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Abstract: A new type of brushless reverse claw-pole electrically excited generator is proposed for the
problems of the low sine degree of the induced electromotive force waveform and the high harmonic
content of the output voltage of the conventional electrically excited claw-pole generator. The design
uses the equivalent magnetic network method to establish the equivalent magnetic circuit model
of the motor and determines the equation for calculating the magnetoresistance of the isosceles
trapezoidal variable section claw-pole structure. It derives the mathematical model of the no-load
induced electric potential of the generator and completes to optimize the motor parameters with
the no-load induced electric potential as the target. This study shows that the brushless reverse
claw-pole electrically excited generator has the advantages of uniform magnetic field distribution,
high harmonic fundamental amplitude of induced electromotive force and low harmonic content. It
can better meet the application requirements compared with the conventional electrically excited
claw-pole generator.

Keywords: reverse claw pole; electric generators; induced electric potential; vehicle

1. Introduction

Electrically excited claw-pole generators have been widely used in automobiles be-
cause of their simple manufacture, low cost and good working stability. However, with the
advancement of automotive technology and the increasing number of electrical equipment
in automobiles, the problems of low efficiency, low power density and high harmonic
content of voltage of traditional claw-pole generators have become more and more promi-
nent [1,2]. These electric devices have gradually failed to meet the usage requirements. To
improve the performance of electrically excited claw-pole generators, a large number of
scholars have proposed different solutions.

There are three main common solutions. The first one is to change the excitation
method and use permanent magnets instead of electrically excited windings [3]. This
solution can effectively improve the air-gap magnetic density, but once the size and ar-
rangement of permanent magnets are determined, it is difficult to adjust the permanent
magnetic field [4,5].

The second is to place a ring-shaped structure of permanent magnets between the jaw
yokes of the electrically excited jaw-pole generator, and the excitation winding is set on
the rotor jaw-pole yoke, forming a tandem hybrid excitation structure [6,7]. This solution
can effectively reduce the inter-pole leakage flux. However, since the electrically excited
magnetic potential and the permanent magnet potential are in series, the flux generated
by the electrically excited winding has to pass directly through the permanent magnet.
Furthermore, in order to operate with mixed excitation, the excitation winding must be
injected with a large enough current, resulting in a large added copper consumption. At
the same time, the permanent magnet may be demagnetized permanently if the excitation
winding is connected with a large current [8–10].
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The third option is to use two rotors, an electrically excited rotor and permanent
magnet rotor, coaxially parallel to each other to share the same stator parallel hybrid
excitation structure [11–13]. This solution can meet the advantages of both the electrically
excited claw-pole motor with good performance and permanent magnet motor with a
high power density. However, the coaxial parallel arrangement requires a long axial space,
which increases the axial length and volume of the motor. Moreover, there are both radial
and axial three-dimensional magnetic circuits in this structure, and these increase the
complexity of the motor structure and decrease the power density [14,15].

To keep the advantages of simple magnetic field adjustment of the electrically excited
claw motor, while strengthening the air-gap magnetic density and increasing the power
density, a reverse brushless claw pole is proposed in this paper. The electrically excited
rotor extends the rotor N-pole magnetic conductor in a flared shape to form a larger toroidal
magnet conductor and shrinks the S-pole magnet conductor in a bottleneck shape to form
a smaller toroidal magnet conductor. It then places the excitation winding and toroidal
magnet-conducting bridge between the two toroidal magnet conductors to form a reverse
claw pole, as shown in Figure 1.
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Figure 1. Structure diagram of reverse brushless claw-pole generator.

2. Magnetic Circuit Analysis
2.1. Equivalent Magnetic Network Model

The principle of the equivalent magnetic network method is to divide the generator
into a number of units with uniform flux distribution and to link each unit according to its
actual position in the generator, finally forming a magnetic network [16]. According to the
flux distribution in the claw-pole generator, the generator is divided into stator, rotor claw
pole, yoke, air gap and so on. For the convenience of expression, the equivalent magnetic
network model of a pair of poles of the inverted claw-pole generator in one radial section
is given as shown in Figure 2.

The main flux path of the inverted claw-pole generator is simple: electrically excited
winding N pole, claw-pole yoke, N-pole flange, N-pole claw-pole support, N-pole claw
pole, main air gap, stator core, main air gap, S-pole claw pole, S-pole claw-pole support,
S-pole flange, claw-pole yoke and electrically excited winding S pole. Since it is difficult to
form a leakage magnetic circuit in the reverse jaw, leakage flux may exist only between the
adjacent jaw pole support, adjacent jaw pole and stator teeth.

Based on the equivalent magnetic network model shown in Figure 2, an equivalent
magnetic circuit diagram can be created, as shown in Figure 3.

In the Figure 3, Fc is the magnetomotive force of the electrically excited winding;
Fd is the stator winding magnetomotive force; Φc is the main magnetic flux through the
electrically excited winding; Φcf is the main magnetic flux through the winding yoke;
Φcs is the main magnetic flux through the stator teeth; Φlq is the leakage flux through
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the support area of the claw pole; Φlp is the leakage flux between the poles of the claw
pole; Φlg is the stator tooth leakage flux; Gc is the magnetic permeability of the electrically
excited winding; Gcy is the magnetic conductivity of the magnetic yoke; Gcgf 1 is the air-gap
magnetic conduction between the rear pole yoke and the yoke bracket; Gcd is the magnetic
conductivity of the yoke bracket; Gcgf 2 is the air-gap magnetic conduction between the
anterior yoke and the yoke bracket; Gcfn is the air-gap magnetic conduction between the rear
pole yoke and the yoke bracket; Gcd is the magnetic conductivity of the yoke bracket; Gcgf 2
is the air-gap magnetic conduction between the anterior yoke and the yoke bracket; Gcfn
is the N-pole flange magnetic conduction; Gcqn is the magnetic conductivity of the N-pole
claw-pole support; Gcpn is the N-pole claw-pole magnetic conductivity; Gcg is the main
air-gap magnetic conductivity; Gst is the magnetic conductivity of the stator teeth; Gsy is the
magnetic conductivity of the stator yoke; Gcfs is the S-pole flange magnetic conductivity;
Gcqs is the magnetic conductivity of the S-pole claw-pole support; and Gcps is the S-pole
claw-pole magnetic conductivity.
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According to the magnetic circuit shown in Figure 2, we can obtain the following:

Φc= Φlc+Φcf
Φcf= Φlq+Φlp+Φlg+Φcs

Fc= Φcf

(
2

Gcy
+ 1

Gcgf 1
+ 1

Gcd
+ 1

Gcgf 2
+ 1

Gcfn
+ 1

Gcqn
+ 1

Gcqs
+ 1

Gcfs

)
+Φlq

1
Glq

+Φc
1

Gc

Φlq
1

Glq
=
(

Φcf −Φlq

)(
1

Gcpn
+ 1

Gcps

)
+Φlp

1
Glp

Φlp
1

Glp
=
(

Φcf −Φlq −Φlp

)
2

Gcg
+ Φlg

1
Glg

Φlg
1

Glg
= Φcs

(
2

Gst
+ 1

Gsy

)
+Fd

(1)

By using Formula (1), we can obtain the main magnetic flux through the stator tooth:

Φcs =

Fc −m
(

2
Gcy

+ 1
Gcgf 1

+ 1
Gcd

+ 1
Gcgf 2

+ 1
Gcfn

+ 1
Gcqn

+ 1
Gcqs

+ 1
Gcfs

+ 1
Gcpn

+ 1
Gcps

+ 2
Gcg

)
−Fd + FdGlgGlp

2
Gcg

[(
2

Gcg
+ 1

Glg

)( 2Glq
Gcg

+
Glq
Glg

+ 1
)
+ 1
]

(
2

Gst
+ 1

Gsy

)
+ nk− p

(2)

The coefficients m, n, and p are as follows:

m = FdGlg + FdGlgGlp

(
2

Gcg
+ 1

Glg

)
+ FdGlgGlpGlq

(
2

Gcg
+ 1

Glg

)(
1

Gcpn
+ 1

Gcps

)
+FdGlgGlq

(
1

Gcpn
+ 1

Gcps

)
+ FdGlgGlq

(
2

Gcg
+ 1

Glg

) (3)

n = Glg

(
2

Gst
+ 1

Gsy

)
+GlpGlg

(
2

Gst
+ 1

Gsy

)(
2

Gcg
+ 1

Glg

)
+

2GlpGlq
Gcg

(
1

Gcpn
+ 1

Gcps

)
+GlpGlqGlg

(
2

Gst
+ 1

Gsy

)(
2

Gcg
+ 1

Glg

)(
1

Gcpn
+ 1

Gcps

)
+ GlgGlq(

2
Gst

+ 1
Gsy

)
(

1
Gcpn

+ 1
Gcps

)
+ Glq

(
1

Gcpn
+ 1

Gcps

)
+ GlqGlg(

2
Gst

+ 1
Gsy

)
(

2
Gcg

+ 1
Glg

)
+

2(Glq+Glp)
Gcg

(4)

p = GlgGlq
2

Gcg

(
2

Gcg
+

1
Glg

) ( 2
Gcg

+ 1
Glg

+
2Glp
Gcg

)(
1 +

Glq
Gcpn

+
Glq
Gcps

)
+

+
(

1
Gcpn

+ 1
Gcps

)
+ 1 + Glq

(
1

Gcpn
+ 1

Gcps
+ 2

Gcg

)  (5)

In the formula, {
Fc = Nc I
Fd = 4.44Ke f NstΦst

(6)

where Nc is excitation coil turns, I is the magnitude of the excitation current, Ke is magnetic
flux coefficient, f is the frequency and Nst is number of turns per slot for armature windings.

Then the no-load induced electromotive force is as follows:

U = Nd
dΦcs

dt
(7)

2.2. Claw-Pole Part Magnetoresistance Calculation

The red dashed part in Figure 2 shows the claw-pole part of the rotor, which has an
isosceles trapezoidal variable cross-section structure with different thicknesses tangentially
and radially from the claw tip to the claw root. In the tangential direction, the radial
cross-section of the claw-pole rotor changes with the angle, θ. Its cross-sectional area varies
symmetrically along the central axis of the rotor teeth, so that only half of the rotor teeth
need to be considered. When the radial section passes through the central axis of the rotor
tooth, the initial value of the defined θ is 0. As the θ increases, the cross-sectional area of
rotor tooth decreases and the number of elements it divides decreases. The dividing cell is
shown in Figure 4.
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Figure 4. A tessellation unit.

In Figure 4, hi and rj represent the axial distance and inner diameter of the axial i,
tangential j segmentation unit; θij represents the center angle of the segmentation unit; and
R is the outer radius of the motor claw-pole rotor. The axial and tangential reluctance of
each segmented unit of the claw-pole rotor, shown as Ri and Rj, respectively, are as follows:

Ri =
l

µ0s
=

2hi

µθi j(r2
c − r2

j )i

(8)

Rj =
l

µ0s
=

θij

µhi
(
lnrc − lnrj

) (9)

where µc is claw-pole core relative permeability, and rc is radius of a segmented unit of the
claw-pole tooth.

The tooth axial reluctance, Rcpi, of the claw-pole rotor can be expressed as follows:

Rcpi

=



2L
µβ1

(
R2−(R−b1)

2
) ,− β1

2 < θ < β1
2 , R− b1 < r < R∫ R−b1

R−b2

[
n
∑

i=1

2hi
µβ2((R−b1)2−r2)

]
dr, − β1

2 < θ < β1
2 , R− b2 < r < R− b1∫ β2

2
β2−β1

2

[
n
∑

i=1

2hi
µθ(R2−(R−b1)2)

]
dθ, β1

2 < |θ| < β2
2 , R− b1 < r < R∫ R−b1

R−b2

[∫ β2
2

β2−b1
2

[
n
∑

i=1

2hi
µθ((R−b1)2−r2)

]
dθ

]
dr, β1

2 < |θ| < β2
2 , R− b2 < r < R− b1

(10)

where l is the claw-pole axial length, β1 is the mechanical angle occupied by the claw-pole
tip, β2 is the mechanical angle occupied by the root of the claw pole, b1 is the claw-pole tip
thickness and b2 is claw-pole tooth root thickness.

The tooth radial reluctance, Rcpj, of the claw-pole rotor can be expressed as follows:

Rcpj

=



βcj

µc lcc[lnR−ln(R−hcj)]
,− βcj

2 < α <
βcj
2 , R− hcj < r < R∫ R−hcj

R−hcg

[
n
∑

j=1

βcj

µc l(r)[ln(R−hcj)−lnrj]

]
dr, − βcj

2 < α <
βcj
2 , R− hcg < r < R− hcj∫ βcg

2
βcg−βcj

2

[
βcg−βcj

2µc l(α)[lnR−ln(R−hcj)]

]
dα,

βcj
2 < |α| < βcg

2 , R− hcj < r < R

∫ R−hcj
R−hcg

[∫ βcg
2

βcg−hcj
2

[
n
∑

j=1

βcg−βcj

µc l(α,r)[ln(R−hcj)−lnrj]

]
dα

]
dr,

βcj
2 < |α| < βcg

2 , R− hcg < r < R− hcj

(11)

The magnetic permeability of the teeth of the claw-pole rotor is as follows:

Gcpn = Gcps =
1√

R2
cpi + R2

cpj

(12)
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To simplify the calculation process, the part of the reluctance that is uniform and
has a regular shape does not need to be split to solve, and the remaining part of motor
magnetoresistance is not repeated in this article.

3. Finite Element Analysis

Taking a 3-phase, 8-pole, 36-slot reverse claw-pole electrically excited generator (rated
power of 2 kW, rated voltage of 72 V and rated speed of 3000 r/min) as an example, a
two-dimensional simulation model is established by using Maxwell finite element analysis
software to verify the accuracy of the mathematical model. Table 1 shows some structural
parameters of the reverse claw-pole electrically excited generator. Figure 5 shows the
magnetic flux density cloud of the reverse claw-pole electrically excited generator. Figure 6
shows the magnetic density distribution of the air gap at the root of the claw pole. The
simulation results show that the maximum magnetic density in the air gap is 1.09 T.

Table 1. Reverse claw-pole electrically excited generator part of the structural parameters.

Parameter Numeric Value Unit

Claw-pole axial length 30 mm
Claw-pole tip width 17 mm

Claw-pole tooth root width 24 mm
Claw-pole tip thickness 3.5 mm

Claw-pole tooth root thickness 10 mm
Claw-pole outer diameter 50.6 mm

Stator outer diameter 68 mm
Stator inner diameter 51.2 mm
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Figure 5. Flux density cloud of reverse claw-pole electrically excited generator.

It is necessary to show the distribution of the air gap more clearly, so the magnetic
flux density cloud map from the outer diameter of the claw pole to the inner diameter of
the stator in the axial middle position of the claw pole is shown in Figure 7. Moreover,
the magnetic flux density cloud map from the root of the claw to the tip of the claw in the
radial middle position of the air gap is shown in Figure 8. From these figures, it can be
seen that the flux density at the claw root is larger than that at the claw tip under the same
air gap radius. Moreover, at the same distance from the claw root, the smaller the air gap
radius is, the largest flux density is.
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Figure 7. Flux density cloud at the middle of the claw pole.
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Figure 9 shows the no-load induced electromotive force waveform of the inverted
claw-pole electrically excited generator, and the induced electromotive force waveform is
basically sinusoidal with the maximum value of 38.82 V. Taking the Fourier decomposition
of the induced electromotive force of phase A, the histogram of the harmonic distribution
of the induced electromotive force can be obtained as shown in Figure 10. From Figure 10,
it can be seen that the fundamental waveform amplitude is 33.63 V; the amplitude of
each harmonic is shown in Table 2, and the waveform distortion rate THD calculation for
A-phase induced potential is 19.8%.
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Figure 9. Three-phase no-load induction electromotive force waveform 3 Structure optimization.
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Figure 10. Histogram of the harmonic distribution of the induced electric potential.

Changes in some structural parameters of the claw-pole rotor can significantly affect
the generator performance and need to be optimized. However, the structural parameters
of the claw pole are not independent, and the interconnection between the parameters and
the influence of the parameters on the generator performance are complex and variable.
According to the sensitivity of each parameter to the induction potential of the generator,
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the design variables are selected as the claw-pole tip arc coefficient, claw-pole root arc
coefficient, claw-pole tooth tip thickness and claw-pole tooth root thickness. The base wave
amplitude and sinusoidal distortion rate of the induction potential of the generator are the
two optimization objectives. The constraints of each design variable are shown in Table 2.

Table 2. Optimization constraints of each design variable.

Design Variable Symbol Initial Value Unit Binding Conditions

Width of claw-pole tooth tip a1 17 mm 16 ≤ a1 ≤ 18
Width of claw-pole tooth root a2 24 mm 23 ≤ a2 ≤ 25
Claw-pole tooth tip thickness b1 3.5 mm 3 ≤ b1 ≤ 4.5

Claw-pole tooth root
thickness b2 10 mm 9.5 ≤ b2 ≤ 12

The optimization objective is to maximize the fundamental of the inductive electric
potential and minimize the sinusoidal distortion rate while satisfying the constraints, and
the optimization model is shown as follows.{

maxUA(x1, x2, ..., xm)
minTHD(x1, x2, ..., xm)

(13)

where UA represents the phase-A induced electromotive force fundamental amplitude, and
THD represents the induced electromotive force waveform distortion rate.

Due to the special characteristics of the claw-pole rotor structure, a three-dimensional
model needs to be established for the finite element simulation calculation, and the calcu-
lation volume is large; thus, the Latin super-erection method with an optimized number
of 100 sample points is used for sample collection of the design variables. Some of the
sampling points are shown in Table 3, where sample point 0 is the initial value of the design
variables.

Table 3. Some sampling points correspond to design variable values.

Serial Number a1 a2 b1 b2

0 17 24 3.5 10
1 17.1565 24.0115 3.4125 10.1725
2 16.9045 23.9275 3.8925 10.6225
3 17.1475 23.8225 4.3275 11.0725

. . . . . . . . . . . . . . .
96 17.0365 23.9335 3.6375 10.7425
97 16.9645 23.8945 4.4775 11.2225
99 16.9585 23.9815 3.9675 10.6675

100 16.9405 23.8315 4.4175 10.5625

A simulation analysis is performed for 100 sampling points, and a plot of the fitted
surface relationship between the design variables and the response values can be obtained.
Some of the design variables and response values’ fitted relationship graphs are shown in
Figure 11.

As can be seen from Figure 11, a1, a2 and the induced electric potential have an
approximately single-peak linear relationship. The spatial relationships between the design
variables and the response values have multi-peak, multi-valley, non-uniform and non-
linear characteristics.

The characteristics of the effect of each design variable on the response value can be
obtained from the fitted relationship between the design variables and the response value.
It can be expressed by the sensitivity of each design variable to the change in the response
value. The sensitivity of each design variable is shown in Table 4.
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Figure 11. Part of the design variable fits the response value.

Table 4. Sensitivity of the design variable with respect to the response value.

Design Variables Sensitivity for UA Sensitivity for THD

a1 0.55476 0.51572
a2 0.33641 0.11612
b1 0.15723 0.05364
b2 0.03547 0.03674

The pareto optimization method is a common method for solving multi-objective
optimization problems, especially for two-objective optimal problems [17,18]. By solving
the Pareto front, the distribution of the optimal solution set can be reflected intuitively in
the two-dimensional space. The full sample points were counted, and their Pareto front
distribution is shown in Figure 12.
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As can be seen from Figure 12, there are 10 sample points on the Pareto front. These
10 sample points are the valid solutions of this optimization model, respectively, and the
specific values of the design variables and optimization objectives at this time are shown in
Table 5.

Table 5. The specific values of design variables and optimization objectives in the effective solution.

Serial
Number a1 a2 b1 b2 THD/% UA/V

74 17.0485 23.8885 3.0225 10.5025 5.31 30.06
6 17.0665 23.8615 3.9075 10.9675 7.16 30.86

31 16.9645 23.8945 4.4775 11.2225 7.90 31.14
43 17.0815 23.9245 3.0375 11.0875 8.58 31.19
15 17.0365 23.9335 3.6375 10.7425 9.27 37.95
37 16.9825 23.9215 3.9975 10.3675 10.63 38.89
24 17.1805 23.9485 4.0875 11.4025 17.13 39.05
86 16.9585 23.9815 3.9675 10.6675 18.18 39.69
37 17.0935 23.9305 4.4325 11.4625 20.53 39.76
92 16.9405 23.8315 4.4175 10.5625 24.97 40.47

To determine the relative optimal solution, K is defined and represents the parameter
matching coefficient. The larger the value, the better the corresponding motor output
performance, while assigning weights to the two optimization objectives. The expression
of this is as follows:

K = C1
UA(x1,x2,...,xm)

U0
− C2

100 THD(x1, x2, ..., xm) (14)

In the formula, K is the performance parameter match factor, which represents the
ultimate performance superiority of the motor; C1 and C2 are weighting coefficients, where
C1 takes 0.6 and C2 takes 0.4; and U0 is the generator induces the electromotive force
fundamental amplitude at the initial value of the design variable.

From this equation, the relationship between the two optimization objectives and
K among the 10 valid solutions solved by the Pareto front can be obtained. The two
optimization objectives are plotted against the matching coefficients, as shown in Figure 13.
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As can be seen from Figure 13, sample point No. 37 is the “optimal solution” of the
optimization model, at which the fundamental amplitude of the motor induction potential
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is 38.89V and the waveform distortion rate is 10.63%. The final value is obtained based on
the values of the variables and the actual machining process. The optimal solution and the
final value of each response variable are shown in Table 6.

Table 6. Optimal solution and final value of each response variable.

Parameters Optimal Solution Final Value

a1 16.9825 17.0
a2 23.9215 23.9
b1 3.9975 4.0
b2 11.4675 11.5

4. Experimental Validation

Based on the optimized motor parameters, the prototype is fabricated, and its per-
formance is tested by using the generator test bench. The reverse brushless claw-pole
electrically excited prototype and the conventional claw-pole electrically excited generator
are shown in Figure 14, and the generator test bench is shown in Figure 15.
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The no-load characteristics of the test prototype were obtained, and the no-load
induced electromotive force curve and no-load induced electromotive force harmonic
distribution of the generator were compared with the optimized finite element analysis
results. The comparison results are shown in Figures 16 and 17, Table 7.

As can be obtained from Figures 16 and 17, Table 7, the no-load induced electromotive
force waveform obtained from the performance test of the reverse claw-pole prototype
is basically the same as the simulation result. It can be seen that the value at the peak
is slightly lower, and the waveform has good sinuosity. The test results show that the
fundamental amplitude of the no-load inductive electromotive force of the reverse claw
polar prototype machine is 38.23 V. The error with the simulation result is 1.7%, and the
distortion rate of the no-load induction electromotive force is 13.32%. The reason for the
error with the test result is that the simulation value is only taken from the first nine
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harmonics, which is slightly lower than the actual value. Moreover, the test value can be
accurately calculated by the generator test bench for all harmonics.
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Figure 17. No-load induced electromotive force harmonic distribution.

Table 7. Data comparison of experimental results.

Amplitude of Fundamental
Wave of Induced

Electromotive Force/V
THD/%

Finite element simulation
results after optimization 38.89 10.63

Experimental results of
reverse claw-pole prototype 38.23 13.32

Experimental results of
traditional claw-pole

prototype
35.37 17.47

The waveform of no-load induction potential of the conventional claw-pole prototype
has the phenomenon of “clipping” at the peak and trough; the base wave amplitude of the
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no-load induction potential is 35.37 V, and the distortion rate is 18.47%, which are different
from the performance of the reverse claw-pole prototype. This is due to the structural
limitations of the conventional claw motor-excited generator; in the case of the same rotor
diameter, the width of the claw tip is significantly smaller than that of the reverse claw
generator. The width of the claw tip of the tests prototype is only 8 mm.

Figures 18 and 19 show the variation curves of the induced electromotive force of the
generator at a load of 50 Ω and 100 Ω, respectively. It can be seen from the figure that,
with the increase of the load, the induced electromotive force waveform distortion of the
traditional claw motor generator is greater. At a 100 Ω load, the induced electromotive
force has an obvious depression at the crest and trough of the waveform. At the same time,
the maximum induced electromotive force of the reverse claw-pole generator is greater
than that of the traditional claw-pole generator.
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5. Conclusions

This paper proposes a brushless reverse claw-pole electrically excited generator, which
has the advantages of uniform magnetic field distribution, high-power density and low
harmonic content of induction electric potential compared with the traditional electrically
excited claw-pole generator. The whole machine adopts a brushless structure, eliminating
the carbon brush slip ring structure and making it is easy to wear, and the whole machine
is highly reliable. The article aims at a high base wave amplitude and low waveform
distortion rate of the induction potential at no load, completes the optimization of the
machine parameters and determines the optimal claw-pole size. After optimization, the
base wave amplitude of the induction potential is 38.89 V, and the waveform distortion
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rate is 10.63%. The trial prototype and test show that reverse claw-pole electrically excited
generator has high sinusoidality, a high fundamental amplitude and a low waveform
distortion rate under different loads’ power-generation conditions. Its performance is
significantly better than that of traditional claw generators, which can better meet the
application requirements.
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