polyimide and
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Polysulfone; therefore, the permeation properties of the membrane are unknown. The
relevant geometrical data of the fibres and the housing are given in Table 1.

Table 1. Measured geometric parameters of the hollow fibre membrane humidifier.

Quantity Symbol Unit Value

Number of fibres nF 1 488
Fibre outer diameter dF,o mm 1
Fibre inner diameter dF,i mm 0.9
Fibre length lF mm 150.8
Housing inner diameter dH mm 39.2
Packing density φ m2

mem/m3 1257

The packing density of the module is calculated by the following equation:

φ =
Amem

VH
=

nFπ(dF,o)lF

π(dH/2)2lF
(2)

This quantity describes how much transfer area is theoretically available for a mass transfer
in a given volume and can often be found in the literature.

2.2. Description of the Test Stand

The purpose of the test stand is to investigate the mass transfer capabilities of mem-
brane humidifiers at various operating conditions typical for a PEM fuel cell system. The
operating conditions that can be varied and investigated using the test stand are:

• mass flow rates of both, dry and wet, streams;
• temperatures of both, dry and wet, streams;
• pressures of both, dry and wet, streams;
• relative humidity of the wet stream.

The water transfer can be calculated based on sensor values of the dry side:

ṁH2O,dry,meas = ṁair,dry,outYH2O,dry,out − ṁair,dry,inYH2O,dry,in (3)

and on the sensors used on the wet side:

ṁH2O,wet,meas = ṁair,wet,inYH2O,wet,in − ṁair,wet,outYH2O,wet,out (4)

A steady-state operating point is only considered valid when both results agree with a
tolerance of 5%. For the comparison with the simulations, both results are averaged.

A P&ID of the humidifier test stand is depicted in Figure 2. All relevant sensors used
in the test rig are listed in Table 2. Additionally, the uncertainties of the sensors specified
by the manufactures are given in Table 2. The presented uncertainties are used to calculate
the error propagation used in the validation process in Section 4.1.

Table 2. Sensors used in the humidifier test stand and their specified measurement uncertainties.

Sensor Measured Quantity Output Unit Uncertainty

Vaisala HMT-337 Humidity % ±(1.5 + 0.015ϕ)
Omega FMA-1609A Mass flow rate g/s ±(0.008ṁ + 0.00204)
Omega PXM459 Differential pressure Pa ±56
WIKA P-30 Pressure bar ±0.068
WIKA TR-40 Temperature K ±0.15 + 0.002 ∗ (T − 273.15)
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Figure 2. Piping and instrumentation diagram of the test stand used to investigate the water transport
in the hollow fibre membrane humidifier at various inlet conditions. Flow (F), temperature (T),
moisture (M) and pressure (P) sensors are installed. Control variables are marked by a ‘C’. Pressure
difference measurements are marked with a ‘PD’.

The required air is fed to the test stand from a pressurised air storage tank. Behind the
air storage, the air path is divided into two lines: one for the wet and one for the dry air
flow. The wet path simulates the exhaust gas from the fuel cell and the dry path the supply
air. A valve at the inlet of each path is used to control the individual flow rates of the paths.
In a next step, both air streams are heated up by electrical heaters to simulate operating
temperatures typical for PEM fuel cell systems. The pressure levels of both streams can
be set individually by two control valves located near the outlet of the test stand. For
additional information, the pressure drop over the humidifier in the test stand is measured
for both air streams. In the wet path, vapour is added from a vapour storage tank through
a controlled valve to achieve the desired inlet humidity of the air. Typically, the air leaving
the PEM fuel cell carries much water produced by the fuel cell reaction. The supply line of
vapour is heated to avoid condensation, which is necessary to achieve valid measurement
results. The installation of this heater is important because the moisture sensors installed
and used to calculate the water transfer are only able to detect gaseous water. Therefore,
additional heaters are placed at the outlets of the humidifier to ensure that all present
water is in gaseous form. To make sure that all water is evaporated, the temperatures are
measured and controlled to be higher than the saturation temperature. Additionally, all
tubes as well as the box, wherein the humidifier is positioned, are isolated and heated to
avoid condensation of water in the test stand. If condensation of water occurs, this leads to
a deviation in the water transfer rates measured on the dry and wet side. Thus, the water
transfer rates are continuously checked during the measurement.
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3. Modelling of the Hollow Fibre Humidifier
3.1. CFD Model of the Hollow Fibre Humidifier

The code basis of the developed humidifier model was used in another publication
for a flat membrane humidifier [16] and is based on the freely available library Open-
FOAM [28,29]. In the CFD model, moist air is described as an ideal mixture consisting of
the gas components dry air and water vapour. All necessary thermophysical properties for
the fluids are calculated from the JANAF data [30], which are directly available in Open-
FOAM. All presented balance equations originate from the solver “reactingFoam” [28]. The
mass balance for a compressible fluid in its differential form is:

∂ρ

∂t
+∇ · (ρ~U) = 0 (5)

The momentum balance for the compressible fluid reads:

∂ρ~U
∂t

+∇ · (ρ~U~U) = −∇p +∇ · (2ηSSS(~U))−∇
[

2
3

η(∇ · ~U)

]
(6)

The term SSS represents the rate of strain tensor. The calculation of the viscosity follows the
Sutherland equation [28]:

ν =
As
√

T
1 + T/Ts

(7)

The coefficients As and Ts were fitted to match data available in the VDI 4670 [31] for
a temperature range from 0 up to 100 ◦C. The viscosity given in the data is reproduced
accurately by the Sutherland equation.

In this work, only low Reynolds numbers up to 500 are considered for the flow in
the fibres and the shell of humidifier so that the flow should be predominantly laminar.
Hence, no turbulence model is applied. The limitation of the Reynolds Number arises
from limitations of the mass flow rates that can be investigated by the test rig. The model
can be used for higher Reynolds numbers, but no validation data are available from
the measurements.

The fluid used in the model is a gas mixture consisting of the components dry air and
water vapour. The mass balance of species i in a mixture is:

∂ρYi
∂t

+∇ · (ρYi~U) = ∇ · (ρDi∇Yi) (8)

The diffusion coefficient Di is calculated with Equation (9), taken from [32]:

Di(p, T) = Di,re f

(
T

Tre f

)3/2( pre f

p

)
(9)

Since only two components are present in the mixture, the binary diffusion coefficient
of vapour and air is used. In the reference state, at Tre f = 298 K and pre f = 1 atm, the
diffusion coefficient is DH2O,Air = 0.260 cm2/s [32].

The energy balance for the gas mixture is formulated in terms of total enthalpy balance:

∂ρh
∂t

+
∂ρK
∂t

+∇ · (ρh~U) +∇ · (ρK~U) =
∂p
∂t

+∇ · (κ∇T) +∇ ·
N

∑
i

ρDihi∇Yi (10)

The second term on the right-hand side represents the heat conduction. In the solution
process, this term is reformulated as a function of enthalpy, as shown by Kumar [33]. The
last term on the right-hand side is also taken from [33]. It represents the energy transfer
due to diffusion of the modelled species.
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Model of the Polymer Membrane and Boundary Conditions for the Flow Simulation

The implementation of the polymer membrane boundary condition is based on the
class semipermeableBaffle [28]. It is a two-sided boundary condition that connects two fluid
regions of the membrane humidifier, typically a fibre with the shell. Inside the membrane
model chosen for the hollow fibre humidifier, a mass flow rate is calculated based on
a driving concentration difference for each species and for each face of the patch. The
calculated mass flow rates are then introduced into the aforementioned equations of the
fluid volumes directly next to the membrane.

The permeability of the membrane was not disclosed by the manufacturer; therefore,
a calibration using measurement results was conducted to determine the best value for the
permeability of vapour. A constant value of PH2O = 4.02× 10−7 m/s resulted in a good
calibration and validation result. The calibration and validation processes utilising surro-
gate models as well as the simulation results are presented in Section 4.1. The membrane
area available for mass transfer was calculated as the mean of inner and outer membrane
area. The thickness of the membrane is δmem = 1× 10−4 m.

ṁH2O,perm = PH2O MH2O Amem/δmem ∆cH2O (11)

An accumulation of water in the membrane is not considered.
The permeation of dry air through the membrane is not completely prevented in

reality, therefore, the possibility for permeation of dry air is also implemented in the
membrane boundary condition. The difference of partial pressure across the membrane is
the driving potential for permeation. The entire permeation process is calculated with a
constant permeation coefficient Pair = 1× 10−14 mol/(m s Pa) obtained form the literature,
as suggested by [34]:

ṁair,perm = Pair Mair Amem/δmem ∆pair (12)

The membrane also connects the wet and dry sides thermally, but, due to the chosen nearly
isothermal conditions, the description is omitted here.

The other boundary conditions are shown in Table 3 and their specification is given in
the OpenFOAM documentation [28,29].

Table 3. Boundary conditions for the simulation of the hollow fibre membrane humidifier.

p ~U T YH2O YAir

inlets zero gradient fixed value fixed value fixed value fixed value

outlets fixed value zero gradient zero gradient zero gradient zero gradient

walls zero gradient no slip zero gradient zero gradient zero gradient

3.2. Down-Scaled Geometry Used for the Simulation of the CFD Model

The discretisation of the hollow fibre humidifier geometry given in Table 1 would
result in many volume elements, which, as a consequence, would make the solution of the
full humidifier very time consuming and expensive. To overcome this issue, only a small
fraction of the humidifier is simulated. This is done under the assumption that the flow
inside the shell and the fibres is distributed homogeneously. In the scaling process, the
number of fibres to be simulated is reduced from 488 to 12, which results in a scaling factor
of 40.6. Furthermore, the shell diameter is adjusted in order to obtain the same packing
density in the scaled and the full-size humidifier. The scaling process does not affect the
lengths and diameters of the individual fibres. The parameters of the scaled geometry are
listed in Table 4.
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Table 4. Geometric parameters of the down-scaled hollow fibre membrane humidifier.

Quantity Symbol Unit Value
Number of fibres nF 1 12
Fibre outer diameter dF,o mm 1
Fibre inner diameter dF,i mm 0.9
Fibre length lF mm 150.8
Housing inner diameter dH mm 6.16
Packing density φ m2

mem/m3 1257
Scaling factor - 1 40.6

Additionally, the mass flow rates applied to the model are scaled in the same manner
so that the mass fluxes in the shell and in the fibres are the same in measurement and
simulation. The results achieved with the down-scaled model are then scaled up to the full
size of the humidifier.

3.3. Surrogate Model of the Hollow Fibre Humidifier

The process to build a POD+I surrogate model follows the steps described by Franz [23]
for an aerodynamic problem and is presented in Figure 3.

Define Parameter  Limits

Calculate Design of Computer Experiments
and select interpolation method

Do Simulations with the full order model

Calculate POD-Base and fit
the interpolator for POD-coefficients

Evaluate POD+I-Model at untried
parameter combinations

Sufficient accuracy of 
   POD+I predictions?

Done

Yes

No

Figure 3. Flowchart of the used POD+I method. If insufficient prediction accuracy of the surrogate
model is achieved, the design of computer experiments or the interpolation method is revised.

In the first step, the parameter limits have to be defined. Next, a DoCE is calculated
to place the parameter samples inside the defined parameter limits, and the high-fidelity
model is evaluated at those parameter combinations. Both aforementioned steps are
discussed in the next section. To obtain the maximum amount of information out of the
computational expensive full-order-model (FOM) calculations, the parameter sets for those
simulations are selected using a special design for computer experiment introduced in
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Section 3.4. The surrogate model is then created based on these steady-state results, so-
called snapshots. These snapshots can also be called training data for the surrogate model.
A snapshot contains the result variables of the steady-state solution in all the cell centres of
the finite volumes in the fluid domain at a given parameter combination ζi. Following the
method of snapshots [35], snapshots are grouped into the matrices W of size Rm×n for each
result variable of interest (e.g., temperature, water mass fraction or pressure), where n is
the number of collected snapshots and m is the number of volumes in the fluid domain:

W =


w1

1 w2
1 · · · wi

1 · · · wn
1

w1
2 w2

2 · · · wi
2 · · · wn

2
...

...
...

...
...

...
w1

m w2
m · · · wi

m · · · wn
m

 (13)

Each snapshot depends on the operating conditions Wi(ζ i) and represents a column of the
given matrix W. Often, the overall mean of the snapshot matrix is subtracted from each
snapshot without loss of generality.

To obtain the POD-base, the singular value decomposition of the snapshot matrix W
is computed:

W = ΦΣVT (14)

where Φ ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. The columns of Φ are called
POD modes. The resulting diagonal matrix Σ ∈ Rm×n contains the singular values of W on
the diagonal, ordered by their magnitude in decreasing order.

A certain snapshot Wi(ζ i) results from a linear combination of the POD modes and
the POD coefficient bi(ζ i), which, itself, depends on the vector of operating conditions:

Wi =
m

∑
j=1

bi
jΦ

j (15)

Assuming that the magnitude of the singular values decreases rapidly, the number
of modes, k, to be used can be determined by looking at the variance captured by the
first k singular values compared to all singular values. This metric is called the Relative
Information Criterion and is calculated as follows:

RIC(k) =
∑k

i=1 σ2
i

∑
p
i=1 σ2

i
. (16)

In order to obtain an approximate solution W∗ of a specific parameter combination ζ∗,
that is not included in the snapshot matrix, an arbitrary interpolation scheme can be used
to calculate the POD coefficient B∗ = B(ζ∗). The approximate solution of the surrogate
model at the specified parameter combination is determined using the POD modes and the
interpolated POD coefficients:

Ŵ =
m

∑
j=1

B∗j Φj (17)

The vector of parameters depends on the problem to be solved. For the analysis at hand, the
parameters to be analysed are the mass flow rates, the operating temperature, the operating
pressure and the mass fraction of water at the wet inlet.

To evaluate the surrogate model at untried parameter combinations, regression meth-
ods for the POD coefficients can be used [23,36]. Franz [23] uses radial basis functions as a
surrogate model based on a thin plate spline (TPS) due to its good approximation capability.
The linear, thin-plate-spline and the cubic method employed in this study are taken from
the library SMARTy [37].
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3.4. Design of Computer Experiments

The Design of Computer Experiments is a special branch of the classical Design of
Experiments (DoE) introduced by Fisher [38]. A major difference between computer and
physical experiments is that many computer experiments are fully deterministic. This
means that a given set of input parameters, often called factors, always produces exactly
the same output in a computer experiment, whereas, on a physical test stand, the results
will vary due to random factors influencing the experiment [38]. The CFD model presented
above is such a deterministic model. Therefore, no repetitions of certain input sets are
necessary nor specifically wanted in computer experiments [39,40]. Due to the fact that,
often, a small subset of input parameters causes the major effects in the response variables,
a DoCE design should avoid repetitions in all dimensions [40]. Garud et al. [41] studied
different designs and analysed different space-filling criteria to judge the performance of
the individual DoCEs. They conclude that Quasi-Monte-Carlo methods such as the Halton
and Sobol sequence are well suited for simulations with a number of input parameters
below eight [41]. In their analysis, they analyse sample counts greater than 100 [41], which
are not suitable for the evaluation of the membrane humidifier CFD model. The goal of
our study is, therefore, to reduce the sample points to a minimum due to the high amount
of resources necessary for the evaluation of the full-order model. In order to achieve a
specific design of experiments for the investigation of the humidifier, the parameters are
given in the introduction. For each of the parameters, an upper and a lower limit must
be defined.

Each simulation is done with one parameter vector containing a set of these variables:

ζ i
operation =


ṁi,air,in

Ti,in
Yi,H2O,wet,in

pi,out

 (18)

A matrix of parameter combinations, Z ∈ Rd×n, is generated when applying a DoCE
method.

Three different experimental designs are used and analysed in this study: a latin
hypercube design (LHD), a Halton sequence and a fractional factorial design from classical
DoE. The LHD is often used in engineering literature [41] for DoCE purposes. As mentioned
before, the Halton and Sobol sequences showed good space-filling abilities for a number
of four input parameters and small sample counts [41]. Both the Halton sequence and
Latin-Hypercube designs can be generated using Scipy [42]. The fractional factorial design
poses the advantage that the minima and maxima of the parameter domain are occupied.
Due to its screening capabilities, the fractional factorial design is often used in early stages
of an experimental investigation [38]. The number of samples used for the Halton and LH
designs are 8 and 17. Eight points were chosen, because this number of runs is considered
to be the lower limit for a statistical analysis [38]. On the other hand, 17 points are arguably
the minimum number of runs that are necessary for building a nonlinear model in classical
DoE when four factors are taken into account [38]. The fractional factorial design consists
of eight points at the outer bounds of the parameter domain and is well suited to set up a
model containing the main effects. In order to achieve better space filling, a centre point is
added to the fractional factorial design. This extension was carried out because it involves
little computational effort. The low number of model evaluations is intended in this work
to minimise the calculation time for the creation of the POD+I model. In addition, it should
be shown which results can already be achieved with a small data set. A graphical overview
is given in Figure 4.

The values of temperature, pressure, air mass flow rate and water mass fraction are
determined by each of the DoCEs within the limits specified in Table 5. Water mass fraction
is first set by the DoCE and, in subsequent steps, is limited to the saturation mass fraction
valid for the pressure and temperature at that point to prevent a relative humidity above
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100%. This is necessary because the model does not take the phase change from vapour
to liquid into account. This bias is not considered to be a drawback, because it reflects the
operating conditions in the fuel cell system, where the relative humidity of the wet inlet is
also often close to saturation humidity.
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Figure 4. Pair plot of the DoCE samplings and the measurement boundary conditions used for the
simulations. The legend applies to all the plots.

Table 5. Parameter ranges for simulation of the membrane humidifier. Water mass fraction and
relative humidity are applied to the wet inlet only. The air flow rates are scaled to match the model.

Parameter Minimum Maximum

Temperature 52 ◦C 93 ◦C

Pressure 1.4 bar 2.1 bar

Air flow rate 5 mg/s 15 mg/s

Water mass fraction 0.03 0.25

4. Results and Discussion
4.1. Calibration and Validation of the CFD Model

The aim of the calibration is to identify the undisclosed membrane permeability
coefficient. In the calibration process, the model was simulated with different values for
the membrane permeability PH2O at four selected input parameter combinations that are
characterised by having different operating pressure, temperature, water mass fraction and
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mass flow rates. The coefficient of determination was used as metric for calibration and is
defined as:

R2(ṁH2O,di f f ,sim, ṁH2O,di f f ,meas) = 1−
∑n

i=1(ṁH2O,di f f ,sim − ṁH2O,di f f ,meas)
2

∑n
i=1(ṁH2O,di f f ,sim − ṁH2O,di f f ,meas)2 (19)

It measures the amount of variance present in the data that can be explained by the model.
The fitted permeability coefficient was then used in validation simulations at further
operating points. In Table 6, the coefficient for calibration and validation is given.

Table 6. Results of the calibration process of the membrane permeability for vapour.

PH2O in m/s R2 for Calibration R2 for Validation

4.02× 10−7 0.9990 0.995

In Figure 5, the diffusion flow rates measured in the experiments are plotted against
the simulated ones. The measurement uncertainty was calculated by the GUM method [43],
and the sensor data are given in Table 2. The diffusion flow rate is one of the most important
metrics when evaluating the humidifier performance. In order to compare model and
simulation, the results of the simulation model were scaled to the size of the experimentally
investigated humidifier. The operating temperature was varied between 60 and 80 ◦C, the
pressure took values between 1.5 and 2.0 bar and the water mass fraction at the wet inlet was
controlled between 0.0278 and 0.1728 (kg H2O)/(kg Dry Air). Overall, the simulation and
experimental results agree well over the whole investigated parameter range. In Table A1,
all results are displayed. The maximum of the mean absolute error between measurement
and simulation is 0.0016 g/s at point 8 in Table A1. Furthermore, the maximum relative
deviation is 13.1% for point 6 in Table A1. At points with high vapour transfer rates, the
measurement uncertainty is the highest due to the fact that the uncertainty of vapour
measurements increases when the relative humidity increases. All simulation results of the
vapour diffusion rate are within the range of the measurement uncertainty. An additional
metric to assess humidifier performance is the mass transfer efficiency, as described by
Brandau and Köhler [8]:

η1 =
c′′H2O,1 − c′H2O,1

c′H2O,2 − c′H2O,1
(20)

This quantity describes the ratio of the actual to the maximum possible water transfer. The
mass transfer efficiency predicted by the simulation model is plotted against the measured
one in Figure 5, and is solely used for validation purposes. Hence, it is not accounted for
during the fitting process. It can be seen that the efficiency for all measured points is in
the range from 0.62 to 0.72. The mean absolute error in the efficiency is 0.023. It it clearly
visible in Figure 5 that the measurement uncertainty is quite high for this quantity. This can
be explained by the fact that three moisture measurements, which are subject to significant
uncertainty, are included in the calculation of the mass transfer efficiency, cf. Equation (20).
The highest deviations that can be observed in Figure 5 occur at operating points with
relatively low vapour transfer rates. Due to this low value for the absolute vapour transfer
rate, small absolute deviations cause a high relative deviation.

4.2. Set-Up and Evaluation of the Surrogate Models

The first step in the procedure is to calculate the sampling plan, where the FOM is
evaluated. Based on these results, the POD-basis is calculated. In Figure 4, the samplings of
the different DoCEs are shown together with the measurement points used for calibration
and validation. The mass flow rates of the CFD model are scaled to match the experiment.
It is clearly visible that the fractional factorial design, which was extended by a centre point,
places points in the corners of the design space. Only five points can be seen in the pair
plots, except for the ones including the water mass fraction, due to the fact that always
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two points are sampled with the same temperature, pressure and mass flow rate. In terms
of absolute humidity, seven points can be seen, which is because of the limitation posed
to relative humidity, as explained above. As a consequence, the points are shifted from
the right to the left part of the pair plots using the water mass fraction as the X-axis. In
contrast to the fractional factorial design, the sampling points generated by the Halton
sequence and the Latin-Hypercube are more evenly distributed in the design space. In the
pair plots of temperature and water mass fraction, unfilled areas can be observed that result
from the limitation to 100% relative humidity at the wet inlet. Both the Halton sequence
and Latin-Hypercube do not guarantee that the corners of the design space are filled with
points. In fact, without adjustments, no points will be placed in any corner of the design
space. Hence, the choice of parameter limits should be adjusted, or additional corner points
should be added manually in order to avoid extrapolation with the surrogate model.

Figure 5. Comparison of measured and simulated vapour diffusion rates and mass transfer efficien-
cies. The measurement data is plotted with error bars resembling the uncertainty of the measurement.

After the solutions of the FOM are calculated at the given sampling points, the POD-
basis can be calculated. To evaluate the surrogate models using the different DoCEs in
combination with the interpolation methods, the surrogate model is evaluated at the points
that were used above for validation, but this is not included in the DoCEs, cf. Table A1.
To assess and compare the set-up surrogate models, the following performance metrics
are used:

The maximum absolute error that occurs in the whole fluid domain:

maxAE = max(|ysurr,i − yh f ,i|) (21)

This metric is used to identify if there are outliers where the surrogate model predictions
are very inaccurate. The mean absolute error is given by:

MAE =
1
n

n

∑
i=1
|ysurr,i − yh f ,i| (22)

where n is the number of mesh elements. The most important field variable in the membrane
humidifier is the water mass fraction driving the water transport from the wet to the
dry side. The water mass fraction is therefore used to calculate the MAE and maxAE.
Additionally, the normalised mean absolute error (nMAE) is used, where the MAE is
divided by the maximum driving potential for the water transfer:

nMAE =
MAE

max(yh f )−min(yh f )
(23)
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Using this quantity, it is easier to compare simulations with different boundary conditions
for the water mass fraction.

An overview of the MAE, maxAE and nMAE for the different surrogate models
combining an interpolation method and a DoCE is given in Figure 6. The results given in
Figure 6 are averaged over the 18 validation points to assess the overall performance of the
surrogate models.
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Figure 6. Left: MAE of the water mass fraction averaged for all 18 operating points for the combina-
tions of DoCE and approximation method. Middle: maximum error of the water mass fraction inside
the humidifier for the combination of DoCE and approximation method. Right: nMEA averaged
over the 18 validation points.

In Figure 6, it can be seen that the surrogate models based on the fractional design
produce the largest deviations in all metrics. Comparing the averaged metrics in Figure 6
to each other, one can see that the results are similar to each other. Only for the fractional
design using a linear interpolation an outlier in terms of maxAE can be identified. The
MAEs, maxErr and nMAEs of the surrogate models using the fractional factorial design
are significantly higher compared to the MAEs and nMAEs produced by surrogate models
using LHD and Halton designs. Even though the deviations of the surrogate models using
the fractional factorial sampling as basis are much higher than the other ones, the nMAE is
below 2% for the water mass fraction in all cases. Furthermore, the results of the surrogate
models using the LHD are more sensitive to the choice of the interpolation method than the
Halton sequence-based ones. Overall, the Halton sequence-based models are quite robust
in terms of the chosen interpolation method, since average results do not deviate much.
The best combinations of an interpolation method with a given DoCE for the surrogate
model of the humidifier are:

• the thin-plate spline with the fractional factorial design,
• the cubic spline with LHD,
• the thin-plate spline with the Halton sequence,

as depicted in Figure 6. On average, the model using the combination of the Halton
sequence and thin-plate spline gives in the best surrogate model. Choosing this combination
yields a MAE for a surrogate model below 1%. Moreover, Halton yields a deterministic
sampling plan, which can be easily extended if more sample points are required, which is
generally not the case for LHD-based sampling plans.

Figure 7 shows the results given in Figure 6 broken down by the operating points given
in Table A1. However, only the best surrogate models for a given DoCE are considered in
further analysis. For each operating point in Table A1, three values expressing the MAE, the
maxErr and the nMAE of the water mass fraction predictions of the best surrogate models
based upon the three DoCEs are shown. From the results given in Figure 7, a correlation of
the MAE and the maximum error can be identified. The correlation coefficient between
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the MAE and the maxErr is higher than 0.96 for all surrogate models. This points out that
those metrics are highly correlated and no extreme outliers are to be expected when the
MAE is low. On the other hand, the nMAE behaves differently due to the scaling.
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Figure 7. Evaluation of the error metrics for the prediction of the water mass fraction with the created
surrogate models for the validation operating points .

In Figure 8, a box plot for each error metric is displayed. The box covers the range from
the first to the third quartile. A one and a half interquartile range was used for the whiskers.
In each of the subplots, a box plot is drawn for the best surrogate model based upon the
previously introduced DoCEs. The plotted mean values correspond to the ones given in
Figure 6. As additional information, the median values are shown. When the median of
the prediction errors is considered, the same order of surrogate models, as already shown
for the mean values, is obtained. Again, the Halton+TPS model performs best overall. For
all metrics but the MAE of the LHD+Cubic model, the median is lower compared to the
mean. For the LHD+Cubic and the Halton+TPS models, an outlier in terms of MAE and
maxAE can be identified. Moreover, the box plot of the Halton+TPS model displays an
outlier in the nMAE. The highest range in all metrics can be observed for the fractional
design, whereas the lowest range is produced by the LHD+Cubic model in all metrics.
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Figure 8. Comparison of the surrogate models in terms of the defined metrics. The metrics are
evaluated for the water mass fraction.

Overall, the fractional factorial-based surrogate model achieves the minimum MAE in
only two operating points. The LHD- and Halton-based models perform best at 10 and 6
operating points, respectively, when considering MAE. The same number of best results is
obtained when considering the maximum error and the nMAE. Moreover, it can be seen
in Figure 7 that the model based on the Halton design produces the highest deviation in
the 18th operating point, but the nMAE stays below 2%. Even the surrogate model using
the fractional factorial design achieves an nMAE lower than 3% in all validation points.
Therefore, a fractional factorial-based surrogate model may be a good choice in the early
stages of an investigation or if a sampling plan has to obey additional constraints, as it
might be the case if a physical experiment is set up.

In Figure 9, the results of the surrogate model are displayed when only eight points are
available for the POD-basis generation. The purpose of this investigation is to analyse the effect
of varying available results, which is crucial when the proposed method should be employed
in early stages of a parameter study. A clear trend can be seen in Figure 9: the more results
are available, the more accurate the surrogate solution becomes. The nMAE averaged for the
18 validation cases, and only 8 design points available, is nMAEHalton,n8 = 0.013. This result is
similar to the results produced by the fractional factorial design-based surrogate models.

Figure 10 shows a comparison of the water mass fractions predicted by the FOM and
the surrogate model on a cutting plane in the middle of the hollow fibre module for cases
16 and 18 of the validation data. The shown results correspond to the validations points in
Table A1, where the mean absolute errors between FOM and surrogate models reached the
minimum and maximum of the 18 points investigated. Overall, a high similarity between
the results of the FOM and surrogate model can be observed from the contours. For both
cases, the highest water mass fraction occurs in the fibres. Therefore, the fibres are well
visible in Figure 10 in all four simulation results. The random placement of the fibres results
in higher fibre density in the upper centre part of the humidifier, whereas the lower part
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is less densely packed. Due to the laminar flow, only a small amount of mixing due to
convection occurs in the shell. If the packing density of the fibres within a certain region is
high and the convective mixing is low, a high wet volume flow is present, opposed to a
small dry volume flow, in this region. As a result, the water mass fraction in the shell along
the flow length increases faster in regions with high packing density than in regions with
low packing density. This behaviour can be observed in Figure 10 and is also present in
FOM and surrogate results.
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Figure 9. Normalised mean absolute error (nMAE) of the surrogate model predictions for the water
mass fraction using a Halton design with 8 and 17 samples, respectively. For both designs, the TPS
interpolation is used.
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Figure 10. Comparison of the water mass fraction contours calculated by evaluating the FOM and
surrogate model for cases 16 and 18 in Table A1. The surrogate model was calculated based on the
Halton sequence sampling. The colour bars for case 16 and 18 do not match.
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The lowest values of water mass fraction occur in the lower section of the contour
shown. This can again be seen in both predictions. In the lower region of the humidifier,
the distance between individual fibres is higher than in the upper section and, therefore, the
water mass fraction in the shell is lower than in the densely packed regions. Both models
predict the highest values of water mass fraction in the region where the fibre density is the
highest. Deviations in the contours produced by the FOM and the surrogate model can be
seen in places where a transition between contour levels in the high-fidelity model takes
place. This applies to both fibres and the shell, with the greatest deviations occurring in the
shell. For case 18, the highest deviations occur in the bottom region of the shell. The water
mass fraction in fibres is well reproduced by the surrogate model.

Overall, it can be concluded that the surrogate model reproduces the results of the
FOM with high accuracy, even at the parameter combination with the highest deviations.
Our results suggest that the best combination of interpolation method and DoCE is the
Halton design and TPS interpolation. However, the differences between the Halton and
Latin-Hypercube DoCEs are relatively small. The same applies to the interpolation methods
investigated in this study.

4.3. Using POD Solutions to Initialise the CFD Model

Even though the predictions of the surrogate models are as accurate as shown above,
there might be situations where a full-order solution is desired. For this case, a POD+I
solution can be used to accelerate the convergence of the CFD simulation. To show the
benefit of the POD+I initialisation in terms of computational time saving, we use the
Halton+TPS model to calculate the initial solutions and compare the computational time
necessary for reaching convergence to a normal solution process.

For the comparison of computational times to reach converged simulation, the valida-
tion data set was used again. In the first step, the simulations are done using a uniform
initialisation of the model. The water mass fractions in the whole field are set equal to the
dry inlet, the velocity is set to zero and the pressure equals the outlet conditions.

To demonstrate the advantage of the POD+I initialisation compared to the uniform one,
the two cases with the lowest, Case 16, and highest, Case 18, nMAE from the validation
data set are considered. For both cases, each initialisation method is applied and the
convergence behaviour with respect to the overall water transfer from wet to dry side is
analysed. The residuals were checked to be below 1× 10−4 for each quantity. Additionally,
the water transfer is considered as the most important integrated quantity and, therefore,
is analysed in more detail. The water transfer rate is considered converged if the relative
change between two iterations is below 1× 10−6 for 1000 iterations. In Figure 11, the
overall water transfer is plotted against the iterations. A zoom is provided to show the
convergence behaviour of the POD+I-initialised simulation. The black dotted line marks
the steady-state result and the grey area a relative deviation of 1 % from the steady state.
It can be seen that the POD+I-initialised cases converge after fewer iterations for both
cases. For case 16, the very low deviations between the POD+I solution and the full-order
model result in a fast convergence after just 437 iterations and 1770 s of computing time
on 8 cores. The normally initialised solution takes about 14,002 iterations and 22,602 s
on 8 cores to converge. In the same figure, in the bottom plot, again, one curve for each
of the initialisation methods is shown for case 18. In the zoom box, it can be seen that
the POD+I-initialised solution converges after 5522 iterations. The time needed to reach
convergence on 8 cores is 9015 s. In contrast, the uniformly initialised solution needs more
than twice the iterations, about 20,728, and 35,489 s of computational time to converge.
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Figure 11. Convergence of the total water transfer rate for validation points 16 and 18. Blue curves:
initialisation with uniform field values. Orange curves: initialisation with POD+I surrogate model
predictions.

The mean simulation time of the FOM averaged over the 18 validation points is 12.6 h
per simulation to solve for 30,000 iterations using 8 CPU cores of an AMD EPYC 7302. This
high amount of iterations was chosen to definitely achieve convergence. The necessary
time to calculate the POD+I solution is much lower than the time required to solve the
FOM. The calculation of the 18 validation points is done in 107 s. The average prediction
time for a single operating point is 5.95 s. This time already includes the writing of the
OpenFOAM files on the disk. In fact, the isolated evaluation time for POD+I lies below one
second. The average solution time for a POD+I-initialised solution is 1.8 h. In summary,
using POD+I solutions for initialisation can save significant computing time in case of the
membrane humidifier.

5. Conclusions and Outlook

In this paper, it was demonstrated that accurate and fast surrogate models of hollow
fibre membrane humidifiers can be set up by using proper orthogonal decomposition in
combination with an interpolation scheme. The presented surrogate models are able to
accurately predict the water mass fraction at previously untried parameter combinations.
It has been shown that parameter variations of the humidifier operating conditions can be
significantly accelerated by using the proposed methods.

In order to obtain a database for the construction of the surrogate models, a high-
fidelity 3D model of a hollow fibre humidifier was set up using OpenFOAM. In a first
step, we presented a new set of measurement data of a commercially available hollow fibre
humidifier. The measurement data were used to calibrate the vapour permeability of the
membrane used in our high-fidelity model and to validate the same model in the following
step. The developed high-fidelity model accurately predicts the water transfer from the
wet to the dry side of the hollow fibre membrane humidifier. In the following, a POD-
based surrogate modelling approach was proposed and applied to accelerate the parameter
studies while preserving the three-dimensional character of the high-fidelity model. The
best-suited DoCE for the presented problem set-up is the Halton design to generate the
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samples in combination with the cubic TPS interpolator as the approximation scheme for
the water mass fraction distribution. However, it can be concluded that all tested DoCEs in
combination with the interpolators performed well in terms of prediction accuracy. Our
research shows that even with this small data set, a precise 3D surrogate model of the
membrane humidifier can be generated. The maximum deviation of the best surrogate
model configuration, a Halton DoCE combined with TPS interpolation, compared to the
detailed CFD model is 1.1 g Water/kg Air. With the same configuration, the mean absolute
error was 0.38 g Water/kg Air. The mean simulation time of this surrogate model is 6.0 s
compared to 12.6 h necessary to calculate a full-order CFD solution for the same operating
point. In a further investigation, it was demonstrated that the POD+I-based surrogate
results can be used effectively as an initial solution for the full-order model, when the
most accurate results of the high-fidelity model are required. In summary, our research
demonstrates that fast and accurate surrogate models of membrane humidifiers can be
obtained using POD+I. Further investigations should focus on the prediction of different
humidifier geometries using surrogate models in order to support faster design processes of
membrane humidifiers. Another field of application of the presented combination of DoCE
and POD+I methods can be a PEM fuel cell that involves additional equations, making the
solution process harder than for the humidifier.
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Nomenclature
Latin symbols
A Area, m2 P Permeability, mol/(msPa)
B POD coefficients, dimensionless R Gas constant, J/(molK)

b POD coefficient, dimensionless R2 Coefficient of Determination
c Specific heat, J/(kgK) SSS Rate of strain tensor, 1/s
c Concentration, mol/(m3) t Time, s
d Diameter, m T Temperature, K
D Diffusion coefficient, m2/s U Velocity, m/s
h Specific enthalpy, m2/s2 V Matrix of right eigenvectors
K Kinetic energy, m2/s2 V Volume , m3

l Length, m W Snapshot matrix,
M Molar mass, kg/mol x, y, z Coordinates, m
ṁ Mass flow rate, kg/s Y Mass fraction, kg/kg
n Number, dimensionless Z Matrix of Parameter Combinations
p Pressure, Pa
Greek symbols
δ Thickness, m σ Singular value
ε Relative deviation, dimensionless ϕ Relative humidity, dimensionless
η Dynamic viscosity kg/(ms) φ Packing density , m2/m3

κ Thermal conductivity, W/(mK) Φ Matrix of POD modes
λ Water content, mol/mol Ψ Momentum sink due to porosity, kg/(m2s2)

ρ Density, kg/m3 ζ Parameter vector
Σ Matrix of singular values ν Kinematic viscosity, m2/s
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Subscripts and superscripts
air Dry Air mem Membrane
Diss Viscous Dissipation prod Production
Di f f Diffusion re f Reference
H2O Water sat Saturation
i Iteration index
Abbreviations
CFD Computational Fluid Dynamics
DoCE Design of Comupter Experiments
DoE Design of Experiments
FOM Full Order Model
LHD Latin-Hypercube Design
maxAE Maximum Absolute Error
MAE Mean Absolute Error
nMAE Normalised Mean Absolute Error
PEMFC Polymer Electrolyte Fuel Cell
POD Proper Orthogonal Decomposition
POD+I Proper Orthogonal Decomposition + Interpolation
RIC Relative Information Criterion
TPS Thin-Plate-Spline
sLPM Standard Liters per Minute

Appendix A

Table A1. Comparison of measured and simulated results, upscaled to the full size humidifier. The
points used for the calibration of the diffusion coefficient of the membrane are marked with a *.

ID ṁwet,in ṁdry,in Tdry,in Tdry,in p ξH2O,wet,in ṁdi f f ,exp ṁdi f f ,sim
[−] g/s g/s K K bar kg H2O

kg Dry Air
g/s g/s

0 0.44 0.40 346.65 343.15 1.75 0.0928 0.0279 0.0275
1 0.41 0.40 336.21 333.13 1.75 0.0278 0.0071 0.0077
2 * 0.41 0.40 333.36 333.30 1.75 0.0296 0.0077 0.0083
3 0.44 0.40 345.41 343.13 1.50 0.0977 0.0281 0.0283
4 * 0.43 0.41 344.56 343.14 2.00 0.0778 0.0232 0.0232
5 0.42 0.40 344.50 343.15 2.00 0.0437 0.0118 0.0128
6 0.32 0.30 347.66 343.14 1.75 0.0486 0.0098 0.0111
7 0.32 0.30 343.81 343.13 1.75 0.0669 0.0141 0.0155
8 0.42 0.40 356.24 353.15 1.75 0.0584 0.0152 0.0168
9 * 0.48 0.40 357.71 353.11 1.75 0.1698 0.0535 0.0535
10 0.48 0.40 356.53 353.14 1.75 0.1728 0.0543 0.0551
11 0.55 0.50 343.45 353.16 1.75 0.0835 0.0279 0.0289
12 0.42 0.40 333.77 333.48 1.75 0.0573 0.0161 0.0164
13 0.45 0.40 353.64 343.32 2.00 0.1092 0.0338 0.0337
14 0.42 0.40 343.91 343.28 2.00 0.0542 0.0148 0.0159
15 0.43 0.40 347.00 343.15 1.75 0.0751 0.0212 0.0219
16 * 0.53 0.50 344.90 343.15 2.00 0.0602 0.0203 0.0209
17 0.32 0.30 342.92 343.13 2.00 0.0611 0.0138 0.0142
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