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Abstract: As large-scale wind turbines are connected to the grid, modeling studies of wind farms
are essential to the power system dynamic research. Due to the large number of wind turbines
in the wind farm, detailed modeling of each wind turbine leads to high model complexity and
low simulation efficiency. An equivalent modeling method for the wind farm is needed to reduce
the complexity. For wind farms with widely used doubly-fed induction generators (DFIGs), the
existing equivalent studies mainly focus on such continuous control parts as electrical control. These
methods are unsuitable for the low voltage ride through (LVRT) part which is discontinuous due to
switching control. Based on particle swarm optimization (PSO) and density-based spatial clustering
of applications (DBSCAN), this paper proposes an equivalent method for LVRT characteristics of wind
farms. Firstly, the multi-turbine equivalent model of the wind farm is established. Each wind turbine
in the model represents a cluster of wind turbines with similar voltage variation characteristics. A
single equivalent transmission line connects all wind turbines to the power grid. By changing the
terminal voltage threshold to enter LVRT, each equivalent turbine can be in different LVRT states.
Secondly, an LVRT parameter optimization method based on PSO is used to obtain the dynamic
parameters of the equivalent wind turbines. This method of parameter optimization is applicable
to the equivalent of LVRT parameters. Thirdly, a clustering method based on DBSCAN is used to
obtain suitable clusters of wind turbines. This clustering method can classify wind turbines with
similar electrical distances into the same cluster. Finally, two examples are set up to verify the
proposed method.

Keywords: doubly-fed induction generator; low voltage ride through; dynamic equivalence; particle
swarm optimization; density-based spatial clustering of applications

1. Introduction

As more and more attention has been paid to the development and utilization of
renewable energy in recent years, the proportion of wind power generation in the power
system continues to increase. The impact of wind power generation on power system
security is also increasing [1]. For example, in the blackout accident in the UK on 9 August
2019 [2], an unexpected fault occurred suddenly, and many wind turbines were discon-
nected from the grid following the fault during the rapidly dynamic process. It resulted in
a significant power shortage which eventually caused severe impacts and losses. Therefore,
in power system dynamic research, it is necessary to perform accurate modeling of wind
turbines to simulate the complex dynamic processes of the wind farm under faults [3].

Centralized wind power generation based on doubly-fed induction generators (DFIGs)
is a widely used generation form [4,5]. The detailed modeling of DFIG wind turbines
involves various parts, including electrical control, low voltage ride through (LVRT) control,
generator-converter, pitch angle control, drive shaft, aerodynamics, etc. [6]. The structure
of these models is very complicated. Moreover, due to the small capacity of the wind
turbine, the number of DFIGs in centralized wind farms is usually very large [7]. Detailed
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modeling of each wind turbine leads to high model complexity [8,9]. Moreover, it makes
the simulation very inefficient.

In order to improve the simulation efficiency, a suitable equivalent method is needed
to model the wind farm [10]. Single-turbine equivalent is the most commonly used method,
which replaces the wind farm with a single equivalent wind turbine. The current studies on
single-turbine equivalent mainly include coherency-based dynamic equivalent [11], rotor-
side controller-based dynamic equivalent [12], and similar coherency equivalent [13], and
weighted average equivalent [14]. The accuracy of the single-turbine equivalent method is
high when the wind turbines are closely distributed and the dynamic responses of all wind
turbines are similar [15]. However, when the dynamic response varies significantly from
turbine to turbine, the dynamic response characteristics of the entire wind farm cannot be
accurately expressed by only one equivalent wind turbine.

In order to further improve the equivalent accuracy of wind farms, some studies
have used the multi-turbine equivalent method in [16–18]. These studies mainly consider
the response characteristics of the continuous control parts of wind turbines, such as
electrical control. Therefore, the dynamic characteristics can be fitted with high accuracy
when the terminal voltage drop of the wind turbine due to faults is slight. However, when
severe faults cause significant terminal voltage drops, the wind turbines need to switch from
normal operation mode to LVRT mode. This switching control has significant discontinuous
characteristics. In this case, the equivalent method mentioned above for continuous control
cannot be applicable to the LVRT equivalent with discontinuous control characteristics.

On the other hand, clustering is very significant in multi-turbine equivalent meth-
ods. The selection of clustering indexes can directly affect the accuracy of the equivalent
model [19]. The current clustering indexes can be divided into two main categories, the first
one is objective environmental indexes, such as wind speed [20], wake effect model [21],
etc.; the second category is the electrical characteristics of the wind turbine, such as the
operating state [22] and power [23] of the turbine. The objective environmental data are
easier to obtain but have strong volatility and uncertainty, while the electrical characteristics
are more accurate in the subgroup results due to their controllability. The reasonable choice
of clustering indexes can improve the accuracy of the equivalent model when targeting
different specific problems.

In order to solve the equivalent problem of LVRT for centralized DFIG wind farms,
this paper proposes an LVRT equivalent method based on particle swarm optimization
(PSO) and density-based spatial clustering of applications (DBSCAN). The rest of the paper
is organized as follows. The characteristic of the wind turbine LVRT model is analyzed in
Section 2. A multi-turbine equivalent model structure is established and the equivalent
static parameters are obtained in Section 3. Each wind turbine in the model represents a
cluster of wind turbines with similar voltage variation characteristics. The LVRT parameters
of the equivalent wind turbines are optimized by the PSO in Section 4. The cluster of the
wind turbines is obtained by the DBSCAN in Section 5. Following this, three case studies
are used to verify the effectiveness of the proposed method in Section 6, and conclusions
are drawn in Section 7.

2. Characteristics of the Wind Turbine LVRT Model
2.1. The Basic Model of Wind Turbines

Taking the commonly used model of the wind turbine as an example, the relationship
among the parts mentioned in the introduction is shown in Figure 1.

In Figure 1, Ipcmd is the current command for controlling active power; Eqcmd is the
voltage command for controlling reactive power; Pcmd and Qcmd are the active and reactive
power commands.

The wind turbine determines whether to enter the LVRT mode based on the terminal
voltage. When the terminal voltage drops and causes the wind turbine to enter the LVRT
mode, both Pcmd and Qcmd are controlled by the LVRT control model.
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similar with minor differences. The model of the Type 2 DFIG in the Power System Anal-
ysis Software Package (PSASP) developed by China Electric Power Research Institute is 
used in this paper. In terms of engineering practicality, PSASP is currently the most com-
monly used software in China for large-scale grid modeling studies. Therefore, PSASP 
was chosen as the simulation software in this paper in order to facilitate the application 
of the proposed equivalent method and the subsequent dynamic simulation analysis of 
the wind farm equivalent model. According to the wind turbine transient control charac-
teristics, the PSASP designs a control method to simulate the power response characteris-
tics of the wind turbine during the LVRT. The active power response of the wind turbine 
in the LVRT mode is shown in Figure 2.  
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Figure 2. Active power response of LVRT control mode. 

Figure 1. Relationship among the parts in the model of the wind turbine.

2.2. Analysis of the LVRT Control Model

The LVRT control models of the wind turbine in the current simulation software are
similar with minor differences. The model of the Type 2 DFIG in the Power System Analysis
Software Package (PSASP) developed by China Electric Power Research Institute is used
in this paper. In terms of engineering practicality, PSASP is currently the most commonly
used software in China for large-scale grid modeling studies. Therefore, PSASP was chosen
as the simulation software in this paper in order to facilitate the application of the proposed
equivalent method and the subsequent dynamic simulation analysis of the wind farm
equivalent model. According to the wind turbine transient control characteristics, the
PSASP designs a control method to simulate the power response characteristics of the wind
turbine during the LVRT. The active power response of the wind turbine in the LVRT mode
is shown in Figure 2.
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The LVRT control is divided into three periods, t1~t2 is the fault period of LVRT; t2~t2
′

is the recovery-preparation period; t2
′~t3 is the recovery period. The LVRT control model

of wind farms in the three periods is described as follows.

(1) fault period
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Over this period, the active and reactive power is controlled by the current command,
as shown in Equation (1):{

IF
pc= Ipset+KpI Ip0+KpVVt

IF
qc= Iqset+KqI Iq0+KqV (V Lin − Vt

) (1)

where IF
pc and IF

qc are the active and reactive current commands during the fault period;
Ipset and Iqset are two constants to adjust the IF

pc and IF
qc; KpI and KqI are the coefficients

which are related to the initial active and reactive current; Ip0 and Iq0 are the initial active
and reactive currents; KpV and KqV are the coefficients which are related to the voltage; Vt
is the terminal voltage of the wind turbine; VLin is the terminal voltage threshold for wind
turbines to enter LVRT.

From the above equation in this period, it can be seen that the active current of the
wind turbine decreases with the drop of the terminal voltage. Since the reactive current
is controlled by the difference between the LVRT threshold and the terminal voltage, the
reactive current increases when the terminal voltage drops.

(2) recovery-preparation period

Over this period, the LVRT of the wind turbine is in the preparation process for
recovery. The active and reactive power control modes are based on the percentage of
initial current, as shown in Equation (2):{

IP
pc= min(I prec+KP

Ip Ip0, Ip0)

IP
qc = min(I qrec+KP

Iq Iq0, Iq0

) (2)

where IP
pc and IP

qc are the active and reactive current commands at the start of the LVRT
recovery; Iprec and Iqrec are the preset active and reactive currents; KP

Ip and KP
Iq are the

initial active and reactive current coefficients.
Over this period, the power generated by the wind turbine increases to a constant

value, which is usually less than the power in normal operating conditions. This is to
prevent shocks caused by rapid power recovery from affecting the security of wind tur-
bine devices.

(3) recovery period

At this period, the LVRT of the wind turbine is in the recovery process. The reactive
current is not limited and can be quickly recovered to the normal level after the fault is
cleared. The active current control mode in the recovery period is constant slope control, as
shown in Equation (3): {

IR
pc= IP

pc+kIpc (t − t2
′
)

kIpc= Snk0/SB
(3)

where kIpc is the active current slope during the LVRT recovery process; t is the current
simulation time; t2

′ is the start time of the recovery period; Sn is the nameplate capacity of
the wind turbine; k0 is the control parameter of recovery slope; SB is the reference capacity.

When the terminal voltage of the wind turbine drops below the LVRT threshold,
the wind turbine enters the LVRT mode. It can be seen that when the LVRT period of
the wind turbine is switched, the current control commands are significantly different.
This switching control in LVRT mode has significant discontinuous characteristics, which
makes the equivalent method based on the continuous controlled electrical model no
longer applicable. Therefore, it is necessary to find an equivalent method of wind turbines
considering the LVRT discontinuous characteristics.
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3. Static Equivalent of Centralized Wind Farms

Considering that most centralized wind farms are built with similar wind turbines,
the model structure and control mode of the turbines are almost the same. Therefore, this
paper focuses on wind farms with the same turbine structure and control mode.

3.1. Wind Farm Equivalent Model

The topology of the equivalent model is shown in Figure 3. Each equivalent wind
turbine Geqk (k = 1, 2, . . . , n) in the model represents a cluster of original wind turbines.
These equivalent turbines are connected to the external power system via an equivalent
transmission line Leq and an equivalent transformer Teq. The equivalent transmission line
and transformer impedance parameters are obtained through the static equivalent method
discussed in Section 3.3. The buses between each equivalent wind turbine are connected
via zero impedance lines L1, L2, etc.
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The switches (s2, . . . , sn) in the equivalent model control the connection and disconnec-
tion of the equivalent wind turbines. Therefore, this equivalent model can be applied to the
multi-turbine equivalents. This model can also achieve a single-turbine equivalent when
all switches are off. The different electrical distances from the fault location to the wind
turbines lead to different terminal voltages strongly related to the LVRT characteristics,
whereas in the multi-turbine equivalent model, the voltage of the bus connected to each
wind turbine is the same because of the zero impedance lines. Therefore, the equivalent
turbines cannot show the difference in the LVRT mode of wind turbines in the original
wind farm due to the variation of the terminal voltage. This paper changes the terminal
voltage threshold at which different wind turbines enter the LVRT mode to make the wind
turbines at the same voltage express different LVRT states. The terminal voltage threshold
variation is defined as ∆U in Equation (4):

∆U = U − U0

U =
∑

Nk
i=1 Ui
Nk

Uin
i = Uin

Ei − ∆U
Uout

i = Uout
Ei − ∆U

(4)

where U is the average value of the bus voltage of each wind turbine in the same cluster;
U0 is the bus voltage at the outlet of the wind farm; Ui is the bus voltage of each wind
turbine in the same cluster; Nk is the number of wind turbines in the k-th cluster; k is the
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number of clusters; Uin
i is the voltage at which the original wind turbine enters the LVRT

mode; Uin
Ei is the voltage at which the equivalent wind turbine enters the LVRT mode; Uout

i
is the voltage at which the original wind turbine exits the LVRT mode; Uout

Ei is the voltage
at which the equivalent wind turbine exits the LVRT mode.

By changing the LVRT threshold of the equivalent wind turbine, the difference in the
LVRT state of wind turbines in the original wind farm can be more accurately expressed.
The accuracy of the equivalent wind farm can also be improved.

3.2. Wind Turbine Power and Nameplate Capacity Equivalent

The power and nameplate capacity of the equivalent wind turbine in the multi-turbine
equivalent can be obtained by summing that of the original wind turbines within each
cluster, as shown in Equation (5): 

Sneqk =
Nk
∑

i=1
Sni

Peqk =
Nk
∑

i=1
Pi

Qeqk =
Nk
∑

i=1
Qi

(5)

where Sneqk is the nameplate capacity of the k-th equivalent wind turbine; k is the number
of clusters; Nk is the total number of original wind turbines in the k-th cluster; Sni is the
nameplate capacity of each original wind turbine in the k-th cluster; Peqk is the active power
of the k-th equivalent wind turbine; Pi is the active power of each original wind turbine
in the k-th cluster; Qeqk is the reactive power of the k-th equivalent wind turbine; Qi is the
reactive power of each original wind turbine in the k-th cluster.

When there is only one cluster, it is the single-turbine equivalent. In this case, the Nk is
the number of all wind turbines in the original wind farm.

3.3. Transformer and Line Equivalent of the Wind Farm

Differences in transformer and line parameters between the original and the equivalent
wind farm can impact the output power at the wind farm outlet and further lead to the
inaccuracy of the equivalent result. Therefore, to improve the accuracy, the first step is to
perform the static equivalent of the wind farm.

The equivalent transformer capacity is the sum of the capacity of each original trans-
former. The equivalent transformer impedance is calculated by using the weighted average
method as shown in Equation (6):

STeq =
nT
∑

i=1
STi

ZTeq =
nT
∑

i=1
ZTiSTi/ST

(6)

where STeq is the nameplate capacity of the equivalent transformer; STi is the nameplate
capacity of each original transformer; nT is the total number of transformers in the original
wind farm; ZTeq is the impedance of the equivalent transformer; ZTi is the impedance of
each original transformer; ST is the sum of the capacities of all original transformers.

The method based on equivalent power loss is used to calculate the equivalent line
impedance as shown in Equation (7):

Zeq =
N

∑
i,j=1

(
ZiPj

2
)

/

(
N

∑
j=1

Pj

)2

(7)
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where Zi and Zeq are the original impedance of the i-th line and equivalent impedance; Pj
is the active power of the j-th original wind turbine; N is the total number of the original
wind turbines.

4. PSO-Based LVRT Parameter Optimization Method

Because the equivalent researches on continuous control parts of wind turbines are
already mature, the method in [24] is used to obtain the equivalent parameters of continuous
control parts. In this paper, the focus of the equivalent of wind turbines is on the LVRT
control parameters. The switching control of the LVRT leads to discontinuous characteristics.
As an intelligent optimization algorithm, PSO is suitable for solving this discontinuous
optimization problem. Therefore, this paper uses PSO to optimize the equivalent LVRT
control parameters of wind turbines.

4.1. Basic PSO Algorithm

There is a particle swarm with m particles in a D-dimensional search space in the basic
PSO. The i-th particle can be represented by a position vector xi and a velocity vector vi,
where xi = (xi1, xi2, . . . , xiD) vi = (vi1, vi2, . . . , viD). The spatial position of the particles is a
set of LVRT control parameters. The fitness can be calculated by the optimization objective
function and can measure the merit of the solution. The particle position and velocity are
updated according to the best historical fitness of the individual and the best global fitness
of the whole. The next iteration is performed until the fitness is almost no longer changing
or the number of iterations reaches the maximum. The evolution update process of each
particle is shown in Equations (8) and (9):

v(m) = r1λg
(
xg − x(m− 1)

)
+ r2λu(xui − x(m− 1)) + ωv(m− 1) (8)

x(m) = v(m) + x(m− 1) (9)

where m is the number of iterations; r1 and r2 are random numbers uniformly distributed
within [0, 1]; λg and λu are global acceleration coefficients and individual acceleration
coefficients; xg is the position vector of the particle corresponding to the best global fitness;
xui is the position vector corresponding to best historical fitness of the i-th particle; ω is the
inertia coefficient.

The initial position of a single particle in a particle swarm is a multidimensional vector.
The initial position of the particle swarm is defined as X0 = [x1, x2, . . . , xm]T, where the
position of the i-th particle is xi = [x1, x2, . . . , xm]T. In order to determine whether the PSO
converges, the fitness of each particle needs to be calculated. The particle swarm fitness
vector is defined as F = [F1, F2, . . . , Fm], where Fi denotes the fitness of the i-th particle and
is calculated by Equation (10):

Fi =
∫ tb

ta

{[(
Ppre − Peq

)2
+
(

Qpre − Qeq

)2
]}

(10)

where Ppre and Peq are the active powers at the outlet of the original and equivalent wind
farm; Qpre and Qeq are the reactive powers at the outlet of the original and equivalent wind
farm; ta and tb are the time when the wind turbine enters and exits the LVRT mode.

4.2. The Improvements of PSO

There are two main factors affecting the accuracy of PSO optimization, including the
generation of initial particles and the setting of parameters in the evolutionary strategy. For
the first factor, the initial position of LVRT control parameters in each particle will impact
the search range of PSO. Therefore, a reasonable selection of the initial position is needed to
improve the probability of the algorithm searching for the optimal solution. For the other
factor, the inertia coefficient in the basic PSO is fixed in the iterative process, which makes
the convergence of the algorithm slow and may cause the results to fall into the optimal
local solution. Therefore, the PSO is improved in the above two aspects.
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(1) Improvement of initial particles generation

This paper uses the method of generating reference points by weighted averaging
to narrow down the generation of the initial particle population. Therefore, the particles
are searched around the more reasonable initial LVRT control parameters to improve the
search efficiency of PSO. In the case of single-turbine equivalent, the initial LVRT control
parameters are calculated as shown in Equation (11):

xj0 =
Nk

∑
i=1

xjiSi/Seqk (11)

where xj0 is the weighted average of the j-th parameter (j = 1, . . . , p); p is the total number
of parameters; xji is the the j-th parameter of the i-th wind turbine in the k-th cluster; Si is
the nameplate capacity of the i-th wind turbine in the k-th cluster; Seqk is the nameplate
capacity of the k-th equivalent wind turbine, and Nk is the total number of wind turbines in
the k-th cluster.

(2) Improvement of inertia coefficient

This paper balances the global search ability and local search ability of the PSO by
changing the value of the inertia coefficient in the iterative process. The updated equation
of the inertia coefficient is shown in Equation (12):

ω =

{
ωmin −

(ωmax − ωmin)(F − F min)
Favg Fmin

, F ≤ Favg

ωmax, F > Favg
(12)

where ωmax and ωmin represent the maximum and minimum inertia weights, respectively;
F represents the current fitness of the particle; Favg represents the current average fitness of
the particle; Fmin represents the minimum fitness of the particle.

This method dynamically adjusts the inertia coefficient by comparing the current
fitness with the average fitness in the iteration to achieve the balance between the global
search ability and local search ability. Through this method, the equivalent accuracy and
PSO convergence speed are improved.

5. Wind Turbines Clustering
5.1. Clustering Indicators

In the multi-turbine equivalence method for wind farms, it is first necessary to cluster
the wind turbines. The impact on the LVRT characteristics of the wind turbine when a
fault occurs in the power system is mainly achieved by affecting the terminal voltage of
the turbine. Therefore, this paper divides wind turbines with similar voltage drops into
the same cluster. In this way, the LVRT characteristics of wind turbines in the same cluster
change similarly.

The electrical distance which is from the installed position of the wind turbine to the
fault location can affect the terminal voltage of the wind turbine. Therefore, the electrical
distance of the wind turbines is considered a clustering indicator. The turbines within the
same cluster have similar voltage drops and dynamic characteristics.

The impedance method is used to get the electrical distance. The system impedance
matrix is obtained by the node admittance matrix. The electrical distance matrix is calcu-
lated from the elements in the impedance matrix, as shown in Equation (13):

dij= zii − zij+zjj − zji (13)

where dij is the electrical distance between the i-th and j-th nodes; zii and zjj are the self-
impedances of the i-th and j-th nodes, respectively; zij and zji are the mutual impedances of
the i-th and j-th nodes.
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5.2. The Clustering Method Based on DBSCAN

The current clustering methods are divided into two main categories: those that
require and those that do not require specifying the number of clusters in advance. Because
a reasonable number of wind turbine clusters cannot be determined in advance, this
paper chooses the DBSCAN clustering method [25]. DBSCAN does not need to determine
the number of clusters in advance but speculates the number of clusters based on the
data. Moreover, it is a density-based clustering method which is suitable for wind turbine
clustering problems based on the electrical distance. However, the traditional DBSCAN
algorithm first needs to determine two parameters artificially. One is the E, the radius of the
proximity region around a point. The other is the Cmin, the number of electrical distance
points contained at least in the proximity region. The choice of these two parameters
directly determines the clustering effect. Since these two parameters also cannot be specified
artificially before clustering, the traditional DBSCAN is improved in this paper to determine
the optimal parameters E and Cmin adaptively.

The improved DBSCAN is mainly based on the parameter-finding strategy. It uses
the distribution characteristics of the electrical distance data to generate the candidate E
and Cmin. Then, it can automatically find the appropriate number of clusters and obtain
the corresponding parameters. The specific calculation process of the improved DBSCAN
is shown in Figure 4.
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First, the k-nearest neighbor algorithm is used to generate the list of E. Then, iterate
through each E to determine the number of points in the neighborhood of E. Then the Cmin
is calculated according to Equation (14) to obtain the list of Cmin:

Cmin= (
a

∑
i=1

Ci)/a (14)
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where Ci is the number of points in the E neighborhood of the i-th point, and a is the total
amount of data.

The elements in the list of E and the elements in the corresponding list of Cmin are
selected and input into the DBSCAN to get the M which is the number of clusters. The
clustering result converges when the number is the same for three consecutive times. At
this time, the M is the optimal number of clusters. The E and Cmin corresponding to the
M are the optimal parameters to achieve the adaptive determination of parameters in
the DBSCAN.

It should be noted that the real and imaginary parts of the electrical distance data of
each wind turbine are used as x and y coordinates to obtain the data used for clustering.
They then apply adaptive DBSCAN to the processed data to achieve clustering of wind
turbines. The DBSCAN uses the Euclidean distance between the points in the processed
data as the specific clustering indicator, as shown in Equation (15):

ρi =

√
(x i − xj

)2
+(y i − yj

)2
(15)

where ρi is the Euclidean distance between two points in the data; xi and xj are the x
coordinates of the i-th and j-th point in the processed electrical distance data; yi and yj are
the y coordinates of the i-th and j-th point in the processed electrical distance data.

6. Verification of the Equivalent Method
6.1. Test System

The structure of the original centralized DFIG wind farm in the test system is shown
in Figure 5. There are two main collector lines in the original wind farm, each connecting
ten wind turbines. The parameters of wind turbines are different, and some of them are
shown in Tables 1 and 2. The external power system is simulated with an ideal infinity
generator. It is connected to the bus at the wind farm outlet via the transmission line and
the transformer.
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Table 1. The operating status of some wind turbines in the original wind farm.

F1 F3 F5 F7 F9 F11 F13

P (MW) 2.13 2.06 1.99 1.87 1.82 2.16 2.00
Q (MVar) 0.43 0.40 0.35 0.32 0.29 0.45 0.43
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Table 2. The LVRT control parameters of different wind turbines in the original wind farm.

KpV KqV Ipset (p.u.) Iqset (p.u.) KP
Ip KP

Iq KpI KqI Iprec (p.u.) Iqrec (p.u.) k

F1 0.00 0.00 0.00 0.00 0.36 0.00 0.00 30.90 0.00 0.00 1.00
F5 0.53 1.52 0.00 0.00 1.00 −0.20 0.50 1.00 0.00 0.00 1.00
F11 0.00 1.21 0.21 0.10 0.58 0.00 0.25 2.50 0.40 0.10 1.00
F15 0.48 1.00 0.35 0.10 0.24 0.00 0.25 2.50 0.80 0.10 1.00

In this paper, different faults are set up to make the terminal voltage of the wind farm
drop to various levels. The specific fault in the simulation is a three-phase short-line fault.
The grounding impedance of different faults is set as (p.u.): Zf1 = 0 + j0.2, Zf2 = 0 + j0.4,
Zf3 = 0 + j0.6, Zf4 = 0 + j0.3, Zf5 = 0 + j0.5 and Zf6 = 0 + j0.7.

6.2. Case Study 1: Single Turbine Equivalent under the Close Distribution of Wind Turbines

Case study 1 considers the situation that the wind turbines in the wind farm are
relatively closely connected. That is, the installed positions of each wind turbine are
relatively close. The specific line lengths are shown in Table 3. In this table, Lij represents
the length between the i-th wind turbine and the j-th wind turbine in the wind farm.

Table 3. Length of lines between different wind turbines in the original wind farm in Case study 1.

Line L1,2 L2,3 L3,4 L4,5 L5,6 L6,7 L7,8 L8,9 L9,10

Length (km) 0.4 0.4 0.4 0.6 1.2 0.4 0.4 0.4 0.4

Line L11,12 L12,13 L13,14 L14,15 L15,16 L16,17 L17,18 L18,19 L19,20

Length (km) 0.4 0.4 0.4 0.5 0.4 0.6 0.4 0.8 0.4

First, the number of equivalent wind turbines needs to be determined. The electrical
distance of each wind turbine in the wind farm is shown in Figure 6. By applying the
improved DBSCAN, the number of clusters and the corresponding parameters are M = 1,
E = 0.64, and Cmin = 18. Due to the dense distribution of wind turbines in this centralized
wind farm, the wind turbines are only divided into one cluster. An equivalent wind turbine
is used to perform the characteristics of the wind farm.
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The improved PSO can be used to obtain the parameters of the equivalent wind turbine
under faults Zf1, Zf2, and Zf3. In order to further verify the generality of the parameters,
the obtained equivalent wind turbine is simulated again under faults Zf4, Zf5, and Zf6.
The results of comparing the active and reactive power at the outlet of the original and
equivalent wind farm are shown in Figure 7.
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From the results, it can be seen that the initial terminal voltage of the equivalent
system differs from the original system before the fault occurs, which is caused by the static
equivalence error of the wind farm. Throughout the equivalence process, the bus frequency
fluctuations at the wind farm outlet are relatively small and cannot lead to serious grid
failures. For active power, the LVRT control of the wind turbine is recovered with a constant
starting point and slope during the recovery phase. Therefore, the active power dips at
different levels under different faults, but the curve of the recovery process is the same.

In this paper, the accuracy of the equivalent is evaluated by calculating the root mean
square error (RMSE) of the power between the original and the equivalent system. Under
three different faults, the RMSE of the active and reactive power are 3.3% and 1.2%. These
errors are allowable in engineering research.

To verify the superiority of the proposed method in this paper, the weighted average
method and the basic PSO method are applied to this case study under the fault Zf4 and
the equivalent results are compared as shown in Figure 8.
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Under three different methods, the RMSE of the active and reactive power are shown
in Table 4.

Table 4. The RMSE under different methods.

Method The RMSE of P (%) The RMSE of Q (%)

Weighted Average 24.08 10.86
Basic PSO 1.85 3.36

Improved PSO 1.26 1.98

The comparison shows that the equivalent results obtained by the weighted average
method are not satisfactory when there are differences in wind turbine parameters within
the wind farm. This is mainly due to the fact that the weighted averaging changes the
control parameters of the LVRT recovery period, which makes the power of the equivalent
turbines during the fault recovery vary significantly. Although the basic PSO method has
higher equivalence accuracy, its convergence speed is slow. It can be seen from (c) that the
improved PSO has 40.5% fewer iterations than the basic PSO, and the best fitness of the
improved PSO is improved by 6.1%. This indicates that the improved PSO proposed in this
paper has higher equivalent accuracy and convergence speed.

As mentioned above, when the distribution of wind turbines is close to each other, the
equivalent of wind farms can be achieved with only one wind turbine. The results show
that the equivalent of the original system is achieved with high accuracy, which proves the
effectiveness of the equivalent method in this paper.
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6.3. Case Study 2: Multi-Turbine Equivalent under the Decentralized Distribution of
Wind Turbines

Considering that the installed locations of wind turbines in wind farms may be
scattered due to the terrain, the terminal voltage drop of the wind turbines in different
locations is various. At this time, one equivalent wind turbine cannot simulate the dynamic
characteristics of the wind farm. The wind farm needs to be clustered to achieve the
multi-turbine equivalent.

In Case study 2, different line impedance is set to simulate the installed positions of
the wind turbines. The specific lengths are shown in Table 5. The electrical distances of
each wind turbine are shown in Figure 6. The improved DBSCAN is applied to obtain the
number of clusters. The corresponding parameters are M = 3, E = 0.27, and Cmin = 5. The
specific wind turbine clustering result is shown in Table 6.

Table 5. Length of lines between different wind turbines in the original wind farm in Case study 2.

Line L1,2 L2,3 L3,4 L4,5 L5,6 L6,7 L7,8 L8,9 L9,10

Length (km) 0.4 0.4 0.4 0.44 0.4 2.4 0.4 2.8 0.4

Line L11,12 L12,13 L13,14 L14,15 L15,16 L16,17 L17,18 L18,19 L19,20

Length (km) 0.4 2.4 0.4 0.4 0.4 0.6 2.8 0.4 0.4

Table 6. The clustering result of wind turbines in Case study 2.

Cluster Number Turbine Number

1 F1, F2, F3, F4, F5, F6, F11, F12
2 F7, F8, F13, F14, F15, F16
3 F9, F10, F17, F18, F19, F20

In order to verify that the results of the multi-turbine equivalent are more accurate
than the single-turbine equivalent, the simulation results under faults Zf1, Zf2, and Zf3 are
obtained to perform the single-turbine and multi-turbine equivalent. Then, the obtained
single-turbine and multi-turbine equivalent models and the original wind farm model are
further simulated and analyzed under faults Zf4, Zf5, and Zf6. The results of comparing
the active and reactive power at the original and equivalent wind farm outlet are shown in
Figures 9–11.
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The above results show that the terminal voltage of the equivalent model before the
fault is different from the original wind farm due to the static equivalent error of the
wind farm. However, the drops in terminal voltage during the faults is similar, so this
terminal voltage difference has a small impact on the equivalent accuracy. During the
whole equivalence process, the fluctuation of the bus frequency at the wind farm outlet is
small and cannot cause serious grid faults.

For the active power of the wind turbine, the difference between the multi-turbine
equivalent and single-turbine equivalent results is mainly concentrated in the recovery
period of the LVRT. This is due to the fact that the LVRT recovery process of wind turbines
under different voltage drops in a wind farm varies. A wind turbine can only show one of
the LVRT recovery states, and cannot show the impact on the wind farm when different
LVRT states are superimposed.

The RMSE of the active and reactive power is 20.25% and 12.86%, respectively, in the
single-turbine equivalent. In comparison, those in the multi-turbine equivalent are 1.12%
and 2.06%, respectively. The results show that the single-turbine equivalent model cannot
fully represent the LVRT dynamic characteristics of the original wind farm. In contrast,
after reasonable clustering, the multi-turbine equivalent can perform the characteristics of
LVRT and have higher accuracy than the single-turbine equivalent.

6.4. Case Study 3: Multi-Turbine Equivalent under the Large Capacity Wind Farms

To verify the applicability of the equivalent method proposed in this paper in large
capacity wind farms, Case study 3 uses an actual wind farm in China. The specific wind
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farm structure and distances are shown in Figure 12. The parameters of wind turbines are
different, and some of them are shown in Tables 7 and 8.
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Figure 12. The structure of the original wind farm with large capacity.

Table 7. The operating status of some wind turbines in the original large capacity wind farm.

1 5 10 15 16 19 20 25 30 35

P (MW) 2.51 2.55 2.49 2.46 2.53 2.50 2.49 2.51 2.50 2.52
Q (MVar) 0.55 0.48 0.42 0.40 0.53 0.50 0.48 0.47 0.45 0.42

Table 8. The LVRT control parameters of different wind turbines in the original large capacity
wind farm.

KpV KqV Ipset (p.u.) Iqset (p.u.) KP
Ip KP

Iq KpI KqI Iprec (p.u.) Iqrec (p.u.) k

1 0.50 1.03 0.00 0.00 0.76 1.73 0.50 1.00 0.20 0.10 1.00
16 0.53 0.00 0.00 0.00 1.00 1.20 0.50 2.00 0.40 0.10 1.00
21 0.00 1.20 1.00 0.00 1.24 1.36 0.25 1.50 0.00 0.10 1.00

By applying the improved DBSCAN, the number of clusters and the corresponding
parameters are M = 4, E = 0.43, and Cmin = 4. The specific wind turbine clustering result is
shown in Table 9.
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Table 9. The clustering result of wind turbines in Case study 3.

Cluster Number Turbine Number

1 1, 2, 3, 4
2 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20
3 12, 13, 14, 15, 21, 22, 23, 24
4 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

Then the improved PSO is used to obtain the parameters of the equivalent wind
turbine under faults Zf1. The results of comparing the active and reactive power at the
outlet of the original and equivalent wind farm are shown in Figure 13.
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The RMSE of the active and reactive power is 1.22% and 2.46%, respectively. It can be
clearly seen that the frequency fluctuation of the bus is very small and cannot cause serious
accidents in the grid. From the results, it is clear that the method proposed in this paper is
still applicable in large capacity wind farms.

7. Discussion

It is important to notice that the equivalence method proposed in this paper has some
limitations. This method is applicable to the case when the turbines in the wind farm have
the same structure. This is because the LVRT characteristics of different wind turbines
can vary significantly when the model structures of the wind turbines differ greatly. The
LVRT characteristics of the wind turbines can vary significantly even when the terminal



Energies 2023, 16, 2551 19 of 21

voltage drops are the same. At this point, it is not possible to distinguish the difference in
LVRT states between different turbines by simply clustering through electrical distance. In
this case, it is necessary to combine a variety of clustering indicators and further study a
reasonable clustering method.

From Case study 3, it can be seen that this method is also applicable to the equivalent
modelling analysis of the LVRT process of a large DFIG wind farm.

8. Conclusions

This paper proposes an LVRT equivalent method for large-scale DFIG wind farms
based on PSO and the adaptive DBSCAN. This equivalent method can be applied when
the wind turbines in the wind farm have the same structure.

This equivalent model improves the accuracy by considering the influence of static
parameters in the wind farm. The existence of errors in the static equivalent can lead to
differences between the terminal voltage of the equivalent model and the original wind
farm before the fault occurs. However, after the static equivalent, it can significantly
improve the similarity between the voltage drops of the equivalent model and the original
model during the fault period, which results in similar LVRT characteristics of the wind
turbine and thus improves the accuracy of the equivalent model.

The PSO-based dynamic parameter optimization method proposed in this paper is
applicable to the LVRT parameter equivalent with discontinuous characteristics. In this
method, the basic PSO is improved by changing the initial particles generation method
and adaptive change of inertia coefficients. The results show that the improved PSO
has higher convergence speed and equivalent accuracy. The DBSCAN-based clustering
method proposed in this paper can achieve reasonable clustering of wind turbines. This
clustering method can automatically cluster wind turbines by using electrical distance as
the clustering index.

The results of the simulations in PSASP show that the obtained equivalent system
can approximate the dynamic characteristics of the original wind farm. By comparing
the equivalent results with those obtained by the weighted average method and the basic
PSO method, it is verified that the proposed equivalent method has a high equivalent
accuracy and a fast convergence speed. The system frequency fluctuates only in a small
range throughout the equivalence. No serious power system faults are caused by frequency
changes. This method can reduce the complexity and increase the speed of the simulation.
This method is also applicable to the equivalent modelling analysis of the LVRT process in
large DFIG wind farms.

When the model structure of wind turbines in a wind farm is different, the difference
in LVRT characteristics between different turbines cannot be shown by clustering only
through the electrical distance. In this case, further analysis of reasonable clustering and
equivalent methods is needed on this basis.
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